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Review
Glossary

Selective attention: goal-directed focus on one aspect of the environment,

while ignoring irrelevant aspects.

Working memory: maintenance and/or manipulation of task-relevant informa-

tion in mind for brief periods of time to guide subsequent behavior.

Delay-response tasks: a commonly used cognitive paradigm to study working

memory. It is particularly valuable for use in neural studies, because the stages

of working memory can be dissociated in time: expectation, encoding,

maintenance and retrieval. Types of delayed-response tasks include, delayed

match to sample (DMTS), delayed non-match to sample (DNMTS), delayed-

recognition tasks and the change-detection task.

Top-down modulation: modulation of neural activity in neurons in lower-order

sensory or motor areas based on an individual’s goals. This may involve

enhancement of task-relevant representations and/or suppression for task-

irrelevant representations.

Functional connectivity: an analytical approach used to reveal how brain

regions interact as nodes within neural networks and how their interactions

change according to experimental variables; most frequently assessed as

correlations between distributed neurophysiological measures in the time or

time-frequency domain (coherence).

Functional MRI (fMRI): a whole-brain imaging technique that involves

recording blood flow correlates of changes in neural activity during a task,

often using the blood oxygen level-dependent (BOLD) signal. Spatial resolu-

tion is a strength (the order of millimeters), whereas temporal resolution is

constrained by hemodynamic variables (the order of seconds) and is therefore

a limitation.

Electroencephalography (EEG) and magnetoencephalography (MEG): non-

invasive physiological recordings that sample ongoing neural electrical activity

through sensors on the scalp. The advantage is high temporal resolution (on

the order of milliseconds), but spatial resolution is limited due to spatial and

temporal summation of neural activity within the brain volume. Data are most

frequently analyzed as event-related potentials or magnetic (ERPs), which rely

on averaging signals time-locked to stimulus processing in the time-domain,

and spectral measures in the time-frequency domain.

Transcranial magnetic stimulation (TMS): non-invasive brain stimulation

method that uses a rapidly changing magnetic field to induce an electrical
Selective attention, the ability to focus our cognitive
resources on information relevant to our goals, influ-
ences working memory (WM) performance. Indeed, at-
tention and working memory are increasingly viewed as
overlapping constructs. Here, we review recent evidence
from human neurophysiological studies demonstrating
that top-down modulation serves as a common neural
mechanism underlying these two cognitive operations.
The core features include activity modulation in stimu-
lus-selective sensory cortices with concurrent engage-
ment of prefrontal and parietal control regions that
function as sources of top-down signals. Notably, top-
down modulation is engaged during both stimulus-pres-
ent and stimulus-absent stages of WM tasks; that is,
expectation of an ensuing stimulus to be remembered,
selection and encoding of stimuli, maintenance of rele-
vant information in mind and memory retrieval.

Top-down modulation in perception and working
memory
Selective attention and working memory (WM) have tra-
ditionally been viewed as distinct cognitive domains (see
Glossary). However, a growing number of psychological
and neuroscientific studies have revealed extensive over-
lap between these two constructs, spurring a number of
excellent reviews and theoretical discussions on this topic
[1–5]. In this review, we focus on recent neural evidence
highlighting how top-down modulatory mechanisms, simi-
lar to those described for selective attention to stimuli for
immediate perceptual goals, also influence multiple stages
of representations that support WM performance.

Top-down modulation underlies our ability to focus
attention on task-relevant stimuli and ignore irrelevant
distractions. Investigations using an array of methodolo-
gies (see Glossary) have offered complementary contribu-
tions showing that top-down signals generate neural
contrast by enhancing activity in sensory regions for items
that are relevant and suppressing activity for items irrele-
vant to task goals. For example, in visual areas, excitability
changes are reflected in competition for representations in
receptive fields of individual neurons, baseline firing rates
of neurons and synchronization of neuronal ensembles
[6,7]. It is now widely accepted that top-down modulation
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of sensory processing is not an intrinsic property of sensory
cortices, but rather relies on long-range inputs from and
interactions with a network of ‘control’ regions, including
the prefrontal cortex (PFC) and parietal cortex [8,9]. We
review evidence that a similar functional neural architec-
ture of top-down modulation analogous to those that oper-
ate during perceptual analysis supports the prioritization
of information in the service of WM.

In a typical visual WM task, participants are presented
with an array of one or more items to be maintained in
mind after the array is turned off over an interval of
seconds (delay period) during which no stimulus informa-
tion is present (‘delayed-response’ tasks). A single probe
item or a probe array then appears, and the participant
current in underlying cortex. The unique strength is enabling functional

assessment of brain regions and networks in a causal manner; a weakness is

that accessibility to some cortical structures is limited.
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Box 1. Cognitive aging

It is well established that older adults experience deficits in both

attention and WM abilities [89]. It is becoming increasingly evident

that these deficits interact with one another. In the context of this

review, there is accumulating evidence that impaired selective

attention processes in aging underlie much of the WM deficits

experienced by older adults. This is documented by alterations in

neural markers of top-down modulation throughout the stages of a

delayed-response task. In terms of expectation, unlike younger

individuals, older adults exhibit deficits in using predictive informa-

tion to guide optimal perceptual performance (e.g. temporal

attention [90]). This age-related expectation deficit has now been

associated with an inability of older adults to achieve WM benefits

using predictive cues, as do younger adults [24,91]. fMRI evidence

further reveals that alterations in top-down control networks

underlie an absence of pre-encoding, visual cortical activity

modulation and associated WM benefits in older adults. Older

adults also do not engage top-down modulation mechanisms

during WM encoding in the setting of irrelevant information to the

same degree as younger adults. This age-related impairment in top-

down modulation is selective for deficits in the suppression of

distracting information [92] and occurs at early visual processing

stages [93], even if an older individual can anticipate the presenta-

tion of a distractor [94,95]. In a related manner, older adults

experience a greater impact on memory when multitasking during

a period of WM maintenance compared to younger adults. This is

associated with a neural deficit in effectively disengaging from

interruptions and re-establishing functional connectivity associated

with the memory network after interruption [96]. As a whole, these

findings converge to reveal a generalizable, age-related deficit in

top-down modulation that serves as a bridge between attention and

WM impairment in aging [97].
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judges whether the probe matches the item(s) of the previ-
ous array. Several stages of processing and neural repre-
sentations occur in both the absence and presence of
stimuli: a state of expectation can precede the display of
to-be-remembered items; encoding of the items follows the
presentation of the array; the delay period necessitates
maintenance of the items in mind, in WM; and finally,
presentation of the probe requires retrieval of the relevant
item(s) from memory, as well as comparison to the probe,
decision-making and responding. All of these stages are
important in determining memory performance outcome,
and all benefit from selective and focused processing.
Furthermore, making only a subset of array items relevant
to the task can intensify pressures for selective processing;
that is, it introduces distraction. Selective processing can
also be encouraged by providing instructive or predictive
cues about the relevance of certain items for performance.
Recent neural investigations manipulating selective pres-
sures within each of these stages have revealed that top-
down attentional modulatory mechanisms continue to op-
erate throughout, dynamically regulating neuronal excit-
ability to optimize the final WM performance outcome.

Expectation
Expectations of upcoming events generated by predictive
cues enhance perceptual performance, notably improving
the speed and accuracy of stimulus detection and discrimi-
nation [10]. The neural basis of this phenomenon has been
most frequently studied using perceptual tasks, and is
characterized by stimulus-absent, top-down modulation
of neural activity in sensory cortices before stimulus pre-
sentation. For example, pre-stimulus enhancement has
been demonstrated in visual cortices following predictive
cues that selectively guide attention to a location [11],
stimulus feature [12,13], or object [14–16]. As is true for
top-down modulation in the presence of a stimulus, the
prevailing view is that top-down modulation of pre-stimu-
lus activity is mediated via top-down signals from the PFC
and parietal control regions [11,17,18].

Predictive cues have now also been shown to aid in the
transfer of perceptual representations into WM, as illus-
trated by the ability of such cues to benefit WM perfor-
mance [19–23]. A recent functional magnetic resonance
imaging (fMRI) study exploring the neural basis of this
phenomenon documented top-down modulation of pre-
encoding activity as a mechanism for expectation-driven
WM benefits [24]. Bollinger et al. used an object delayed-
response task in which a cue predicted what stimulus
category would be presented at encoding (e.g. predictive
= face, neutral = face or scene). Predictive category cueing
led to enhanced WM for faces compared to faces following a
neutral cue, and triggered shifts in baseline activity in a
face-processing region of the visual association cortex (i.e.
the fusiform face area [FFA]). The degree of functional
connectivity between the FFA and regions in the PFC and
parietal cortex (right inferior frontal junction [IFJ], middle
frontal gyrus [MFG], inferior frontal gyrus [IFG] and
intraparietal sulcus [IPS]) correlated with the magnitude
of pre-stimulus activity modulation in the FFA. Moreover,
FFA functional connectivity with the IFJ predicted the
benefit in WM performance gained by expectation of a
130
specific stimulus category. These data support the role
of stimulus-absent, top-down modulation in mediating
the influence of expectations on WM performance. Com-
plementing these findings, Murray et al. demonstrated
biasing of pre-encoding activity by spatial attention and
a correlation of these biases with WM performance using
electroencephalography (EEG) [21] (Box 1).

McNab et al. [25] used a feature delayed-response task
that cued participants to the presence or absence of irrele-
vant information in the encoding stimulus set. fMRI data
attributed to the pre-encoding expectation period revealed
greater activity in the PFC (MFG, near the precentral
sulcus) and the left basal ganglia (putamen and global
pallidus) when participants were cued to expect distrac-
tion. The authors interpret these brain regions as partici-
pating in establishing a ‘filtering set’ to focus encoding
resources only on the relevant information. Consistent
with this, we suggest this increased activity reflects the
greater requirement for selective attention to the relevant
stimulus set in the context of distracting information.

Encoding
The differential modulation of activity in sensory cortices by
attention to relevant versus irrelevant stimuli during WM
encoding has been shown to be comparable to activity
modulation generated in purely perceptual tasks. Goal-
related influences occur at both early and late phases of
stimulus processing [26] in stimulus-selective sensory cor-
tices [27,28]. There is now accumulating support for a direct
relationship between early goal-driven activity modulation
in sensory areas (within 200 ms of stimulus onset) and
subsequent WM performance [29]. For example, Rutman
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et al. [30] used EEG and a delayed-response task with
overlapping face and scene stimuli to reveal that activity
modulation driven by selective attention occurs within
100 ms of stimulus encoding and predicts subsequent WM
accuracy (Figure 1). The interpretation was that early mod-
ulation of cortical activity minimizes interference from dis-
tractors and biases the generation of higher fidelity
representations of relevant stimuli, thus conferring an ad-
vantage in maintaining that information in mind. A similar
study that used a feature delayed-response task [31] further
revealed that optimal WM performance was dependent on
effectively filtering irrelevant information at early proces-
sing stages, presumably to prevent overloading of a
limited WM capacity, supporting research by Vogel and
colleagues [32].

fMRI studies assessing cortical control regions involved
in top-down modulation during WM encoding have con-
verged to reveal a role of the PFC both in processing relevant
stimuli and in filtering distractors. Functional connectivity
studies showed that a region in the PFC (left MFG) was more
strongly functionally connected with a scene-processing
visual region when scenes were remembered and less so
when scenes were ignored during the encoding phase of an
object delayed-response task [33]. Moreover, the strength of
functional connectivity correlated with the magnitude of
attentional enhancement for relevant stimuli and suppres-
sion of irrelevant stimuli, suggesting that the PFC modu-
lates activity levels in visual cortices via the strength of
functional coupling. Interestingly, a recent fMRI study
using an object delayed-response task with overlapping
stimuli revealed that visual cortical areas processing rele-
vant object information were functionally connected with
the PFC and parietal control areas (i.e. MFG, bilateral IFJ
and IPS), whereas visual cortical areas processing irrele-
vant stimuli were simultaneously coupled with the ‘default
network’ (i.e. medial PFC and posterior cingulate cortex)
[34]. Importantly, there was a relationship between WM
performance and the degree of coupling between visual
cortices and default network regions.

These studies support a role of the PFC in selective
attention processes engaged during WM encoding, and raise
the possibility that limitations in attentional allocation by
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the PFC may serve as a limiting factor in the amount of
information we can encode. An fMRI study explicitly
assessed common neural resources shared by selective at-
tention for perceptual goals and WM encoding by combining
a visual search and object delayed-response task along with
manipulations of task demands [35]. The results revealed
overlapping activations for search and WM encoding in
prefrontal, visual, parietal and premotor areas. Moreover,
there was a reduction in WM load response in the setting of
high attentional demand, suggesting that shared neural
resources between attention and WM encoding limit proces-
sing capabilities.

Despite the informative contributions made by fMRI
studies, they generate correlational data. To test the causal
role of PFC-mediated top-down modulation on subsequent
WM performance, a recent study used fMRI-guided, repeti-
tive transcranial magnetic stimulation (rTMS) to perturb
function within a PFC region, and followed this with EEG
recordings during a feature delayed-response task [36]. The
right IFJ region targeted for rTMS was previously identified
as a putative PFC control node in an fMRI study [37].
Coordinates for the IFJ rTMS were based on functional
connectivity analysis of fMRI data for each participant using
the same WM task. Ten minutes of rTMS to the right IFJ
resulted in significantly diminished top-down modulation of
the P1 component of the event-related potential (ERP) to
color stimuli at posterior electrodes (i.e. the difference be-
tween P1 amplitude time-locked to the onset of relevant and
irrelevant fields of colored dots), as well as a significant
reduction in WM accuracy for color. As P1 modulation
recovered with time after rTMS (i.e. in the second half of
the block), so did WM performance. Moreover, on an indi-
vidual participant basis, the rTMS-induced reduction in P1
modulation during color processing predicted the reduction
in color WM accuracy. This study further showed that
participants with stronger fMRI functional connectivity
between the IFJ and visual cortices displayed a greater
impact of IFJ rTMS on top-down modulation. Thus, the
results revealed that PFC-mediated top-down modulation
during the early visual processing stages of WM encoding
was causally related to subsequent WM performance
(Figure 2). The right IFJ was identified as a PFC control
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Figure 2. Site of rTMS and relationship between rTMS-induced changes in P1 modulation and WM accuracy. (a) Functional connectivity analysis revealed a PFC region

associated with top-down modulation, the right inferior frontal junction (IFJ), that was identified in each individual and served as the site for rTMS. (b) Participants with

greater rTMS-related change in P1 modulation also exhibited a greater change in WM accuracy. D = sham – actual rTMS. Modified from [36].
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region that mediated this causal connection between top-
down modulation in the service of attentional goals and WM
performance.

Maintenance
Encoding into WM was traditionally considered to be the
end point of selective attention. Early seminal work
showed that retrieval of items from a previously presented
array could be improved only by selective spatial retrieval
cues (post-cues) appearing after very brief intervals, when
representations were thought to exist in a rapidly decaying
photographic ‘iconic’ format. Post-cues became ineffective
shortly afterward, during WM maintenance [38–40]. Once
encoded, WM representations were thought to be stable,
resistant to interference, and accessible through an auto-
matic and serial-search mechanism [41].

Subsequent research instead promoted the view that
selective attention continues to operate during WM main-
tenance. One prevailing view is that selective attention is
the mechanism by which items remain or become activat-
ed, and thus are maintained, in WM [2–5]. Corroborating
evidence comes from behavioral and neural studies show-
ing improved visual processing of items appearing at the
same location as or sharing features with items being
actively maintained in WM [42–47]. According to this view,
the functional architecture that supports visual WM main-
tenance is analogous to that supporting visual selective
attention in the perceptual domain [3,48,49]. fMRI task-
based functional connectivity suggests that maintenance of
items in WM involves sustained interactions between the
perceptual areas coding the relevant attributes of the
items and control areas in the PFC and parietal cortices
[50]. Parietal and frontal areas may therefore play an
attention-directing role during WM maintenance [51,52],
a view supported by a recent study investigating deficits in
WM tasks after bilateral lesions to the posterior parietal
cortex (PPC) [61].

Current research advances an even more active role for
top-down modulation during WM maintenance. In line with
the changing task demands and expectations in a dynamic
environment, top-down signals can continue to prioritize
items being maintained in WM even after encoding
[1,53,54]. An important methodological tool has been the
introduction of ‘retro-cues’ during the WM maintenance
132
period to manipulate retroactively knowledge or expecta-
tions about which maintained items will be relevant for
subsequent behavior. Retro-cues differ from post-cues in
that they do not prompt immediate retrieval of a cued item,
but instead provide information about the relevance of a
given item for subsequent retrieval. They trigger top-down
biasing mechanisms that operate on representations being
maintained in WM and consistently confer large benefits to
WM performance [23,55,56]. Recent neural findings suggest
that the mechanisms of stimulus-absent, top-down modula-
tion during WM maintenance are similar to mechanisms for
attentional modulation during perception, but may also
involve additional regulatory functions.

Retro-cues directing attention to a given category of
object within visual WM have been shown dynamically
to modulate activity in visual areas coding relevant versus
irrelevant items [57,58]. Similar activation is also observed
in tasks requiring participants merely to think back to a
previously viewed item; that is, to ‘refresh’ their current
focus of WM [59,60]. Spatial retro-cues can also result in
retinotopically specific modulation of visual activity during
WM maintenance [61]. The pattern of modulation is re-
markably similar to that of anticipatory selective attention
during expectation periods in perceptual [11,15,16,14] and
WM tasks [24]. Although these results invite the conclu-
sion that common top-down mechanisms bias neuronal
excitability toward an expected percept or toward a main-
tained memorandum, an alternative possibility is that the
modulation of activity after retro-cues or refreshing cues is
unrelated to modulation of WM, and merely reflects antic-
ipatory attention toward the expected probe stimulus [62].
Kuo and colleagues [63] recently used spatial retro-cues in
a delayed-response task that eliminated any anticipatory
spatial attention to the probe. The data, which relied on
lateralized ERPs reflecting load-dependent maintenance
of visual activity (contralateral delay activity [CDA] [64]),
provided strong support for the ability to dynamically
modulate WM representations themselves during the
maintenance period.

fMRI studies isolating neural activity triggered by in-
formative retro-cues show that the PFC and parietal areas
participate in controlling the focus of attention among
items being maintained in WM, when orienting attention
to both locations [63,65,66] and objects [57,62,67,68] in
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delayed-response tasks. Similar activation is observed
after ‘refresh’ cues [69,70]. Direct comparisons between
cues orienting attention within WM versus within percep-
tual arrays show a common set of parietal and PFC control
areas, with some studies showing additional recruitment of
medial and lateral PFC areas when the focus of attention
within WM is controlled [65,67,71,72]. fMRI functional
connectivity between the PFC and visual areas increases
after effective spatial retro-cues, and correlates significant-
ly with WM performance measures in a feature delayed-
response task [73]. Analyses using multi-voxel pattern
classification in a recent study showed that shifting the
focus of attention between two perceptual streams versus
two mental counters activated different patterns of neu-
rons within common parietal and frontal areas [72]. Fur-
ther studies using such multivariate methods will be
informative in revealing whether there are systematic
mappings within parietal and frontal ‘control’ areas
according to the domain in which attention shifts, or
whether neurons become bootstrapped into participating
in top-down modulation according to a flexible, adaptive
coding mechanism [74,75].

The left ventrolateral PFC, around the IFG and IFJ, has
been particularly implicated in regulating excitability
among WM representations [57,63,65–69,76]. A recent
study combining rTMS and fMRI supports the causal
participation of this general area in focusing attention
during WM maintenance and regulating neural excitabil-
ity in visual areas accordingly [58]. A region in the left
ventrolateral cortex, therefore, may play a key control
function related to selecting from among memory repre-
sentations to guide perception and action [58,67,68,77].

Another frequently used task manipulation to study
selective attention processes during WM maintenance is
the introduction of distracting stimuli or a secondary task
(interruption) during the delay period. Distractions pre-
sented during maintenance diminish WM task perfor-
mance, especially when distractors are of the same
category as memoranda [78–81]. Accumulating evidence
suggests that selective attention biases sensory processing
in favor of the information being retained in WM and
against irrelevant, distracting information in a manner
comparable to that during perceptual processing [79,81].
Moreover, ERPs and fMRI have shown that the degree of
visual processing of irrelevant, distracting stimuli inverse-
ly correlates with subsequent WM recognition accuracy for
the encoded items [78,82]. fMRI connectivity analyses
suggests that, in the presence of entirely irrelevant dis-
tracting stimuli, encoded items are maintained throughout
the delay period via retained functional connectivity be-
tween the MFG and visual areas. In contrast, when main-
tenance was interrupted by a secondary task, the encoded
items were not maintained but rather reactivated after the
interruption [78]. A recent combined TMS–fMRI study
showed that the strength of top-down inputs from the
dorsolateral prefrontal cortex to posterior brain areas
processing task-relevant targets during WM maintenance
increased in the presence of distracting stimuli, confirming
the importance of functional connectivity between the PFC
and posterior areas in promoting successful maintenance
of task-relevant items during WM delays [83].
Retrieval
Given the multiple stages of the delayed-recognition task
at which top-down modulation can influence WM perfor-
mance, finally we must ask whether the retrieval process
itself is influenced by these mechanisms. This issue seems
to have undergone little direct investigation. Conceptual as
well as pragmatic issues may make the question difficult to
tackle. For example, it is difficult to separate effects oper-
ating at retrieval from the cascading consequences of
effects that have accrued during expectation, encoding
and maintenance. Nobre and colleagues [84] measured
ERPs while participants searched for a target in a WM
array of varying loads (1–4). In the absence of spatial
cueing, the probe triggered a load-dependent ERP reflect-
ing WM search [85,86]; spatial retro-cues completely abol-
ished this load-related activity. These results clearly show
that selective attention can facilitate retrieval functions,
but leaves it unclear whether the effect occurred at the
time of retrieval (e.g. by using a short-cut to the relevant
location in the search path) or earlier during the mainte-
nance period (e.g. by effectively reducing the relevant array
to one item), or both. Some ingenuity will be required to
separate out independent modulatory effects during WM
retrieval.

Recent studies of WM retrieval have revealed another
type of close connection between visual WM and attention.
Selective retrieval of a target item maintained within a
WM array elicits lateralized ERP markers similar to those
obtained during successful identification of a target during
visual search [85–88]. The lateralized potentials occur even
when the WM search is triggered by a centrally presented
target, and are thought to reflect activation of WM repre-
sentations of target attributes within a spatiotopically
organized layout in visual and/or parietal areas [86]. Thus,
selecting a target from WM and from the environment may
be largely analogous acts of internally and externally
directed selective attention.

Concluding remarks
We conclude that the neural mechanism of top-down
modulation serves as a common framework for selective
attention processes in the service of both perceptual goals
and those that underlie the different stages of WM opera-
tions (Box 2). Top-down modulation of information proces-
sing appears analogous between these constructs, in
terms of both the site of activity modulation in the sensory
cortices and the putative sources of top-down signals
originating from cortical control areas. We propose that
the role of top-down modulation during WM encoding and
its subsequent benefits on WM performance is via an
influence of attention on the early perceptual representa-
tion, and is not a process specific for WM. This also applies
to the modulation of sensory representations that occur
before stimulus presentation and during the delay period.
Top-down modulatory functions dynamically modulate
neuronal excitability both in the presence of stimuli (i.e.
during selective encoding of items to be remembered and
selective retrieval of a memorandum) and in the absence of
external stimuli (i.e. in expectation of items to encode or
ignore and during maintenance of items during a temporal
delay).
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Box 2. Questions for future research

� Given the striking similarities between the neural mechanisms

engaged when selecting and representing items from an incom-

ing perceptual stream and those that are engaged in the absence

of stimulation, one wonders exactly how percepts and WM traces

are distinguished at a neural level.

� The modulation of neural oscillations has increasingly been

shown to play a critical role in regulating excitability for

perceptual events [7], but we know little about the role of

oscillations in the top-down modulation of information main-

tained in WM. Studies should explore phase and amplitude

relationships at different frequencies, both within and across

brain regions, and across the stages of WM tasks.

� Goal-directed focus on relevant events is a core building block for

most of cognition, and disturbances in attention have been

implicated in several neuropsychiatric conditions. It will be of

great interest to explore whether and how alterations in top-down

modulation at the interface of attention and WM impact cognitive

performance in neuropsychiatric conditions.

� How amenable are these neural systems to plasticity changes with

training? Is it possible to enhance cognitive development during

childhood and resilience during aging by improving focus and

selective attention within WM?
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