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This review summarizes recent investigations of temporal

processing. We focus on motor and perceptual tasks in

which crucial events span hundreds of milliseconds. One key

question concerns whether the representation of temporal

information is dependent on a specialized system, distributed

across a network of neural regions, or computed in a local

task-dependent manner. Consistent with the specialized

system framework, the cerebellum is associated with various

tasks that require precise timing. Computational models of

timing mechanisms within the cerebellar cortex are beginning

to motivate physiological studies. Emphasis has also been

placed on the basal ganglia as a specialized timing system,

particularly for longer intervals. We outline an alternative

hypothesis in which this structure is associated with

decision processes.

Addresses
3210 Tolman Hall, Department of Psychology, University of California,

Berkeley, California 94720-1650 USA
�e-mail: ivry@socrates.berkeley.edu

Current Opinion in Neurobiology 2004, 14:225–232

This review comes from a themed issue on

Cognitive neuroscience

Edited by John Gabrieli and Elisabeth A Murray

0959-4388/$ – see front matter

� 2004 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.conb.2004.03.013

Abbreviations
CR conditioned response

fMRI functional magnetic resonance imaging
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SMA supplementary motor area

Introduction: scope of the review
The representation of temporal information remains one

of the most elusive concepts for neurobiology. Unlike

vision and audition, there are no dedicated sensors for

time. Yet the passage of time is as perceptually salient as

the color of an apple or the timbre of a tuba.

Fraisse [1] was the first to emphasize that a discontinuity

in our sense of time was evident around 2–3 s. Lewis and

Miall [2��,3] argue that timing in the shorter range is

‘automatic’, reflecting the engagement of processes asso-

ciated with the production of skilled movements. Longer

range timing is hypothesized to be ‘cognitive’, dependent

on neural systems associated with attention and working

memory.

In this review we focus on tasks in the shorter range. Even

within this range, the phrase ‘temporal processing’ may

refer to very different phenomena. Temporal order tasks

require an ordinal judgment, indicating the order of

successive stimulus events. These types of judgments

are affected by the rate of temporal integration. Other

tasks require a metrical judgment that involves the ana-

lysis of elapsed time. The assessment of duration might

be either explicit, as in a duration discrimination task, or

implicit, as in eyeblink conditioning, in which the

response must be precisely timed to be adaptive. We

restrict our review here to tasks in which timing would

appear to be metrical.

Is there a specialized neural region for
millisecond timing?
Does the existence of temporal regularities imply that

some process is dedicated to representing time? Tem-

poral regularities could be explicitly represented, reflect-

ing a dedicated internal timing mechanism. Dedicated

timing could be performed locally, or result from the

operation of a specialized neural structure or distributed

network (Figure 1). Alternatively, temporal regularities

could be an emergent property, reflecting the fact that

dynamic processes such as those involved in coordinating

limbs for action [4,5] or selective attending in perception

[6] occur in time.

Lesion studies

Various lines of evidence indicate that the cerebellar

cortex provides a precise representation of the temporal

relationship between successive events. Perhaps the most

compelling evidence comes from studies of eyeblink

conditioning in which the conditioned response (CR)

must be timed to occur just before the unconditioned

stimulus. Studies consistently demonstrate that the CR

is disrupted following lesions of the cerebellum [7].

Whereas associative mechanisms operate at various levels

within the cerebellum [8], accurate timing of the CR is

dependent on the cerebellar cortex [9,10�]. Knockout

species lacking the capability for long-term depression

(LTD) at the parallel fiber–Purkinje cell synapses fail to

exhibit adaptive timing [11��].

The movements of patients with cerebellar lesions are

characterized by a breakdown of the timing between

muscular events. For example, these patients are inaccu-

rate in throwing, in part because of increased variability in

timing the opening of the hand with respect to arm

rotation [12,13]. However, such deficits do not necessarily

imply the involvement of an explicit timing signal. Hand

opening might be triggered by cerebellar computations of
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the dynamic transitions required between successive

states, a form of forward modeling by the cerebellum [14].

The manner in which a task is conceptualized can influ-

ence how timing is achieved [15,16]. Patients with cer-

ebellar lesions show increased variability on temporal

production tasks, such as rhythmic tapping, or during

the production of isolated movements with a specified

target duration [17��]. However, these patients are unim-

paired when the periodic movements are smooth and

continuous. This dissociation is consistent with the

hypothesis that tasks involving discontinuities or salient

features embody an event structure. The cerebellum

provides the signals specifying the timing of these events,

similar to the way in which the conditioned and uncondi-

tioned stimuli in eyeblink conditioning define two salient

events. By contrast, continuous movements lack this

event structure and temporal regularities are an emergent

property reflecting the operation of another control para-

meter (e.g. angular velocity) [15,16,17��].

Harrington et al. [18�] failed to observe consistent

increased temporal variability on production or percep-

tion tasks in patients with unilateral cerebellar lesions.

However, a subset of patients with lesions encompassing

the superior cerebellum exhibited increased variability on

the production task and a marginally significant increase

on the perception task. Interestingly, disruption of eye-

blink conditioning is also more pronounced in patients

with superior cerebellar lesions when compared to those

with inferior lesions [7].

Lesion studies have also implicated the basal ganglia in

temporal processing. This work, conducted within the

framework of the influential scalar timing model [19�], has

generally involved intervals up to 40 s. Timing within this

range is assumed to involve a set of separable components

including a pacemaker, accumulator, gating mechanism,

and decision processes, in which the output of the accu-

mulator is compared to reference memory of stored

intervals. The basal ganglia are hypothesized to be a

Figure 1
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General frameworks of the neural mechanisms for timing. (a) The specialized timing model is based on the idea that a particular neural region is

uniquely capable of representing temporal information and that this system is recruited when this form of processing is required. This example

illustrates the cerebellum as a specialized system. (b) In the distributed network timing model, the representation of temporal information results
from the interactions within a set of neural structures. (c) The local timing model does not entail a dedicated timing system. Rather, temporal

information is computed within the neural structures required for a particular task.
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crucial component of the pacemaker/accumulator pro-

cess. In contrast to normal animals, rats with striatal

lesions fail to increase the rate of lever pressing at the

time of an expected reward [20]. Additionally, dopami-

nergic agents lead to a systematic distortion of timed

responses: agonists and antagonists lead to a shortening

and lengthening, respectively, of perceived time. These

results are consistent with the hypothesis that dopamine

levels affect the speed of an internal pacemaker. How-

ever, dopamine deficiencies could disrupt memory func-

tions [21] or, as will be discussed in the conclusions, alter

decision processes.

Whether or not the basal ganglia are involved in timing

in the range of hundreds of milliseconds remains

unclear. Some studies report time perception deficits

in patients with Parkinson’s disease (PD) ([22,23] but

see [24]), and pharmacological manipulations in normal

individuals can alter temporal acuity [25]. Graeber et al.
[26] report that a subset of PD patients show a marked

bias on a speech perception task in which the discri-

mination between two consonants is temporally cued.

The patients’ judgments suggested that the crucial

interval was underestimated, consistent with the idea

that dopamine depletion leads to the slowing of an

internal pacemaker.

Time production studies in the milliseconds range, how-

ever, are inconsistent with this hypothesis. PD patients

tend to speed up on finger tapping tasks [18�,27,28].

Moreover, the literature is inconsistent in terms of

whether or not PD patients show increased temporal

variability on production tasks [18�,27–29]. PD can be

problematic for studying basal ganglia dysfunction given

the widespread reduction in dopamine. A forthcoming

study uses an alternative approach, testing patients with

chronic focal lesions of the striatum [30]. Surprisingly,

these patients exhibited no impairment on a finger tap-

ping task.

Although lesion studies of timing in the milliseconds

range have focused on the cerebellum and basal ganglia,

a cortical locus cannot be dismissed. Various lines of evi-

dence suggest that temporal processing could be differen-

tially affected by lesions of the right and left hemispheres

[31], or that the hemispheres integrate information at

different speeds [32–34]. Surprisingly, few studies have

tested patients with cortical lesions on time perception and

production tasks. In one such study, patients with right

hemisphere lesions were impaired on a duration discrimi-

nation task for intervals of 300 and 600 ms [35]. The

impairment was attributed to attentional processes req-

uired for gating timing signals into working memory.

Similarly, repetitive transcranial magnetic stimulation

(TMS)over rightprefrontalcortex inneurologicallyhealthy

individuals altered the perception of intervals spanning

5–15 s [36].

Neuroimaging studies

In contrast to the relatively sparse lesion literature, the

number of neuroimaging studies of temporal processing

has increased exponentially in recent years. Two recent

reviews have summarized this work [3,37]. Given this, our

review focuses on four new functional magnetic reso-

nance imaging (fMRI) papers involving duration discri-

mination tasks with intervals in the millisecond range

[2��,38–40].

Lewis and Miall [2��] asked participants to judge the

duration of horizontal length of a visual stimulus. In the

duration conditions, the stimuli could vary around 0.6 s or

3 s. Compared to the length conditions, duration judg-

ments were associated with increased activation in pre-

frontal, insula, premotor (lateral and supplementary motor

area [SMA]), and parietal cortices. Moreover, activation

specific to the 0.6 s condition was observed in the right

temporal lobe and left cerebellar hemisphere. Activation

specific to the 3 s condition was observed in left parietal

cortex and posterior cingulate. A similar pattern was found

in a study using intervals around 1 s [39]. Compared to a

temporal order judgment control task, duration discrimi-

nation led to increased activation in right prefrontal cortex,

SMA, and left cerebellum. Basal ganglia activation during

the duration tasks was not found in either study.

However, two fMRI studies have reported putamen

activation during duration discrimination tasks. In one

study [38], the stimulus duration was centered around

700 ms and participants judged either duration or bright-

ness. Cortical foci in the duration task included bilateral

prefrontal, temporal, and inferior parietal cortices, as well

as the SMA, the left premotor area, and the right insula.

Basal ganglia activation was restricted to the left puta-

men. Cerebellar activation in the vermis was similar in

both tasks, suggesting that this region was not specifically

recruited for temporal processing. A similar cortical net-

work was observed active in a duration discrimination

task with auditory stimuli when performance was com-

pared to that during rest [40]. However, essentially the

same areas were also recruited in the frequency discri-

mination control task. Right putamen activation was

greater for the duration task, but only in a restricted

analysis that used a liberal statistical threshold to evaluate

activation within this region. Cerebellar coverage was

limited in this study and thus a similar analysis could

not be performed.

Studies of time production have focused on tasks in which

rhythmic complexity is varied [41–43]. Identification of

time-specific areas in such studies is difficult as baseline

conditions also require the production of timed move-

ments. An alternative approach is to look at changes in

brain activation when participants learn movement pat-

terns in which the sequence of finger responses is fixed,

the sequence of inter-response intervals is fixed, or both

The neural representation of time Ivry and Spencer 227
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[44�]. The inferior temporal gyrus and the lateral cere-

bellum were the only activation foci specific to temporal

learning.

Physiological analysis of temporal
processing
The literature is replete with sophisticated computational

models for the representation of temporal information.

Delay line mechanisms, operating in the microsecond

range, have been proposed to underlie sound localization.

Differences in the time required for neural signals to

traverse fixed distances, coupled with coincidence detec-

tors, can be exploited in simple networks to determine

the horizontal position of a sound source [45]. Given the

speed of neural conduction times, such mechanisms are

unlikely to produce sufficient intervals for timing in the

hundreds of milliseconds range [46], and would certainly

fail for longer intervals. For temporal phenomena over

longer ranges, physiological mechanisms fall into two

broad classes [20,47]. One class is based on the idea that

temporal codes are formed through the operation of

oscillatory processes. As noted, the scalar timing model

posits that the representation of duration entails a clock-

counter mechanism [48]. Although this model was

developed for tasks spanning many seconds, researchers

have assumed that similar mechanisms operate at short

intervals.

The other class can be defined by models in which the

continuum of time can be represented without oscillatory

events; these are termed ‘spectral models’. Spectral mod-

els posit the translation of a temporal code into a spatial

code. Different intervals are represented by the activation

of non-overlapping neural elements, perhaps because of

delays introduced by the stochastic properties of slow

physiological processes [47,49��]. This does not mean that

such delay properties are fixed; learning mechanisms

could be used to shape input and output relationships.

Alternatively, the dynamics of time-varying physiological

events might be used to represent and produce temporal

information [47,49��,50].

Physiological studies have just begun to test these mod-

els. Leon and Shadlen [51�] recorded from neurons in

inferior parietal cortex of the monkey while the animals

judged the duration of visual events centered around

300 ms or 800 ms. Psychometric functions derived from

neural ensembles approximated the animals’ behavior,

suggesting that these cells provide a representation of

time. Consistent with this idea, physiological mechanisms

such as slow inhibitory post-synaptic potentials (IPSPs)

are ubiquitous in the nervous system, and could serve as

the building block for temporal processing [49��,52].

According to this view, timing information is locally

computed in a task-dependent manner [51�,53,54]. Alter-

natively, the activity of these parietal neurons could

reflect decision processes given that similar brain-beha-

vior relationships are observed for a variety of psycho-

physical tasks [55,56]. According to this view, the

stimulus duration might be computed upstream (e.g. in

the cerebellum) then transmitted to neurons associated

with specific response systems (e.g. eye movements as in

the study by Leon and Shadlen [51�]). Evoked potential

studies in humans are also consistent with the hypothesis

that cortical signals indicate the evolution of decision

processes [37,57–59].

Neurophysiological studies of eyeblink conditioning have

provided the most detailed analysis of the emergence of

time-dependent behavior [10�,11��]. As noted earlier,

CRs persist after lesions of the cerebellar cortex, but

the adaptive timing is abolished [9,11��]. Various models

of the cerebellar cortex have been proposed, instantiating

different forms of spectral coding [60�,61]. In one model,

interactions between granule cells and Golgi cells pro-

duce a range of delays for the efficacy of parallel fiber

input to Purkinje cells [62]. A representation of the

unconditioned stimulus conveyed by climbing fibers is

used to strengthen those inputs that are tuned to drive the

CR at the optimal time.

Conclusions
The recent neuroimaging literature is consistent with the

hypothesis that the cerebellum is engaged during tasks

requiring the precise representation of temporal informa-

tion. This includes motor sequence learning [44�], rhyth-

mic tapping [41–43], duration discrimination [2��,39],

phoneme perception [63�], and attentional anticipation

[64�]. Whereas imaging studies are best viewed in terms

of a sufficiency argument, lesion studies provide a stron-

ger test of necessity [65]. Again, the data from human and

animal studies indicate that lesions of the cerebellum are

associated with increased temporal variability.

We do not wish to suggest that the instantiation of

temporal processing within the cerebellum is generic;

rather we assume that subregions within the cerebellar

cortex will be recruited for timing in a task-dependent

manner [66]. Thus, we emphasize a general computa-

tional principle of the cerebellum. Neuroanatomical con-

siderations make it unlikely that internal timing would be

task independent; such a hypothesis would be exceed-

ingly complex in terms of the mapping between inputs

and outputs across diverse tasks.

The current evidence does not preclude distributed

models or hypotheses that assign a central role for timing

to another specialized system, such as the basal ganglia.

As reviewed here, the results of imaging and lesion

studies are ambiguous with respect to the role of the

basal ganglia in timing short intervals.

A clear dissociation between the cerebellar and the basal

ganglia contributions on temporal processing tasks
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remains elusive, primarily because similar deficits have

been observed in patients with lesions of either structure

([22,28,67,68] but see [68]). The cerebellar hypothesis

offers a parsimonious account over a broad set of tasks,

and neurobiologically feasible models have been devel-

oped. Nonetheless, a specialized system hypothesis must

be able to account for similar patterns of performance

following damage to distinct systems.

As a starting point, we propose that the basal ganglia are

an integral part of decision processes, operating as a

threshold mechanism (Figure 2). Activations into the

basal ganglia are gated such that only those reaching

threshold are implemented [69]. The activation functions

for different decisions can reflect multiple factors, such as

goals, sensory inputs, and contextual information. These

representations engage in a competitive process for con-

trol. According to this view, the basal ganglia ensure that

response implementation or working memory updating

does not occur until a criterion level of activation is

reached. Dopamine inputs to the striatum modulate

threshold settings, providing one mechanism by which

the competition can be biased. Thresholds for reinforced

actions are lowered, increasing the likelihood of imple-

mentation, even if the input patterns are unchanged.

Although this hypothesis is intended to describe the role

of the basal ganglia in response or set selection, it provides

a novel perspective of impairments on temporal proces-

sing tasks associated with basal ganglia dysfunction. Con-

sider the perception of intervals on the order of multiple

seconds. Judging the amount of elapsed time for such

intervals is attention mediated [70], or what has been

called cognitive timing [2��,3]. One way such timing

could be achieved is by monitoring the number of updates

of working memory, a form of an accumulator model.

Dopamine levels distort the perception of time

(Figure 3a). In the threshold model, dopamine agonists

would lower thresholds, leading to more frequent updates

and a criterion number of updates would be reached

earlier. Likewise, time perception would be lengthened

when thresholds are raised by dopamine antagonists.

This hypothesis can also be applied to short intervals

without postulating a direct role for the basal ganglia in

the representation of time. Dopamine agents would again

be expected to distort perceived time [25]. Moreover, an

appealing feature of this hypothesis is that the same

mechanism can account for PD akinesia, the difficulty

to initiate movement. In the absence of dopamine,

thresholds are elevated. The gating operation would thus

be delayed, requiring extended accrual for a particular

activation pattern.

This simple model would not account for PD patients’

impairments in judging the duration of a short stimulus,

given our assumption that the representation of stimulus

duration is derived in the cerebellum. However, it is

reasonable to assume that the depletion of dopamine

not only changes the threshold setting but also introduces

additional noise into these settings. In this manner,

perceptual judgments would be more variable, reflecting

threshold fluctuations or response biases. However, such

deficits should not be specific to duration discrimination,

a prediction not supported by one study [22].

With one additional modification, the threshold model can

account for the tendency of PD patients to speed up during

repetitive movements [22,27,28], a result that seems at

odds with pacemaker models. We assume that dopamine

primarily acts as a long-term modulator of thresholds; over

the short term, thresholds will be sensitive to recent

Figure 2
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Hypothesized gating operation of the basal ganglia as part of a decision making process. (a) Potentiated cortical representations provide input

to the basal ganglia. The output from the basal ganglia reflects selected representations that have reached threshold. (From Gazzaniga et al. [71],

art work by F Forney.) (b) The functional consequences of this gating process will depend on input–output circuitry [72]. For example, the motor

loop will trigger overt movements, whereas the prefrontal loop involves the updating of working memory.
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context effects (Figure 3b). Thus, a threshold recently

triggered will be lowered, especially when the initial state

is inflated. As a result, successive cycles through a circuit

will gradually decrease in cycle rate, even if the input

remains constant.

We recognize that one could reinterpret cerebellar timing

deficits within a non-timing hypothesis, similar to what

we have attempted with respect to the basal ganglia. Our

intent here is to offer functional hypotheses that can

motivate new empirical and computational endeavors.

Such efforts will be necessary as part of the continuing

efforts to disentangle the contributions of different neural

systems to temporal processing.
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basal ganglia. Drop-lines indicate time of gating for a particular threshold setting. (a) Dopamine agonists lower the threshold, leading to the

gating operation being invoked with less activation. Dopamine antagonists raise the threshold. This mechanism can be applied to understand the

effects of dopamine depletion in Parkinson’s disease (PD) or the effects of dopamine-based reinforcement. For the latter, reinforcement signals

serve to lower thresholds, leading to increased probability of an input reaching threshold in the future. (b) Tendency of PD patients to speed up

during unpaced finger tapping could result from short-term modulation of elevated thresholds. After each output, the system resets and a new
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