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The study investigates empirical properties of reasoning speed which is conceived as the
fluency of solving reasoning problems. Responses and response times in reasoning tasks are
modeled jointly to clarify the covariance structure of reasoning speed and reasoning ability. To
determine underlying abilities, the predictive validities of two cognitive covariates, namely
perceptual and executive attention, are investigated. A sample of N=230 test takers completed
a reasoning test, Advanced Progressive Matrices (APM), and attention tests indicating
perceptual and executive attention. For modeling responses the two-parameter normal ogive
model, and for modeling response times the two-parameter lognormal model was applied.
Results suggest that reasoning speed is a unidimensional construct representing significant
individual differences, and that reasoning speed and ability are negatively correlated but
clearly distinguishable constructs. Perceptual and executive attention showed differential
effects on reasoning speed and reasoning ability, i.e., reasoning speed is explained by executive
attention only, while reasoning ability is explained by both covariates. Implications for the
assessment of reasoning are discussed.
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1. Introduction

Models of the structure of human cognitive abilities paint a
complexpicture ofmental capabilities (cf. Carroll, 1993;Horn&
Blankson, 2005; Roberts & Stankov, 1999; Stankov, 2000). Such
models include the well-known higher-order ability (level)
factors, like fluid intelligence (Gf) and crystallized intelligence
(Gc), as well as cognitive speed factors whose hierarchical
structure has becomemore andmore differentiated. In Carroll's
(1993) seminal work about cognitive abilities in factor-analytic
research, the cognitive ability domain of reasoning includes
several reasoning ability factors, i.e., deductive, inductive, and
quantitative reasoning, and, furthermore, the domain of
cognitive speed is assumed to comprise a specific speed of
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reasoning factor. Although the existence of reasoning speed as
cognitive speed factor is acknowledged in Carroll's framework
and following extensions (for an overview see McGrew, 2005,
2009), only limited or inconsistent empirical evidence is
available about the existence of reasoning speed and how it is
related to reasoning ability (cf. Carroll, 1993).

The major goal of the study is to clarify the relationship
between reasoning ability and reasoning speed. Therefore, a
recently developedmethod for the joint modeling of responses
and response times is applied (Klein Entink, Fox, & van der
Linden, 2009) to obtain information about both the test taker's
level of ability and speed when completing reasoning tasks.
First, the covariance structure of reasoning ability and reason-
ing speed is investigated. Moreover, the study aims to clarify
whether twocognitive abilities that havebeen showntopredict
reasoning ability (for an overview see e.g., Schweizer, 2005)
also predict reasoning speed to the same extent or differently.
That is, the relationship between the two constructs is further
clarified by investigating and comparing the predictive valid-
ities of two cognitive covariates, perceptual and executive
attention, with reasoning ability and speed.

http://dx.doi.org/10.1016/j.intell.2011.02.001
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1.1. Reasoning ability

Since Spearman's (1923) definition of general intelligence
as the ability to extract correlates and relations among a set of
entities, reasoning has played a highly important role in the
domain of intelligence. In Carroll's (1993) three-stratummodel
of cognitive abilities, the general intelligence factor, g, at
stratum III is identified by a range of broad ability factors at
stratum II. One of them is fluid intelligence, Gf, which itself is
defined by level factors of reasoning ability, like inductive and
deductive reasoning, at stratum I. Following Carroll (1993),
inductive reasoning can be conceptualized as the cognitive
ability to induce a rule or common characteristics for observed
entities and the relations among them (i.e., the conclusion
includes more information than the premises from which the
conclusion has been derived), while deductive reasoning refers
to the ability to draw inferences fromgivenpremises to provide
a conclusion or to evaluate the correctness of conclusions (i.e.,
the conclusion does not include more information than that
already provided by the premises).

The mental model approach (Johnson-Laird, 1994a,b) con-
ceptualizes reasoningas the creationandmanipulationofmodels
representing entities, their properties, and the relations among
these entities. The process of inductive reasoning is assumed to
comprise three phases (Johnson-Laird, 1994a). The first stage
includes the determination of the premises (e.g., by perceptual
observations) which at the second stage enable the formulation
of a tentative conclusion. Finally, at the third stage the conclusion
is evaluated whichmay result in keeping, updating, or abandon-
ing it. The third stage includes a detection of inconsistencies
between conclusion and evidence, retracting the conclusion or
doubting the premises, and finally finding explanations for
detected inconsistencies (Johnson-Laird, Girotto, & Legrenzi,
2004).

Measures of inductive reasoning, e.g., Raven's (1962)
Advanced Progressive Matrices (APM) that are being used in
this study, usually require the test taker to generate the logical
rules governing the entities and their relations included in the
task's stimulus. Once the rules have been found, the task
requires at least one deductive stepwhen applying the induced
rules, i.e., drawing inferences to give a response (Carroll, 1993).
Individual results are usually obtained by number correct
scores or person parameter estimates as defined by an item
response model. For the APM, Carpenter, Just, and Shell (1990)
could identify the abilities to induce abstract relations and to
generate, maintain, and monitor the attainment of (sub)goals
in working memory as major sources of individual differences
in reasoning ability. Both abilities can be conceived as crucial
building blocks for a mental model as described by Johnson-
Laird (1994a) in that inducing relations clarifies how observed
entities are related and themanagement ofmultiple (sub)goals
is necessary to keep track of the observed figural attributes and
derived rules in the APMmatrix.

1.2. Reasoning speed

The construct of reasoning speed is perceived as an
indication of the fluency in performing reasoning tasks. From
an individual differences perspective, individuals are assumed
to differ not only in their ability but also in the speed level at
which they complete the reasoning tasks.
Carroll (1993) reports a few studies providing evidence for a
speed of reasoning factor with rate-of-work measures or
response times in items as indicators. The three-stratum
model locates the speed of reasoning at stratum I as a cognitive
speed factor of fluid intelligence (Gf) indicating the efficiency in
achieving a cognitive goal. In their factor analytical research
work, Roberts and Stankov (1999) relate the reasoning speed
factor (Induction speed) at stratum I to a general Psychometric
speed factor (encompassing processes of Carroll's Broad cognitive
speediness) between strata I and II; the Psychometric speed
factor itself serves as indicator of a general speed factor being
located at stratum II. Thismultifacetedmental speed framework
extending Carroll's cognitive speed domain suggests that the
structure of cognitive speedmay be as complex as the structure
of cognitive ability (cf. McGrew, 2005; Stankov, 2000).

Individual differences in reasoning speed can be expected
in several respects. First, individuals taking exactly the same
processing steps may differ in their general processing speed
which affects the time needed across the various stages of the
reasoning process; for instance, in APM tasks one important
aspect of speed is rule generation speed (Verguts, De Boeck, &
Maris, 1999). This general source of individual differences in
response times is reflected by Roberts and Stankov's (1999)
Psychometric speed factor which also explains Induction
speed. Moreover, when controlling for the general processing
speed there may be further differences in the time spent for
the third stage of reasoning, i.e., validating tentative conclu-
sions by looking for inconsistencies and if needed modifying
the logical argument. As indicated by Johnson-Laird (1994a),
a prudent person will continuously evaluate the (tentative)
conclusions, and if needed revise them. This of course will
take more time than reasoning without a cautious validation
of the conclusion.

1.3. Relation between reasoning ability and reasoning speed

Previous findings on the relation between reasoning ability
and reasoning speed are limited and inconsistent. Carroll's
(1993) overview refers to some datasets (e.g., Kyllonen, 1985)
showing speed factors along with the ability factors. He
summarizes the role of speed in intelligence stating that there
are individual differences in the time needed to perform
cognitive tasks, and that these times show low or zero
correlations with levels of intelligence. Roberts and Stankov
(1999) report a weak positive correlation of the Induction
speed factor (indicated by average response times in number
and letter series tests) with the corresponding ability factor of
Inductive reasoning. In a factor analysis of speedand level factor
scores Induction speed showed a significant positive loading
not only on a common factor interpreted as overarching broad
speed (Gt), but also on another common factor GF which is
marked by fluid intelligence (Gf) and Inductive reasoning (IR).

Further empirical evidence is provided by Acton and
Schroeder (2001). They assessed the trait Quickness in seeing
relations (Inductive speed) and found a moderate correlation
with analytical reasoning (as the ability to arrange concepts into
a logical sequence). In a neuroimaging study by Haier,
Schroeder, Tang, Head, and Colom (2010) using the same test
battery, a confirmatory factor model was tested with Inductive
speed and Analytical reasoning as indicators of a common
Reasoning factor; the latter loaded substantially on a second-

Visit following links for description of possible speed hierarchy model proposed by McGrew and Evans (2005) and summarized in McGrew (2004,2005)
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order factor (which was interpreted as general intelligence, g
factor). Most interestingly, speed of reasoning showed a
relatively strong and specific pattern of graymatter correlations.

The empirical example provided by Klein Entink, Fox et al.
(2009) for their hierarchical modeling approach shows that
quantitative and scientific reasoning and associated reasoning
speed are negatively correlated indicating that test takers
showing higher levels of ability tended to spend more time on
completing the tasks. The study by Klein Entink, Kuhn, Hornke,
and Fox (2009) also reports a substantial negative correlation
between figural reasoning ability and speed. These findings are
in line with the above mentioned results of a positive
correlation between ability factors and speed factors in that
the latter are actually slowness factors given the applied
parameterization in factor analysis. It is important to note that
in these two empirical examples the relation between the
person parameters was estimated at the population or
between-person level, i.e., the obtained negative correlation
cannot be interpreted as speed-accuracy trade-off which is
considered to be a phenomenon at the within-person level.

1.4. Effects of person level covariates on reasoning ability and
speed

The explanation of individual differences in intelligence and
reasoning, respectively, has a long tradition in cognitive
psychology. A lot of research has been devoted to the relation
of basic cognitive abilities to reasoning ability. Onemajor goal of
this vast amount of research was to regress intelligence on
various cognitive bases like mental or perceptual speed (cf. the
cognitive correlates approach using elementary cognitive tasks,
e.g., Jensen, 1982, 1987; Neubauer, 1991), attention (e.g.,
Schweizer, Moosbrugger, & Goldhammer, 2005; Stankov,
1983), executive attention (e.g., Kane et al., 2004), working
memory (e.g., Kyllonen & Christal, 1990; Süß, Oberauer,
Wittmann, Wilhelm, & Schulze, 2002), and others.

As regards reasoning speed, to our knowledge hardly any
studies are available that address the effect of person level
covariatesonreasoningspeed. In theempirical exampleprovided
by Klein Entink, Fox et al. (2009) a negative effect was observed
for self-reported test effort, i.e., test takers who care more about
their results take more time to complete the reasoning tasks.

1.5. Goals and hypotheses

The major goal of the present study is to clarify the
properties of reasoning speed from an individual differences
perspective. More specifically, we investigate the relation of
reasoning speed to reasoning ability, and the predictive validity
of attention abilities with reasoning speed and ability. For
testing the following hypotheses, the well-validated Advanced
Progressive Matrices (APM) test has been selected to assess
(figural) inductive reasoning.

Hypothesis 1: Previous empirical research and related
theoretical frameworks assume that a speed of reasoning factor
exists within the domain of cognitive speed (e.g., Carroll, 1993;
Roberts & Stankov, 1999). Based on this research work, we
assume that the test takers' response times in APM items reflect
one common reasoning speed dimension, i.e., we assume a
unidimensional measurement model with one latent speed
variable that is sufficient to capture all response time
covariance across items; moreover, we assume that test takers
differ in their individual level of speed, i.e., the variance of this
latent reasoning speed variable is expected to be significant.

Hypothesis 2: We assume that reasoning ability and
reasoning speed can be distinguished empirically. Previous
findings showed varying degrees of commonalities ranging
from weak correlations close to zero (cf. Carroll, 1993) to
substantial correlations (cf. Doerfler & Hornke, 2010; Klein
Entink, Fox et al., 2009; Klein Entink, Kuhn, et al., 2009). This
variability may be accounted for to some extent by specificities
of the studies (i.e., samples, speed indicators and modeling
approaches). Taken together, we assume reasoning speed and
ability to bemoderately and negatively related as suggested by
previous research work (including also corresponding positive
correlations between ability and slowness factors).

Hypothesis 3: To further clarify the expected uniqueness
of reasoning speed and ability, underlying cognitive abilities
are investigated and compared.

Based on the previous research on the cognitive basis of
intelligence (e.g., Jensen, 1987; Kane et al., 2004) we expect
perceptual and executive attention to show significant
predictive validity with reasoning ability.

Perceptual and executive attention have been selected as
covariates because they proved to be major factors underlying
individual differences in various attention-related cognitive
tasks as suggested by the confirmatory factor model proposed
byMoosbrugger, Goldhammer, and Schweizer (2006). Percep-
tual attention indicates processing speed when performing
elementary cognitive tasks including perceptual stimuli, and,
therefore, it is assumed to reflect mental speed. Executive
attention refers to superordinate control processes that are
needed if the task set needs to be (re)configured within or
between tasks according to the task goal, e.g., to switch from a
primary to a secondary task, to dealwith inconsistent stimulus–
response mapping and interference between (sub)task goals
etc. (cf. Logan & Gordon, 2001).

Most important, the present study aims to investigate
whether perceptual attention and executive attention show
predictive validity with reasoning speed as expected for
reasoning ability. To our knowledge, no empirical evidence is
yet available that clarifies the cognitive basis of reasoning speed.

2. Method

2.1. Participants

A sample of 230 high school and university students
completed a computer-based test battery including Raven's
Advanced ProgressiveMatrices (APM) aswell as scales assessing
executive attention and perceptual attention. Therewere 65.70%
females and 34.30% males aged 19 to 40 years (M=23.99,
SD=4.00). Four participantswere excludedbecause for themno
measures for executive attention and perceptual attention were
available. Participants were assessed individually or in pairs.

2.2. Measures

2.2.1. Reasoning scale
Reasoning was assessed by computer-based versions of

Raven's (1962) Advanced Progressive Matrices (APM). The
figural APM items consist of 3×3 matrices composed of

Reflective (vs impulsive) cognitive style or temp research

Recall Horns CDS (correct decision speed) factor.
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geometrical elements. For each item, one element is missing,
and the task is to select the missing element from a set of
eight figures so that the rule indicated by the first eight
elements in each item is fulfilled. In the present study, form 2,
Set II of the APM, consisting of 36 items was used. The APM
test was administered without time limit.

2.2.2. Measures of perceptual and executive attention
The following attention measures were administered to

determine factor scores for perceptual and executive atten-
tion in confirmatory factor analysis (CFA).

Four subtests of the Test for Attentional Performance (TAP)
(Zimmermann & Fimm, 2000) were used. The alertness task is a
simple reaction time task. The test taker responds to the
appearance of the target (“x”) by pressing the response key as
fast as possible. The focused attention task requires test takers to
respond selectively to the appearance of a target, and in the case
of a non-target no reaction is required. Stimuli are five regular
textures included in a square (two targets and three non-
targets). In the attentional switching task a letter and a number
are presented to the left and to the rightof afixationpoint. In the
first trial theparticipant detectswhether the letter has appeared
to the left or to the right andpresses the corresponding response
key. In the next trial the participant needs to look for the
number. In the sustained attention task, combinations of a beep
(highor low) andone capital letter are presentedoneach trial. If
a lowbeep is followedbyan “E”or ahighbeep followedby a “N”,
the participant has to press the response key. In all four scales
the result was themedian time between the presentation of the
critical stimulus and the response.

The Frankfurt Adaptive Concentration Test (FACT)
(Moosbrugger & Goldhammer, 2007) requires test takers
to respond selectively to figural targets and non-targets by
pressing one of two response buttons. The administered test
form FACT-SR is characterizedby the simultaneouspresentation
of ten stimuli on the screen. An arrowmoving from left to right
indicates the next stimulus. The individual FACT-SR result is the
inverted average reaction time.

Finally, from the Multi-dimensional Attention Test (MAT)
(Heyden, 1999) the scale skill-based interference was used. In
each task two letters appear above and below the center of a
square, and two digits to the left and to the right of the center.
The participant has to perform simultaneously on two
demands: press the first key if the letter channel includes
either “D”or “F”, otherwisepress the secondkey; press the third
key if the digit channel includes either “3”or “5”, otherwise
press the fourth key. The result was the mean time elapsing
between the presentation of the stimulus and the response.

All attention scales were assumed to assess perceptual
attention because they require participants to process figural
stimulusmaterial. A subsetof attention tests additionally requires
executive attention, i.e., switching the mental set during task
completion because of changing stimulus–response (SR) map-
ping (TAP attentional switching task), categorizations based on
two stimulus dimensions (FACT task), and interfering stimulus
dimensions in a dual task (MAT skill-based interference task).

2.3. Joint modeling of responses and response times

To address the research questions, a modeling framework
is needed that allows for the joint analysis of reasoning speed
and ability and their relationship with person-level covari-
ates. The joint modeling approach as proposed by Klein
Entink, Fox et al. (2009; see also Klein Entink, Kuhn, et al.,
2009) includes measurement models for ability and speed of
test takers. At a higher level, the relationship between these
constructs is modeled and covariates can be introduced to
explain individual differences in ability and speed.

2.3.1. Measurement models at level 1
The responsemodel used in this study is the two-parameter

normal ogive (2PNO)model which defines the probability that
test taker i answers item k correctly as function of the test
taker's ability θi as well as the item's difficulty bk and
discrimination ak, is given by

P Yik = 1 jθi; ak; bkð Þ = Φ ak⋅θi + bkð Þ; ð1Þ

where Ф() denotes the normal cumulative distribution
function.

Similarly, the two-parameter log-normal (2PLNO) model
for response timesmodels the log response time Tik as function
of the test taker's speed ζi and the item's time intensity λk and
time discrimination ϕk, i.e.,

Tik = −ϕk⋅ζi + λk + εik; ð2Þ

where εik denotes the residual which is distributed εik~N(0,τk2).
This parameterization enables to disentangle person effects (i.e.,
speed), and item effects (i.e., intensity and discrimination) on
response time.

2.3.2. Modeling item and person parameters at level 2
At the second level, the joint distribution of person

parameters is specified. From a Bayesian viewpoint, this
bivariate normal distribution of speed and ability can be
considered to be a common prior for the person parameters:

θ; ζð Þ = μP + eP ; μP = μθ; μζ

� �
; eP eN 0;ΣPð Þ

where ΣP is the covariance matrix given by:

ΣP =
σ2
θ σθζ

σθζ σ2
ζ

2
4

3
5:

The covariance parameter, σθζ, is an important parameter
since it reflects the possible dependencies between ability
and speed within the population of test takers. Its value
reflects to what extend ability and speed are different
constructs. Similarly, the variance parameters provide infor-
mation about individual differences in ability and speed in the
population.

Regarding the items, amultivariate normal distribution is in
the sameway specified for the itemparameters of the response
and response timemodels. The covariance structure of this joint
distributionprovides informationaboutdependencies between
item parameters, e.g., the assumption that more difficult items
may also show higher time intensity values can be checked by
the estimate of σbλ.

2.3.3. Model assumptions
The model is supposed to hold for scales that can be

completedwithin generous time limits. Accordingly, test takers
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are expected to be able to complete items at a fixed level of
speed and accuracy, respectively, i.e., they are not assumed to
change the levels of speed and accuracy during testing due to
strict time limits (stationarity assumption). Moreover, condi-
tional independence of observations is assumed, i.e., responses
and response times, respectively, are expected to be indepen-
dent across items conditional on the respective person
parameter. Based on this, also responses and response times
are supposed to be conditionally independent within an item,
i.e., the levels of speed and ability presumably capture the
covariance between responses and response times to an item
completely.

2.3.4. Estimation and software
Statistical inferences for the joint model were performed

within the Bayesian statistical framework. In the Bayesian
approach, a model parameter is assumed to be a random
variable. That is, there is uncertainty about its value, which is
reflected by specifying a probability distribution for the
parameter. This distribution is called the prior distribution
and it reflects the subjective belief of the researcher about
admissible values for the parameter before seeing the data.
Subsequently, data is collected and the prior is updated
according to Bayes' rule, resulting in the posterior distribution
of the model parameter, on which inferences can be based. For
an introduction into Bayesian statistics, see Gelman, Carlin,
Stern, and Rubin (2004).

For estimation of the modeling framework for responses
and response times, the CIRT package version 2.5 (Klein Entink,
2010; Fox, Klein Entink, & van der Linden, 2007) for use in the R
environment version 2.10.1 (R Development Core Team, 2009)
was used. The CIRT package employs a Bayesian Markov Chain
Monte Carlo (MCMC) algorithm to obtain parameter estimates
by posterior simulation from the joint distribution of themodel
parameters given the observed data (cf. Gelfand & Smith,
1990). For model identification, the variance of ability, σθ

2, and
the product of time discriminations are fixed to be 1, and the
means of ability and speed are fixed to be 0. For all othermodel
parameters, thedefault non-informative priors as implemented
in the CIRT package were used.

For CFA modeling and deriving factor scores of perceptual
attention and executive attention Mplus software version
4.21 (Muthén & Muthén, 2006) was used. Model parameters
were estimated by means of Maximum likelihood.

2.4. Model fit and model selection

For model comparison within the Bayesian approach, the
Deviance Information Criterion (DIC) can be used which is the
sum of a deviance measure and a penalty term for the effective
number of parameters in themodel (Spiegelhalter, Best, Carlin,
& van der Linde, 2002).

Alternatively, Bayes factors can be computed for selecting
the most explanatory model (Kass & Raftery, 1995). The Bayes
factor is defined as the ratio of the marginal likelihood of the
data under a model M0 and the marginal likelihood of the data
under amodelM1. Themarginal likelihood is the average of the
density of the data taken over all possible parameter values
admissible by the prior. A Bayes factor of about 1 indicates that
bothmodels are equally likely; a value of≥3 is considered to be
strong evidence in favor of model M0, while a value near 0
favors model M1 as the better explanation for the data.

To evaluate the fit of the responsemodel Bayesian posterior
predictive checks were done with respect to appropriate test
statistics (cf. Sinharay, Johnson, & Stern, 2006). By simulating
replicated data sets xrep from the posterior predictive distribu-
tion of the model, a posterior predictive distribution of a test
statistic can be constructed. In such cases, the check consists of
comparing the replicated data to the observed data and the
probability of the model-predicted test statistic being greater
than the observed test statistic is assessed (posterior predictive
p value).

Regarding the response model, the odds ratio statistic was
used to evaluate the conditional independencies among items.
If items are pair-wise independent, higher order dependencies
are highly implausible (McDonald & Mok, 1995). To assess the
overall fit of the response model, the observed sum score
distribution was evaluated by comparing it with the sum score
distribution as predicted by the response model.

Bayesian residual analysis was used to assess the fit of the
response time model (cf. Klein Entink, Fox, et al., 2009). For
this, the observed response time of a test taker in a particular
item is evaluated under the respective posterior density of
response times. More specifically, the probability of a (model-
predicted) response time being smaller than the observed
one is determined. Following the probability integral trans-
form theorem, under a good fitting RT model for each item
these probabilities should be distributed U(0, 1) across test
takers.

2.4.1. CFA modeling
The CFA model was considered to show a good model fit if

the following criteria were met (cf. Schermelleh-Engel,
Moosbrugger, & Müller, 2003): χ2/df values b2; root mean
square error of approximation (RMSEA) values ≤.05; com-
parative fit index (CFI) and non-normed fit index (NNFI)
values ≥.97, and SRMR values b.05.

3. Results

3.1. Model estimation and fit

First, four models were iteratively fitted to the data to
explore the required number of item parameters in the
response and in the response time model, respectively. For
model estimation 5000 iterations of the Gibbs sampler were
used; thefinal estimateswere based on the last 4000 iterations,
i.e., the first 1000 iterations were considered as burn-in phase
and discarded. Four models were tested with one or two item
parameters in themeasurementmodels. Table 1 shows that the
most restrictive model M1 including only the item parameters
difficulty and time intensity shows the highest DIC. When
introducing one of the two discrimination parameters inmodel
M2 and M3, respectively, the DIC is substantially reduced.
Adding timediscrimination to response timemodel gave rise to
greater decrease in the DIC value than adding discrimination to
the response model. However, the best performing model as
indicated by the DIC was model M4, which was obtained by
including two item parameters in both the response and the
response time model.



Table 1
DIC values for models fitted to the reasoning scale.

Model DIC

M1: 1PNO, 1PLN 19,791.14
M2: 2PNO, 1PLN 19,731.91
M3: 1PNO, 2PLN 19,638.26
M4: 2PNO, 2PLN 19,565.65

Note. DIC = Deviance Information Criterion, PNO =
parameter normal ogive model, and PLN = parameter log
normal model.
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Tocheck the stationary speedassumption, i.e., that a test taker
does not change his or her speed level during the test, the
standardized response time residuals, eik=(tik−(λk−ϕk ⋅ ζi))/
τk, were computed for each test taker. A systematic trend in the
residual pattern of a test taker across test items can be an
indication of the violation of this assumption. Fig. 1 shows the
residual pattern of 12 selected test takers. An aberrant residual
pattern is shown for the 12th test taker who responded much
faster to the last seven items than predicted by the RT model.
However, thegraphical checkof residualpatternsof all test takers
did not show general aberrancies from the stationary assump-
tion. Therefore, we concluded that there was no indication for
speededness of the test.

The fit of the response model was investigated by Bayesian
posterior predictive checks. For the overall model fit, we
checked whether the endorsed model M4 is able to reproduce
the observed sum score distribution. In Fig. 2 the observed
frequency of sum scores from 0 to 36 items is presented by the
line. For 1000data sets replicatedunder theposterior density of
M4 the sum scores and their frequencies were computed. The
solid points represent the averagemodel-predicted frequencies
for each sum score. All observed frequencies fall within the .95
highest posterior density (HPD) interval of the model-
predicted frequencies suggesting that a 2-parameter response
model fits the data well.

Furthermore, the local independence assumption was
assessed by means of the odds ratio statistic. For some item
pairs the posterior p-values of the odds ratio statistic were
b.025 or N.975 which may indicate a violation of the local
independence assumption. However, these significant p-values
were mainly associated with items showing a high portion of
correct responses, and in sum, only a small portion of item
combinations were affected (less than 5%).

Finally, the fit of the RT model was assessed by a Bayesian
residual analysis for each item. Fig. 3 shows these probability
values plotted against their expected values under the U(0, 1)
distribution for the first twelve items of the reasoning scale. As
shown by these QQ plots the RT model fits the RT data quite
well for thefirst twelve items; for item 12 the RTmodel slightly
underpredicted faster responses. For the other items, therewas
also almost no deviation from the identity line suggesting that
the overall model fit for the RT model was highly acceptable.

3.2. Estimated covariance components

The estimated variance and covariance components of the
response and the response time model show the relations of
parameters within and betweenmeasurementmodels. Table 2
presents theposteriormean(EAP) of the respective component
of the covariance structure, the posterior standard deviation
(SD), as well as the correlation for the covariance components.
The estimated correlation between reasoning speed and ability
of ρ(θ, ζ)=−.36 indicates that more able test takers tend to
complete reasoning items more slowly than lower-ability test
takers.

Results also gave insight into the relationships between
item parameters included in response and response time
measurementmodels. There was a strong positive relationship
between difficulty and time intensity, ρ(b, λ)=.63. This is in
line with the plausible assumption that more difficult items
require more processing steps and, therefore, more processing
time than less complex items. Moderate correlations were
obtained for time discrimination and difficulty, ρ(b,ϕ)=.38, as
well as for timediscrimination and time intensity,ρ(ϕ,λ)=.35,
suggesting that more difficult and time intensive items
discriminate better between test takers with different levels
of speed. The correlations between discrimination and the
other item parameters were negligible.

3.3. Testing hypotheses

Hypothesis 1. In Hypothesis 1 we assumed unidimension-
ality of the reasoning speed and the existence of individual
differences in reasoning speed. The fit statistics presented
above provide strong support to the assumption that reasoning
speed and reasoning ability, respectively, represent unidimen-
sional constructs. As shown in Table 2 the variance of the
reasoning speed was estimated to be σζ

2=.11 with a standard
deviation of the posterior density of SD=.01. The related .95
HPD interval of [.09, .14] clearly indicates thatσζ

2 is significantly
bigger than zero, i.e., test takers differ in their speed level.

Hypothesis 2. In Hypothesis 2 we assumed that the
reasoning ability and speed are negatively correlated but still
clearly distinguishable. The estimated correlation of ρ(θ, ζ)=
−.36fits this assumption, and suggests that test takers showing
a higher ability tended to take more time to complete the
reasoning tasks than those showing lower ability levels. The
amount of shared variance between ability and speed is small,
i.e. a large portion of the test takers' speed variance cannot be
traced back to their ability levels. Thus, individual reasoning
speed is considered to be distinct from the reasoning ability.

To assess the certainty of this estimate the .95 HPD interval
for ρ(θ, ζ) was computed based on the last 4000 draws of the
Gibbs sampling. The .95 HPD interval was [−.49, −.22]
suggesting that ρ(θ, ζ) deviates significantly from −1 (perfect
dependency) and 0 (perfect independency).

Hypothesis 3. In Hypothesis 3 we assumed that individual
reasoning ability is significantly predicted by the person level
covariates perceptual attention (PA) and executive attention
(EA):

θi = γ00 + PAi ⋅γ01 + EAi ⋅γ02 + e0i;

ζi = γ10 + PAi ⋅γ11 + EAi ⋅γ12 + e1i;

where (e0i,e1i) ~ N(0,ΣP).
The individual levels of perceptual attention and executive

attention were determined as factor scores of a confirmatory
factor model with test scores of attention ability scales as
indicator variables. Following the modeling approach by
Moosbrugger et al. (2006), ameasurementmodelwas specified
with a general factor (Perceptual attention) accounting for
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Fig. 1. Standardized RT residuals eik of 12 selected test takers.
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variance in all attention measures, and, in addition, with an
independent group factor (Executive attention) accounting for
the residual variance in attention measures requiring executive
control (i.e., the measures MAT Skill-based interference, FACT-
SR, TAPAttentional switching). The two-dimensional CFAmodel
fit the data very well, χ2(6)=1.39, p=.97, RMSEAb .001,
SRMR=.01, CFI=1.00, NNFI=1.04, AIC=3643.33 (as opposed
to the more parsimonious unidimensional model: χ2(9)=
55.65, pb .01, RMSEAb .149, SRMR=.08, CFI=.86, NNFI=.76,
AIC=3691.59 with Δχ2(3)=54.26, pb .01). The estimated
factor scores for Perceptual attention and Executive attention
were used in the following analyses.

Model M4a was specified by introducing perceptual atten-
tion and executive attention as person level covariates into
Model M4. Table 3 shows the estimated relationships of
reasoning ability and speed with the covariates. To compare
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the effects of covariates on the person parameters, the
regression coefficients were standardized by standardizing
each draw of the regression coefficients in the last 4000
iterations of the Gibbs sampler. As assumed in Hypothesis 3,
both covariates showed significant effects on reasoning ability.
The effect of perceptual attentionwasestimated to beγ01=.37,
and the effect of executive attention to be γ02=.21. Their .95
HPD intervals clearly indicate that the effects deviate from 0.

Table 3 also includes the effects of the covariates on
reasoning speed. Unlike reasoning ability, the effect of
perceptual attention on reasoning speed was around zero,
γ11=−.07 and the .95 HPD also suggests that this effect is
not significant. However, there was a significant effect of
executive attention on reasoning speed of γ12=.19.

Model M4b was specified with γ11 restricted to be zero. As
shown in Table 3, the obtained effects for γ01,γ02, and γ12

remain quite the same. To compare models M4a and M4b a
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Table 2
Estimated covariance components and correlations obtained for Model M4.

Variance component EAP SD Correlation

Person parameters σθ
2 1.00 – 1.00

σθζ −.12 .02 −.36
σζ

2 .11 .01 1.00
Item parameters σa

2 .36 .09 1.00
σab .00 .13 .00
σaϕ .03 .07 .08
σaλ .04 .09 .08
σb

2 1.23 .31 1.00
σbϕ .26 .13 .38
σbλ .58 .19 .63
σϕ

2 .38 .10 1.00
σϕλ .18 .09 .35
σλ

2 .68 .17 1.00

Note. θ = reasoning ability, ζ = reasoning speed; a = discrimination, b =
difficulty, ϕ = time discrimination, and λ = time intensity.
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Bayes factor (BF) was computed. As the two models are
nested, the BF is just the ratio of p(γ11=0|y, M4a) and p
(γ11=0 | M4a), i.e., the evaluation of γ11=0 under marginal
posterior density is divided by the evaluation of γ11=0 under
the prior density with γ11~N(0, 1). The obtained Bayes factor
was BF=21.78, i.e., the update of the prior density of γ11 by
observed data y clearly shows that γ11=0 in the restricted
model M4b is appropriate. As Bayes factors depend on the
chosen prior density, e.g. the BF tend to favor an alternative
model when the prior density of the restricted parameter is
vague, the Bayes factor was also computed with a more
informative prior, γ11~N(0, .20), and a less informative prior,
γ11~N(0, 2). The obtained BFs of 4.32 and 42.92 were both
well above the threshold of 3 indicating strong evidence in
favor of the restricted model M4b.

Taken together, the model comparison shows that reason-
ing ability and reasoning speed need to be distinguished with
respect to the predictive validity of basic cognitive abilities.
Reasoning ability is explained by both individual perceptual
attention and executive attention, while reasoning speed is
only explained by executive attention. This result suggests that
test takers with higher levels of executive attention tend to
show more accurate and faster responses in reasoning tasks
(the positive effects of executive attention on both speed and
ability while speed and ability are negatively correlated is
possible since the correlation between ability and speed is only
moderate and far from 1). Moreover, the fact that perceptual
attention was related to reasoning ability but not speed,
Table 3
Estimated standardized effects of perceptual attention (PA) and executive attention

Model γ01 γ02

PA EA

EAP .95 HPD EAP .95 HPD

M4a .37 [.23, .58] .21 [.07, .35]
M4b .36 [.22, .50] .21 [.08, .37]

Note. EAP = expected A posteriori estimate, and HPD = highest posterior density
provides further support to Hypothesis 2, assuming that
reasoning speed and reasoning ability are indeed different
constructs.

4. Discussion

The present study investigated the relation between
reasoning ability and reasoning speed to come to a more
complete understanding of the domain of reasoning as a major
part in the complex structure of human cognitive abilities and
(corresponding) speed factors.

InHypothesis 1we assumed that a speed of reasoning factor
exists within the domain of cognitive speed. The obtained
results clearly show that APM response time data is accounted
for by a unidimensional measurement model of reasoning
speed, and reasoning speed proved to be a person parameter
that varies significantly across test takers.

Carroll (1993) assigned the speedof reasoning (at stratumI)
to the broader ability factor of fluid intelligence (at stratum II).
The association of (figural) reasoning speed with reasoning
ability found in the present study may suggest that the
reasoning speed can be considered as a factor in the domain
of reasoning. However, the extent towhich the reasoning speed
is a more general processing speed factor, e.g., Psychometric
speed as suggested by Roberts and Stankov (1999), or a speed
factor that is specific and corresponding to reasoning ability (cf.
Bates & Shieles, 2003, discussing parcelated speed effects on
group factors of ability; McGrew, 2005; Stankov, 2000), needs
to be further addressed empirically. Such studieswould include
indicators for manifold cognitive abilities and would compare
the covariance structure of ability and related speed factors
with the covariance among the speed factors.

Hypothesis 2 assumed that the reasoning ability and
reasoning speed can be distinguished empirically. Overall, a
moderate negative correlation was estimated which proved
to be well above zero and well below a perfect correlation.
The negative relationship suggests that more able test takers
complete tasks at a lower speed level and vice versa. It is
important to note that test takers may show differences in the
chosen speed level at which they complete test items, which
in turn determines the accuracy level as predicted by the
speed-accuracy tradeoff (cf. Wickelgren, 1977). For instance,
one test taker may complete the tasks at high speed and
therefore obtains a lower ability score than a test taker with
the same cognitive capability focusing on accuracy and
therefore selecting a lower level of speed. This, however,
does not mean that test takers can increase their reasoning
performance arbitrarily by just taking more time. The
(EA) in model M4.

γ11 γ12

PA EA

EAP .95 HPD EAP .95 HPD

−.07 [−.20, .06] .19 [.05, .32]
– – .18 [.05, .31]

interval, — indicates that the effect was restricted to be zero.
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potential increase of the assessed ability level by taking more
time is limited by the level and trajectory of the monoton-
ically decreasing intra-individual speed-ability function (cf.
van der Linden, 2009).

The negative correlation raises the question of how test
takers benefit from taking more time. Johnson-Laird's
(1994a) mental model approach suggests that especially the
processes assumed in the third stage could explain why test
takers obtaining higher ability scores show lower speed
levels. To ensure a correct response, it is necessary that
(tentative) conclusions are repeatedly monitored and vali-
dated (see also Carpenter et al., 1990). Monitoring, evaluat-
ing, and, if necessary, withdrawing hypothesized rules
implies a lower speed level; however, it also decreases the
probability of incorrect reasoning. This interpretation is in
line with the previous finding that test takers who care more
about their results take more time to complete reasoning
tasks (see Klein Entink, Fox, et al., 2009).

To further investigate the relation of trait variables to
reasoning speed and ability, it would be interesting to extend
the current analysis approach by including confidence
judgements on the accuracy of answers. Previous research
shows that confidence is moderately related to latencies in
reasoning tasks (cf. Pallier et al., 2002; Stankov & Crawford,
1997), suggesting that test takers with lower levels of speed
tend to show higher confidence.

Finally, in Hypothesis 3 we expected perceptual and
executive attention to predict reasoning ability and explored
the effects of these covariates on the reasoning speed. The
ability to reason correctly was assumed to depend on per-
ceptual attention as suggested by the cognitive correlates
approach assuming that the speed of information processing
is basic to general intelligence (cf. Jensen, 1982, 1987). We
used a set of six attentional tests requiring perceptual
processing to define a perceptual attention factor that was
marked by three tests being similar to simple response time
measures (andwhich were not supposed to require executive
control). Perceptual attention moderately predicted the
reasoning ability as expected. Furthermore, reasoning ability
was hypothesized to rely on executive attention (cf. Kane et
al., 2004; Logan & Gordon, 2001). Accordingly, the executive
attention factor represented by the subset of three attentional
tests requiring also executive control processes significantly
explained variance in reasoning ability.

Results show that reasoning speed was not related to
perceptual attention, i.e., higher levels of perceptual attention
do not advance the reasoning speed. However, executive
attention proved to be a source of individual differences in
reasoning speed. This finding suggests that the distinctness of
the reasoning speed and reasoning ability is also shown by
their different cognitive bases.

One means of explaining this result pattern would be to
further elaborate the already proposed interpretation that
reasoning speed mainly reflects the time spent in the last
phase of the mental modeling process as described by
Johnson-Laird (1994a). In this phase of evaluating and
modifying the current conclusion, the test taker induces
alternative rules which require to reconfiguring perceptual
processes to determine alternative correspondence among
figures and their attributes, if necessary the test taker
withdraws hypothesized rules and he or she needs tomonitor
and coordinate associated (sub)task goals (cf. Carpenter et al.,
1990; Johnson-Laird, 1994a). This phase may also involve
executive functioning that is responsible for monitoring and
coding incoming information and revising appropriately the
content of working memory (cf. Miyake et al., 2000). Here,
updating the mental model would depend on whether
incoming information is confirmatory and/or contradictory
to the current mental model. Thus, assuming that reasoning
speed mainly reflects time spent for validation and evalua-
tion, it seems plausible that the efficiency of executive
attention shows a stronger effect on the reasoning speed
than perceptual attention, and, thereby, determines to some
extent how long the reasoning process for a particular
reasoning task takes. To further validate this interpretation,
the result pattern needs to be replicated in independent
samples in future studies.

Finally, the nonsignificant effect of perceptual attention
supports the notion that reasoning speed is a distinct
cognitive speed factor in that the latency-based factor of
perceptual attention predicts reasoning ability but not
reasoning speed. This is in line with Neubauer's (1990)
finding that speed in simple response time measures (Hick
paradigm tasks) is unrelated to speed in intelligence
suggesting that speed in the Hick paradigm and speed in
responding to the intelligence test items reflect different
processes.

Carroll (1993) assumed that intelligence is mainly a level
ability. His conclusion is based on significant but only small
correlations between intelligence as a level factor and
elementary cognitive tasks, as well as weak or zero correla-
tions between level and speed of intelligence. Nevertheless,
the present study shows that the collection of response times
provides an important source of information about individual
differences and that a measurement model for the response
times contributes to understanding how test takers differ in
solving cognitive tasks. This means that the test taker's
performance level can be described more specifically in that
the information about the ability level is enriched by the
respective speed level, i.e., for instance, two test takers may
show substantial differences in speed even though they show
the same level of ability. The speed level provides additional
information which can be used to create an individual
efficiency profile including both the test taker's ability and
speed level. Such profiles could be interpreted in the sense of
Thorndike, Bregman, Cobb, and Woodyard's (1926) assump-
tion that “other things being equal, the more quickly a person
produces the correct response, the greater is his intelligence”
(p. 24). From this perspective, individual reasoning speed and
ability provide information about the test taker's efficiency in
solving reasoning problems. This additional information may
improve the predictive validity of a reasoning test as a
selection device (see e.g., the study by Doerfler & Hornke,
2010, using response latencies in APM tasks to explain the
lower APM test score of extravert test takers). However, the
question of whether reasoning speed shows incremental
validity when reasoning ability is, for example, used to
predict educational or occupational success, still needs to be
addressed empirically. If the reasoning speed explained
variance above and beyond reasoning ability, the relevance
of the speed parameter would be emphasized also with
respect to criterion validity.

Support for Conway et al concept of controlled executive attention 
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Appendix A
Descriptive statistics and Pearson correlations for measures (test scores) of reasoning and attention.

Measure M SD Skewness Kurtosis Pearson correlation

1 2 3 4 5 6 7

1 APM Set II, number correct 26.95 4.61 −.38 −.47 1.00
2 APM Set II, total time [min.] 41.35 15.79 .80 1.02 −.27 1.00
3 TAP Alertness [ms] 243.58 39.81 1.72 5.18 .31 −.15 1.00
4 TAP Focused attention [ms] 488.32 56.76 .66 .68 .38 −.16 .57 1.00
5 TAP Attentional switching [ms] 715.73 184.40 1.57 3.89 .19 .02 .24 .23 1.00
6 TAP Sustained attention [ms] 429.75 82.84 1.25 2.01 .29 −.11 .56 .62 .21 1.00
7 FACT-SR [100/s] 161.84 37.58 .19 .08 .24 .07 .15 .18 .24 .13 1.00
8 MAT Skill-based interference [ms] 3142.08 610.47 .14 −.09 .35 .16 .27 .30 .47 .26 .28

Note. For the computation of correlations, all measures representing time information (i.e., APM Set II total time, Alertness, Focused attention, Attentional
switching, Sustained attention, Skill-based interference) were multiplied by (−1) so that all measures have a positive orientation.
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