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Summary: As standardized measures of cognitive abilities and academic achievement continue to evolve, so do the relations
between the constructs represented in these measures. A large, nationally representative sample of school-aged children and youth
between 6 and 19 years of age (N = 4,194) was used to systematically evaluate the relations between cognitive abilities and
components of academic achievement in mathematics. The cognitive abilities of interest were those identified from the Cattell–
Horn–Carroll model of intelligence. Specific areas of mathematics achievement included math calculation skills and math problem
solving. Results suggest that fluid reasoning (Gf), comprehension-knowledge (Gc), and processing speed (Gs) have the strongest
and most consistent relations with mathematics achievement throughout the school years. Copyright © 2017 John Wiley & Sons, Ltd.

The development of mathematics skills is complex. It re-
quires the mastery of multiple sub-skills (Locuniak &
Jordan, 2008; VanDerHeyden & Burns, 2009) and the use
of numerous cognitive abilities (Floyd, Evans, & McGrew,
2003; Proctor, Floyd, & Shaver, 2005; Taub, Floyd, Keith,
& McGrew, 2008). Some research has reported that fluid rea-
soning, crystallized intelligence, and processing speed have
significant relations with mathematics achievement (Taub
et al., 2008). Other studies identified memory, attention, pro-
cessing speed, and language skills as the primary cognitive
abilities contributing to mathematics achievement (Geary,
2011; Geary, Hoard, Nugent, & Bailey, 2011). In some
cases, the differences between studies may be related to dif-
ferent components of cognitive abilities being examined,
whereas in other studies, differences could be due to the lack
of a common nomenclature being used to identify the cogni-
tive abilities under investigation. Regardless, there appears
to be variability in the specific cognitive abilities relevant
to different components of math skill acquisition (Floyd
et al., 2003; Geary, Hoard, & Bailey, 2012). For example,
short-term memory, working memory, and visual–spatial
thinking demonstrate significant relations with mathematical
calculation performance, whereas fluid reasoning demon-
strates a significant relation with mathematical reasoning
(Gelbart, 2007). Thus, a systematic evaluation of the cogni-
tive abilities that contribute to mathematics achievement
can be useful in determining which cognitive abilities are
the primary contributors to various mathematics skills.
In addition to variation depending on the specific area of

mathematics interest, there are also different developmental

trajectories in the relations that are observed between specific
cognitive abilities and areas of academic achievement. For
example, previous research suggests that processing speed
has a strong relation with math calculation skills from age 7
to 15, inclusively, and only a moderate relation from age 16
to 19, inclusively (Floyd et al., 2003). Althoughmany of these
relations and their developmental trajectories have been
established in previous research (e.g., Evans, Floyd, McGrew,
& Leforgee, 2002; Floyd, McGrew, & Evans, 2008; Floyd
et al., 2003; McGrew, 1993; McGrew & Hessler, 1995;
McGrew & Knopik, 1993), the measures used in these prior
studies have been revised and re-normed, which brings into
question whether these relations have remained the same.
Thus, the purpose of this study is to examine the relations be-
tween specific cognitive abilities on different areas of mathe-
matics achievement and to produce developmental trajectories
of the relations between specific cognitive abilities and areas
of mathematics achievement across the school age years.

Measuring cognitive abilities

The Cattell–Horn–Carroll (CHC) Theory of Human Cogni-
tive Abilities provides a taxonomy describing all validated
cognitive abilities (Schneider & McGrew, 2012). This
hierarchical model of intelligence includes three strata, with
psychometric g, which represents general intelligence, lo-
cated at the highest level (stratum III). The two other strata
represent broad abilities (stratum II) and narrow abilities
(stratum I). It should be noted that this theory is viewed as
an evolving rendition of known cognitive abilities, rather
than being static or necessarily complete (McGrew, 2009).
For example, short-term memory (Gsm) has been renamed
(and the narrow abilities clarified) as short-term working
memory (Gwm) in the latest summary of the CHC model
(McGrew, LaForte, & Schrank, 2014). Although some of
the abilities are better validated than others (Schneider &
McGrew, 2012), those most often identified as relevant to
the purpose of assessing cognitive abilities are fluid reason-
ing (Gf), long-term storage and retrieval (Glr), processing
speed (Gs), comprehension-knowledge (Gc), visual process-
ing (Gv), auditory processing (Ga), and Gwm (McGrew
et al., 2014; Schneider & McGrew, 2012).
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CHC abilities and mathematics schievement

Findings from extant CHC studies (e.g., McGrew & Hessler,
1995; Taub et al., 2008) consistently indicated strong rela-
tions between certain CHC cognitive abilities and mathemat-
ics achievement. However, the relations between CHC
cognitive abilities and mathematics achievement appear to
vary from one age group to another and depending on the
specific mathematical skill. For example, Taub et al. (2008)
reported that although some CHC broad cognitive abilities
(e.g., Gf) demonstrate significant relations with mathematics
achievement across four age groups (5 to 6, 7 to 8, 9 to 13,
and 14 to 19), processing speed (Gs) only demonstrates a
significant relation with mathematics achievement at the ear-
lier age levels and comprehension knowledge (Gc) only
demonstrates a significant relation with mathematics
achievement for older school-age children and adolescents
(9 to 13 and 14 to 19). Other studies, however, have pro-
vided more specific information about the developmental tra-
jectories of broad CHC abilities that are used in response to
specific mathematics tasks (e.g., Floyd et al., 2003).

Developmental trajectories

Floyd et al. (2003) examined the relations between broad
CHC abilities and mathematics achievement across the
school age population ranging from 6 to 19 years old using
the Woodcock–Johnson III Tests of Cognitive Abilities
(WJ III COG) and Woodcock–Johnson III Tests of Achieve-
ment (WJ III ACH). Two math clusters were used to exam-
ine the relations between broad CHC abilities and
mathematics achievement: math calculation skills and math
reasoning. The WJ III COG included seven CHC cognitive
clusters (e.g., Gc, Glr, Gv, Ga, Gf, Gs, and Gwm). Floyd
and colleagues found that Gc has the strongest relations with
math calculation skills and math reasoning, with a moderate
relation being observed for math calculation skills after age
9. Glr showed moderate relations between math calculation
skills and math reasoning only at the younger ages (6
through 8 years). Gv, however, did not have significant rela-
tions with the two math clusters. Ga only showed a moderate
relation with the math calculation skills cluster during the
early school years. The relation between Gf and math
calculation skills was moderate, whereas relation with math
reasoning was moderate to strong, across all age groups.
Gs showed a moderate to strong relation with math calcula-
tion skills, but the relation with math reasoning was moder-
ate only until the age of 14. Gwm showed a moderate
relation with math calculation skills after the age of 7,
whereas the relation between Gwm and math reasoning
was moderate until the age of 17.

CURRENT STUDY

Considerable empirical evidence has accumulated during the
last two decades demonstrating the relationship between
cognitive abilities and academic achievement (e.g., Floyd
et al., 2003; Proctor et al., 2005; Taub et al., 2008). How-
ever, theories of cognitive abilities, as well as the assessment
tools used to measure the constructs represented in these

theories, continue to evolve (Schneider & Flanagan, 2015).
The assumption that previously reported relations between
cognitive abilities and areas of academic achievement
remain constant within this evolution may lead to incorrect
inferences being drawn from assessment results. Thus, we
seek to determine if the previously reported relations
between specific cognitive abilities and academic achieve-
ment in mathematics remain unchanged, despite numerous
changes being made to various test batteries.
This study focuses specifically on the Woodcock Johnson

Tests of Cognitive Abilities, Fourth Edition (WJ IV COG;
Schrank, McGrew, & Mather, 2014a) and the Woodcock
Johnson Tests of Academic Achievement, Fourth Edition
(WJ IV ACH; Schrank, McGrew, & Mather, 2014b), given
that much of the existing literature has focused on using this
measure when examining the relations between cognitive
abilities and academic achievement (see McGrew &
Wendling, 2010, for a review). The benefit of using the WJ
IV COG is that all broad cognitive abilities represented in
the CHC model can be assessed, which allows for a system-
atic examination of the relations between cognitive abilities
and areas of academic achievement (Newton & McGrew,
2010). The specific research questions to be answered are
as follows:

• What are the relations between broad WJ IV COG clusters
and the WJ IV mathematics achievement clusters?

• What are the developmental trajectories of the relations
between the broad WJ IV COG clusters and the WJ IV
mathematics achievement clusters?

METHOD

Sample

The normative samples for the WJ IV COG and the WJ IV
ACH were used to examine the relations between broad
CHC abilities and areas of academic achievement in mathe-
matics.1 The WJ IV COG and WJ IV ACH batteries are co-
normed. The complete norming sample included data from
7416 people ranging from ages 2 to over 90 (McGrew
et al., 2014). The norming sample is representative of the
US population across 46 states and the District of Columbia
(McGrew et al., 2014). The sample used for this study only
includes the school-age participants from the norming sam-
ple, which ranges from 6 to 19 years of age, inclusively.
Therefore, the total sample size for this study was 4194.
However, the sample was divided into individual age groups
for ages 6 to 19, inclusively (see Table 1).

Measures

CHC clusters
The WJ IV COG includes two batteries of tests—a standard
battery of 10 tests and an extended battery of eight additional
tests. Broad CHC cluster scores (Gc, Gf, Gwm, Gs, Glr, Ga,
and Gv) generated from pairs of tests from these batteries

1 Standardization data from the Woodcock-Johnson™ IV (WJ IV™). Copy-
right © 2014 by The Riverside Publishing Company. All rights reserved.
Used with permission of the publisher.
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were used for this study. The individual tests associated with
each broad CHC cluster are listed in Table 2. Strong, com-
prehensive reliability and validity information supports the
use of the WJ IV COG for the purpose of assessing cognitive
abilities (see Reynolds & Niileksela, 2015, for a review). For
example, the median CHC-cluster reliability coefficients
range from .88 to .98 throughout the school age years (i.e.,
ages 6 to 19, inclusively).

Mathematics achievement clusters
The WJ IV ACH is comprised of a standard battery of 11
tests and an extended battery of nine tests. Mathematics
achievement cluster scores are calculated from pairs of tests
included in the standard or extended batteries. The individual
tests and their corresponding mathematics achievement clus-
ters are listed in Table 2. The reliability and validity evidence
for the WJ IV ACH is extensive (McGrew et al., 2014), and
Reynolds and Niileksela (2015) ‘consider it one of the pre-
mier individually administered measures of human intelli-
gence’ (p. 390). For example, across the entire norming
sample, the median reliability coefficients for the WJ IV
ACH mathematics clusters math calculation skills and math
problem solving are .97 and .95, respectively. The CHC-
cluster reliability coefficients for each age level throughout
the school years (i.e., ages 6 to 19, inclusively) range from
.91 to .97 (for a comprehensive review of the WJ IV ACH,
see Reynolds & Niileksela, 2015 and Villarreal, 2015).

Data analysis

A data analysis plan was developed to systematically evalu-
ate the relative contributions of broad CHC abilities in
predicting mathematics achievement. The methods used in
this study are similar to those used in Cormier, McGrew,
Bulut, and Funamoto (2016), which was an evaluation the
relations between CHC abilities and academic achievement
in reading. The first step in the data analysis plan for the
current study was to determine if the broad CHC clusters
demonstrate meaningful relations with mathematics achieve-
ment, beyond the variance that is accounted for by general
intellectual ability (GIA). This procedure will be referred to

as the hierarchical regression models. Second, a series of
multiple regression analyses were completed to examine
the relations between seven WJ IV broad CHC cluster scores
and two WJ IV ACH mathematics clusters by age group.

Hierarchical regression models
In order to demonstrate the relations between the CHC broad
clusters and mathematics achievement beyond the contribu-
tion of g, a series of hierarchical regression analyses were
conducted. It should be noted that although the GIA was
used to account for g, this score is an estimate of g. However,
the individual tests included in this composite demonstrate
‘high loadings on the general intelligence (g) factor’ (p. 8,
McGrew et al., 2014). For each of the mathematics

Table 1. Sample demographics by age groups, gender, and race

Gender Race

Age N Male Female White Black Indian
Asian or

Pacific Islander
Other or
mixed

6 293 49.1% 50.9% 81.2% 13.0% 1.7% 2.4% 1.7%
7 308 49.7% 50.3% 80.8% 12.3% .3% 4.5% 1.9%
8 335 50.1% 49.9% 77.9% 12.5% .6% 6.6% 2.4%
9 306 49.0% 51.0% 77.1% 14.4% .7% 3.6% 4.2%
10 314 50.0% 50.0% 81.2% 11.1% .6% 4.8% 2.2%
11 329 50.5% 49.5% 75.7% 14.0% .9% 6.4% 3.0%
12 317 50.2% 49.8% 79.5% 12.3% .9% 5.0% 2.2%
13 307 46.9% 53.1% 74.9% 15.6% 1.0% 5.9% 2.6%
14 299 49.8% 50.2% 81.3% 11.4% .7% 5.4% 1.3%
15 277 52.0% 48.0% 80.9% 13.0% .4% 3.2% 2.5%
16 284 50.0% 50.0% 76.1% 16.9% 0.0% 5.6% 1.4%
17 254 46.5% 53.5% 78.7% 16.9% 1.2% 1.6% 1.6%
18 276 46.7% 53.3% 70.7% 22.8% 1.1% 3.6% 1.8%
19 295 47.5% 52.5% 76.6% 17.6% .3% 3.7% 1.7%

Table 2. Cognitive and achievement clusters and individual tests

Domains Broad clusters
Tests associated

the cluster

Cognitive Fluid reasoning (Gf) Number series
Concept formation

Comprehension
knowledge (Gc)

Oral vocabulary
General information

Short-term working
memory (Gwm)

Verbal attention
Numbers reversed

Long-term storage and
retrieval (Glr)

Story recall
Visual–auditory learning

Processing speed (Gs) Letter-pattern matching
Pair cancellation

Visual processing (Gv) Visualization
Picture recognition

Auditory processing (Ga) Phonological processing
Nonword repetition

General intellectual
ability (GIA)

Oral vocabulary
Number series
Verbal attention
Letter-pattern matching
Phonological processing
Story recall
Visualization

Achievement Math calculation skills Calculation
Math facts fluency

Math problem solving Applied problems
Number matrices
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achievement clusters, there were two nested regression
models. First, a model with the GIA cluster from the WJ
IV as the sole predictor of mathematics achievement was
produced and will be referred to as the reduced model. Sec-
ond, a model with GIA and the seven broad CHC clusters as
the predictors were generated and will be referred to as the
full model. It is possible to make a direct comparison be-
tween the two models because the reduced model is nested
within the full model. This comparison can be made by ex-
amining the change in R-squared (R2), which represents the
additional variability that explained by the full model com-
pared with the reduced model (see Tabachnick & Fidell,
2013, for details on this procedure). If the change in R2 is sta-
tistically significant, then it can be inferred that the broad
CHC clusters explain variance in mathematics achievement
clusters, beyond the variance that is explained by the GIA.
Individual models were produced for each of the age groups
included in the sample. To account for the number of statis-
tical tests that were computed, the alpha value for each of the
tests was set at .001 to determine statistical significance.

Broad CHC ability regression models
The regression models for these analyses included all seven
broad CHC cluster scores (i.e., Gc, Gf, Gwm, Gs, Ga, Glr,
and Gv) as predictors. Separate regression analyses were
conducted by using the following WJ IV ACH mathematics
clusters as criterion variables: (a) math calculation skills and
(b) math problem solving. Age-based standard scores
(M = 100, SD = 15) were used for all analyses. The standard-
ized regression coefficients from each regression model were
then interpreted to determine the relations between the pre-
dictors and the outcome variables. This method for present-
ing and evaluating the results of the regression models is
similar to those used in the prior studies to allow compari-
sons with previous cognitive-achievement regression re-
search that also used the WJ batteries as their measure of
psychological and educational constructs (Evans et al.,
2002; Floyd et al., 2003; McGrew, 1993; McGrew &
Hessler, 1995; McGrew & Knopik, 1993).

RESULTS

Hierarchical regression models

Figure 1 shows the results from the hierarchical regression
models for the two mathematics achievement clusters (i.e.,
math calculation skills and math problem solving). The de-
gree to which the broad CHC abilities explain additional var-
iance in specific areas of mathematics varies according to
age and the type of mathematics skill. The R2 change ranged
from .05 to .10 for math calculation skills and from .04 to .13
for math problem solving across 14 age groups. All of the
R2change values in Figure 1 were statistically significant,
suggesting that broad CHC abilities can explain additional
variance in math calculation skills and math problem solving
above and beyond the variance accounted for by the GIA
score. The results from the two mathematics achievement
clusters were similar across all age groups except for 6 years
of age in which the R2 change was the highest for math prob-
lem solving and much lower for math calculation skills.

Broad CHC ability regression models

The individual standardized regression coefficients for each
model, by age groups, are summarized visually in
Figures 2–4. Each of the standardized regression coeffi-
cients indicates the proportion of a standard deviation unit

Figure 1. R-squared change by age for the reduced model with the
general intellectual ability (GIA) cluster score compared with the
full model with the GIA and broad CHC abilities. The R-squared

change was significant for all data points

Figure 2. Math calculation skills and the relations to the fluid rea-
soning (Gf) and comprehension-knowledge (Gc) clusters [Colour

figure can be viewed at wileyonlinelibrary.com]

Figure 3. Math calculation skills and the relations to the processing
speed (Gs) and short-term working memory (Gwm) clusters

4 D. C. Cormier et al.
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of change in the criterion variable as a function of one
standard deviation change in the predictor variable.
Smoothed curves were produced from the individual data
points to represent the developmental trajectories of the re-
lations between each broad CHC cluster and mathematics
achievement throughout the school years. A distance
weighted least squares smoother with a tension of .50
was used to produce relatively smooth, continuous curves
when linking the individual data points. According to
McGrew and Wrightson (1997), smoothed curves ‘are
more likely better estimates of the population parameters’
(p.194). Figures include only the models that produced
standardized regression coefficients consistently at or
above .10 because standardized regression values below
.10 were reported to have no practical significance (Evans
et al., 2002; Floyd et al., 2003; McGrew, 1993; McGrew
& Hessler, 1995). As seen in similar studies, each figure
includes two parallel lines corresponding to standardized
regression coefficients of .10 and .30 for ease of interpre-
tation (Evans et al., 2002; Floyd et al., 2003; McGrew,
1993; McGrew & Hessler, 1995; McGrew & Knopik,
1993). The parallel lines included in the figures represent
thresholds for interpretation established in previous re-
search. Standardized regression coefficients at or above
.10 to .30 represent a moderate relation between the broad
CHC ability and mathematics achievement. Standardized
regression coefficients above .30 represent a strong relation
between the broad CHC ability and mathematics achieve-
ment (Evans et al., 2002).

Math calculation skills and CHC clusters
The median R2value across age groups for the math calcula-
tion skills multiple regression models is R2 = .59, with a
range of R2 = .54 to R2 = .64 (see the supporting information
for a list of all standardized regression coefficients and R2

values). The CHC abilities that have consistent relations with
math calculation skills are Gf, Gc, Gs, and Gwm, although
the strength of the relations between math calculation skills
and each of these broad CHC abilities varies from moderate
to strong. Gf demonstrated the strongest relation with math
calculation skills across the school years with standardized
regression coefficients between .40 and .50 for all ages

included in the analyses. The relation between Gf and math
calculation skills was also highly consistent from the age of
6 to the age of 19 (Figure 2). Gc, however, demonstrated var-
iability in its relation with math calculation skills—a weaker
relation was observed during the early school years,
followed by a gradual increase to a moderate to strong rela-
tion to math calculation skills in late adolescence. Gs also
demonstrated a strong and consistent relation with math cal-
culation skills throughout the school years (Figure 3).

The relations between the other three broad CHC abilities
(Ga, Gv, and Glr) and mathematics achievement were of no
practical significance with standardized regression coeffi-
cients consistently below .10 across all school ages. It should
be noted that Ga, Gv, and Glr do display significant relations
with math calculation skills when considered in isolation
(see correlation matrices in Appendix F of the WJ IV techni-
cal manual). The results suggesting no significant relations in
the current study are based on models controlling statistically
for the concurrent contributions of all other CHC abilities.

Math problem solving and CHC clusters
The median R2 value across age groups for the math problem
solving multiple regression models is R2 = .68, with a range
of R2 = .57 to R2 = .73 (see the supporting information for a
list of all standardized regression coefficients and R2 values).
Results of the relations between math problem solving and
broad CHC clusters are similar to those seen between math
calculation skills and the broad CHC clusters. Specifically,
the CHC abilities with consistent relations with math prob-
lem solving are Gf, Gc, and Gwm, with the strength of the
relations again varying from moderate to strong depending
on the CHC ability being examined (Figure 4). Gs, however,
was an exception to the comparison between math problem
solving and math calculation skills, as it demonstrated no re-
lation of practical significance to math problem solving,
when controlling statistically for the contributions of other
CHC abilities in the model. Gf, again, demonstrated the
strongest relation across the school years. In this case, the
standardized regression coefficients were greater than those
seen for math calculation skills, with values ranging between
.50 and .60 for all ages included in the analyses.

DISCUSSION

The purpose of this study involved two objectives. First, we
sought to examine the relations between broad WJ IV COG
clusters and the WJ IV mathematics achievement clusters be-
yond the contributions of g to academic achievement in
mathematics. The results suggest that broad CHC abilities
demonstrate significant relations above and beyond those
accounted for by general intelligence (i.e., g). Specifically,
Gf, Gc, and Gs appear to have significant relations with math
calculation skills throughout the school years. In addition, Gf
and Gc also demonstrate consistent relations with math prob-
lem solving throughout the school years. Second, we exam-
ined the developmental trajectories of the relations between
the broad WJ IV COG clusters and the WJ IV mathematics
achievement clusters across the school years. When consid-
ering the strength of the relations of Gf and Gc with both

Figure 4. Math problem solving and the relations to the fluid rea-
soning (Gf), comprehension knowledge (Gc), and short-term

working memory (Gwm) clusters
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math calculation skills and math problem solving over time,
the developmental trajectories appear to be relatively stable
throughout the school years. The developmental trajectory
of the relation between Gs and math calculation skills also
follows a consistent pattern with regard to the strength of
the relation over time. These findings, as well as variations
in the relations and developmental trajectories observed for
the other broad CHC abilities, are discussed in more detail
in the following sections.

Relations between Gf and mathematics

Floyd et al. (2003) suggested three hypotheses as they con-
sidered the consistent, moderate to strong relations between
fluid reasoning (Gf) and mathematics achievement, which
continue to be supported by additional empirical evidence.
First, they argue that quantitative reasoning abilities are a
narrow Gf ability (Carroll, 1993; Schneider & McGrew,
2012). Second, Gf plays a significant role in the development
of specific mathematical skills, such as rational number
calculations (Seethaler, Fuchs, Star, & Bryant, 2011),
whole-number line estimation (Namkung & Fuchs, 2016),
and algebra (Singley & Bunge, 2014). Third, there is consid-
erable evidence demonstrating the relationship between Gf
and mathematics achievement (McGrew & Wendling,
2010). In this study, Gf was the strongest predictor of both
math calculation skills and math problem solving across all
age levels from the age of 6 to the age of 19. It appears that
based on the latest versions of WJ COG and WJ ACH, Gf
has remained as the most prominent indicator of the variation
in mathematics achievement during the school years.

The strong relations between Gf and math problem solv-
ing observed in the current investigation, however, must be
interpreted with caution, as the math problem solving cluster
includes the Number Matrices test, a test that loaded at
similar levels on the Gf and Gf-RQ (quantitative reasoning)
factors in the WJ IV internal confirmatory factor analysis
validity studies (McGrew et al., 2014). This suggests possi-
ble predictor-criterion contamination. The authors of the
WJ IV noted a potential for predictor-criterion contamination
when they excluded the Number Series test as a potential
predictor in the development of the Scholastic Aptitude
Cluster designed to predict the math problem solving cluster.
Predictor-criterion contamination may be the reason that the
R2 values for math problem solving and Gf tend to be greater
than the R2 values for math calculation skills and Gf, with an
average R2 value of .69 for math problem solving and Gf,
and an average R2 value of .62 for math calculation skills
and Gf from ages 6 to 19. Although a comprehensive
examination of the criterion-predictor contamination effect
is beyond the scope of this paper, the observed relation
between Gf and math calculation skills, where criterion-
predictor contamination is not an issue, suggests that Gf
generally has a strong relation to math performance.

Relations between Gc and mathematics

Previous research has suggested a moderate to strong rela-
tion between Gc and mathematics achievement, particularly
for later school years (Floyd et al., 2003; Taub et al., 2008;
Williams, McCallum, & Reed, 1996). Floyd et al. (2003)

suggested that the increasing strength of relations between
Gc and mathematical reasoning abilities later on during the
school years is due to the hierarchical relationship between
learning basic mathematics skills, such as simple addition
and multiplication, and learning more complex mathematics
skills thereafter. The findings of this study regarding the re-
lation between Gc and mathematics achievement are also
aligned with the findings of Floyd et al. (2003), and there-
fore, this study provides further evidence supporting this de-
velopmental trend.

Relations between Gs and mathematics

Findings of the current investigation suggest that Gs has a
strong and consistent relation with math calculation skills
throughout the school years. However, Gs seems to have
no practically significant relation to math problem solving,
after controlling for relations between math problem solving
and other CHC abilities. These findings are in agreement
with those from Floyd et al. (2003). They indicated that de-
spite Gs having a strong relation with math calculation skills
throughout the school years, it has a moderate relation with
math reasoning only until age 14. The reason for the de-
creased strength in the relation between Gs and mathematical
reasoning may be that speed of processing is more influential
during the early stages of academic skill acquisition (Fry &
Hale, 2000; Necka, 1999; Weiler et al., 2000). However, as
individuals develop more complex cognitive abilities and de-
velop their academic skills, they may focus on more complex
mathematical problems where fast processing of information
may no longer be one of the primary skills needed to suc-
cessfully complete a given task.
It should be noted that the strong relation between Gs and

math calculation skills must be interpreted with caution
because the Math Facts Fluency test, which provides infor-
mation for one half of the math calculation skills cluster,
demonstrated a consistent moderate loading (r ≈ . 50) on
the Gs factor reported in the WJ IV internal validity studies
(McGrew et al., 2014). This could be interpreted to suggest
Gs predictor-criterion contamination. Conversely, this may
reflect the real importance of cognitive processing speed in
math fluency. Additional research is needed to investigate
this issue.

Relations between Gwm and mathematics

Gwm demonstrated weak but steady relations to both math
problem solving and math calculation skills. This is consis-
tent with the findings from previous studies with the WJ III
(Floyd et al., 2003), although the relations between Gwm
and components of mathematics achievement (e.g., math
calculation skills and math problem solving) are slightly
weaker in the current study. Floyd and colleagues focused
their analysis on two components of memory: working
memory and the Gwm cluster. Here, we only examined the
relations between Gwm and mathematics. Regardless, the
finding that Gwm demonstrates significant relations to the
two mathematics clusters is consistent with related research.
The Gwm cluster in the WJ IV COG involves two tasks: ver-
bal attention and numbers reversed. Verbal attention requires
the maintaining of complex relations between unordered

6 D. C. Cormier et al.
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words and numbers to be retained (relational complexity) in
working memory and significant attentional control (Heitz,
Unsworth, & Engle, 2004). Numbers reversed is considered
to be a measure of working memory capacity and attention
(Hale, Hoeppner, & Fiorello, 2002). Bull and Scerif (2001)
indicated that lack of inhibition and poor working memory
were the primary contributing factors to poor performance
in mathematics. Children between the ages of 5 and 11 with
poor working memory appear to have difficulty maintaining
attention (i.e., poor attention span), are highly distractible,
and engaging in effective problem solving (Alloway,
Gathercole, Kirkwood, & Elliott, 2009). Despite the contri-
butions of individual tests being beyond the scope of this

paper, working memory and the Gwm cluster appear to play
a significant role predicting the acquisition of mathematics
skills throughout the school years.

Non-significant relations with mathematics achievement

The broad CHC clusters, Ga, Gv, and Glr, did not demon-
strate significant relations with math problem solving or
math calculation skills throughout the school-age years. It
appears that the bulk of the variance in mathematics achieve-
ment is explained by the other broad CHC abilities (i.e., Gf,
Gc, Gs, and Gwm). It should be noted, however, that this
does not imply that these three abilities do not contribute to

Figure 5. A comparison of the strength of relations between WJ broad CHC abilities and areas of mathematics achievement across the school
age years. The white cells indicate no significant association; the shaded cells indicate a moderate association; the black cells indicate a strong
association. MCS = math calculation skills; MRS = math reasoning skills (WJ III); MPS = math problem solving (WJ IV). The data for the WJ

III are sourced from Floyd et al. (2003)
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learning in general or the acquisition of mathematics skills
specifically. The results herein simply show their contribu-
tion, relative to other cognitive ability clusters.

Limitations

The results presented herein should be considered within the
context of a couple limitations. First, inferences regarding
the relations between CHC abilities and academic achieve-
ment in mathematics were drawn from the measurement of
these abilities by using the WJ IV battery. Thus, these results
may not generalize to other measures of CHC abilities. Fu-
ture research with other cognitive batteries that also measure
broad CHC abilities may provide convergent evidence of
these results. Second, the design of this study does not
allow for causal links to be made between broad CHC
abilities and components of mathematics achievement.
However, the identified relations between cognitive abilities
and mathematics achievement may serve as a foundation for
future research that may want to test these relationships
experimentally. This may provide a deeper understanding
of the moderate or strong relations between cognitive
broad CHC abilities and mathematics achievement in the
current study.

CONCLUSION

There are clearly a number of cognitive abilities that contrib-
ute to academic achievement in mathematics. Moreover,
there is variability over the course of the school years in
how cognitive abilities contribute to academic achievement
in mathematics. The results of this study suggest that previ-
ously established relations between CHC cognitive abilities
and mathematics achievement are relatively consistent when
comparing the results from previous studies with the WJ III
to our results with the WJ IV (Figure 5). For example, al-
though the strength of the relations change at certain age
levels, many of the significant relations remained significant
across measures (i.e., the WJ III and WJ IV). One of the
noteworthy differences between the cognitive batteries is
perhaps the relation between Gs and math problem solving,
as this CHC ability had a significant relation with math prob-
lem solving from age 6 to 13 for the WJ III, but did not show
a significant relation with math problem solving at any age
level for the WJ IV. This difference could be explained by
the increased strength of the relation between Gf and math
problem solving in the early school years (i.e., moderate
for the WJ III compared with strong for the WJ IV). Regard-
less, the general trend in the findings across batteries sug-
gests a consistency in the construct representation of CHC
abilities in both batteries.
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