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Encoding time is universally required for learning and structuring
motor and cognitive actions, but how the brain keeps track of time
is still not understood. We searched for time representations in
cortico-basal ganglia circuits by recording from thousands of neu-
rons in the prefrontal cortex and striatum of macaque monkeys
performing a routine visuomotor task. We found that a subset of
neurons exhibited time-stamp encoding strikingly similar to that
required by models of reinforcement-based learning: They re-
sponded with spike activity peaks that were distributed at differ-
ent time delays after single task events. Moreover, the temporal
evolution of the population activity allowed robust decoding of
task time by perceptron models. We suggest that time information
can emerge as a byproduct of event coding in cortico-basal ganglia
circuits and can serve as a critical infrastructure for behavioral
learning and performance.

population encoding � TD learning � time-stamped representation

T iming of movements on short time-scales, on the order of
hundreds of milliseconds, is essential for everyday behavior

such as walking up stairs and, famously, for the highly skilled
movement control required by behaviors such as playing the
piano. Distributed sets of brain regions, especially including
cortico-basal ganglia circuits, have been implicated in temporal
representation across intervals of time (1–5). How such repre-
sentations are achieved is not known. Influential models have
suggested schemes using time-stamp codes in which individual
neurons having single peaked responses distributed across mul-
tiple delays to specific events (6) or schemes using neuronal
populations codes (3–5, 7–11). These theories naturally link
timing to learning, now recognized as a major function of
cortico-basal ganglia circuits (12–14). Keeping track of time is
critical for solving the ‘‘credit assignment problem’’ in reinforce-
ment-based learning, because the time delay between an event
and the reward that it leads to must be encoded (15–17).
Time-stamp coding of events has been explicitly incorporated in
temporal difference models of reinforcement learning in basal
ganglia circuits (15–16). However, evidence of time-stamp cod-
ing has not been found in neural recordings (3, 18), and evidence
for population coding is also still largely restricted to responses
to particular trained intervals (19–22).

We reasoned that if there is a cortico-basal ganglia timing
system that builds temporal representations, it should be possible
to decode time from the activity of neurons recorded in the
neocortex and striatum of animals performing a simple senso-
rimotor task. Moreover, time-stamp encoding might be more
evident with tasks not involving interval training, because in-
terval training could force population activity toward the trained
intervals rather than broad coverage of short time (21). We
therefore trained macaque monkeys in a visually guided sequen-
tial saccade task that had temporal structure but did not
explicitly require precise timing of specific intervals (23–24) (Fig.
1). We searched for neural time representations of the task by
recording from large populations of neurons with multiple

electrodes implanted simultaneously in the dorsolateral prefron-
tal cortex (DLPFC) and the caudate nucleus (CN).

Results
Two macaque monkeys were trained to make saccades in
response to visual targets presented sequentially on a computer
screen in front of them (Fig. 1). In each trial of the standard task,
the monkey had to fixate for 1 sec a central red fixation spot and
then was required to make saccades to four sequentially pre-
sented red target spots, selected randomly to appear in up, down,
right, or left directions at adjacent points on a grid of gray
potential targets (the RSQ4 task, SI Text). Each target remained
illuminated for 400 msec and then was extinguished when the
next target turned red. In a few trials, the task was modified to
have different intervals (600 or 800 msec) between the targets,
variable numbers of targets, or fixed sequences (the non-RSQ4
tasks, SI Text).

We recorded from 5,699 well-isolated single units in the
DLPFC (n � 2,496) and the CN (n � 3,203) in two monkeys for
252 days over a period of 3 years, using implants of 4–48
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Fig. 1. Sequential saccade RSQ4 task (A) and approximately Gaussian saccade
latencies (287 � 36 msec; 30,697 trials) of saccades made to first Go signal (B).
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simultaneously implanted electrodes in chronic 1- to 3-month
sessions. Among these, 1,613 units in the DLPFC and 2,035 units
in the CN were selected for detailed analysis based on strict
criteria (Materials and Methods and Table S1). We constructed
the response profiles of the units by aligning spikes of multiple
trials with the events and computing and smoothing the peri-
event time histograms (PETHs) (Materials and Methods and
Fig. S1).

To characterize the large number of neural response patterns
obtained by aligning spikes to the fixation onset in the RSQ4
task, we developed a clustering algorithm that groups units with
similar response profiles (Materials and Methods). Units with
unique profiles were left unclassified. We classified 1,004
DLPFC neurons into 66 clusters, leaving 609 unclassified. For
the CN, 1,070 units were classified into 35 clusters, with 965 left
unclustered. The averaged profiles of all of the prefrontal and
striatal clusters are shown in Fig. S2; representative units are
shown in Fig. 2. The profiles exhibited great variety (Fig. 2).
There were dominant peak responses after the first Go signal or
for each Go, phasic responses riding on ramping activity or
suppressed firing, and prominent late responses.

Time-Stamp Representations of Events. The clustering results
showed that responses related to particular task events occurred

over a strikingly large range of times, suggesting that neurons in
the DLPFC and the CN might time-stamp task events. To test
this idea, we examined in detail the activity of neurons with
predominant phasic responses after the task-start signal, the first
Go signal, and the last target-off.

Our largest samples were for the first Go units (Fig. 3). At first
Go, the monkeys had been fixating for 1 sec and simply had to
respond with a saccade, a natural response in primates. To
distinguish between ‘‘sensory’’ responses to the first Go signal
and ‘‘motor/preparatory’’ responses related to the first saccade,
we took advantage of the fact that the first saccades were
distributed in time (287 � 36 msec, Fig. 1B), whereas the Go
signal occurred at a fixed time. Responses significantly time-
locked to saccade onset were classified as primarily ‘‘motor;’’
otherwise, we used the term ‘‘visual’’ as a descriptor for the other
phasic responses that occurred after the first Go signal and
before a response to the second Go signal was possible (Materials
and Methods and Figs. S3 and S4). Of the 70 DLPFC neurons
whose main activity was a phasic response after the first Go
signal, we classified 55 as visual and 15 as motor. In the smaller
sample of striatal first Go-responsive units, we classified 10 as
visual and 6 as motor.

Remarkably, the peak responses of the visual units covered
most of the time between the first and the second Go periods
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Fig. 2. Averaged response profiles of selected neuronal clusters in the dorsolateral prefrontal cortex (DLPFC) (A) and the caudate nucleus (CN) (B) and examples
of corresponding spike raster plots. Cluster IDs and units per cluster shown above profiles. Traces: First black, fixation period; alternating red and blue, successive
400 msec Go periods; green, ‘‘extra-peak’’ period (23); last black, reward period and intertrial interval.
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(Fig. 3, representative units). The peak latencies ranged from
145 to 435 msec for the DLPFC units (Fig. 3 A and B) and from
165 to 485 msec for the CN units (Fig. 3 C and D). Manipulating
inter-Go intervals or the number or sequence of the saccades
(the non-RSQ4 tasks) did not alter these peaks (Fig. 3). Peak
half-widths tended to increase with increasing latency (Fig. 3 B
and D), but the peak responses nevertheless provided a fine
coverage of time after the event, far beyond that demanded by
the saccadic response. The peak responses were absent during
other Go periods, the fixation period and after last target-off,
suggesting that they are not simple visual responses but time-
stamp the first Go signal.

We found similarly dispersed (145 to 355 msec) peaked visual
responses following task start, after which the monkey had
simply to hold fixation for 1 sec. These occurred mainly in the
DLPFC (Fig. 3; n � 37 for DLPFC, n � 3 for CN). Dispersed
responses also occurred after the last target-off during the
400-msec ‘‘extra-peak’’ period (23) (Fig. 3; n � 33 in DLPFC, n �
14 in CN). The monkeys rarely moved their eyes during this
period of waiting for the variably timed reward delivery (23). The
peak responses were absent in other periods of the task. Thus,
for all three periods sampled, the phasic visual responses time-
stamped the first Go, task start or last target off, and had
remarkably dispersed onset times.

The dominant activity peaks of the motor neurons time-locked

to the fixation onset during the fixation period (n � 47 in
DLPFC; n � 9 in CN) or to the first saccade during the Go period
(n � 17 in DLPFC; n � 6 in CN) were mainly postsaccadic (24),
with latencies distributed �100 msec and dispersed from 15 to
295 msec (Fig. S5).

These results indicated that even though the monkeys simply
had to be attentive and reactive in the task, making saccades to
each newly lit visual stimulus without pressure to time their
visuomotor responses, prefrontal and striatal neurons formed a
time-stamp representation of the sensory and motor events in
the task. Given the small sample of these dominant-peak neu-
rons, the time-coverage of the representation is impressive.

Population Coding of Time. The diversity of neural responses
shown by the clustering results further suggested that the en-
semble prefrontal and striatal activity might be used to distin-
guish different time points during the task, as proposed in
population models of time representation (3–5). We tested this
idea by using the profiles of the prefrontal or striatal neurons as
inputs to a perceptron model of a decoding neuron (25). The
perceptron was driven by the weighted sum of the firing rates of
the input neurons at each time point, with firing rates taken from
the profiles, and it fired if the sum exceeded a threshold
(Materials and Methods). We included all accepted DLPFC or
CN units with rate variations (maxima � minima) � twice the

165 msec 185 msec 205 msec 265 msec 305 msec 415 msec

145 msec 175 msec 195 msec 235 msec 275 msec 355 msec

145 msec 245 msec 275 msec 295 msec 325 msec 415 msec

165 msec 195 msec 205 msec 265 msec 335 msec 485 msec

315 msec 335 msec

235 msec 245 msec 285 msec 325 msec 385 msec 395 msec

A  DLPFC

C  CN

First
Go

Task
Start

Target
Off

First
Go

Task
Start

Target
Off

0

100

200

300

Time (msec)

0

10

20

30

Time (msec)

C
o

u
n

t

0

100

200

Time (msec)

100 300 500

100 300 500

100 300 500

100 300 500

2

0

4

6

Time (msec)

C
o

u
n

t
F

ir
st

 P
ea

k
H

al
f 

W
id

th
 (

m
se

c)
F

ir
st

 P
ea

k 
H

al
f 

W
id

th
 (

m
se

c)

16.3Hz 10.2Hz 12.6Hz 4.5Hz 5.3Hz 6.1Hz

19.8Hz

325 msec

11.8Hz 19.8Hz

61.9Hz 16.4Hz 21.5Hz 13.8Hz 6.4Hz 12.1Hz

16.7Hz 8.3Hz 5.1Hz 3.4Hz 6.3Hz 5.6Hz

1.4Hz 5.2Hz 4.1Hz 6.1Hz 3.7Hz 9.2Hz

10.5Hz 8.8Hz 6.4Hz 4.6Hz 1.6Hz 1.6Hz

B

D

500 msec

500 msec

500 msec

500 msec

500 msec

500 msec

Fig. 3. Evidence for time-stamp responses. Single DLPFC (A) and CN (C) units having single dominant peak responses to first Go (red dots), task start (green),
or target off (blue) during the Go, fixation, or extra-peak periods, respectively. Gray vertical lines indicate event times. Profiles are normalized to maximum firing
rates; peak rates and latencies are shown above. Black curves represent RSQ4 trials; gray curves represent non-RSQ4 trials. (B and D) Peak half-widths and
distributions of peak times for DLPFC (B) and CN (D) units.

Jin et al. PNAS Early Edition � 3 of 6

N
EU

RO
SC

IE
N

CE

http://www.pnas.org/cgi/data/0909881106/DCSupplemental/Supplemental_PDF#nameddest=SF5


rate fluctuations and with maxima �5 Hz for DLPFC units (n �
506) and �3 Hz for CN units (n � 429). The population thus
included not only the time-stamp units, but also units with
multiple peaks or with gradual changes in their firing rates during
the task. We determined whether suitable weights and thresh-
olds could be found so that the perceptron given prefrontal or
striatal activity would fire only at one time point during the task,
thus decoding that specific time. We then tested whether per-
ceptrons could be constructed for all time points during the task.

To measure the robustness of the temporal discrimination of
the perceptrons, we computed for each perceptron the separa-
tion margin, which indicates how much the weighed sum differs
when the perceptron fires compared with when it does not
(Materials and Methods). We calculated the set of weights and the
threshold that maximized this margin and thus gave the most
robust decoder [i.e., a support vector machine (26)]. For time
points throughout the task, we plotted the maximum margins
and the corresponding noise levels, here defined as the maxi-
mum margins obtained by using randomized input profiles
(Materials and Methods).

The results were clear cut. Perceptrons given the activity of
either the prefrontal units or the striatal units recorded could
decode every time point in the task, at levels well above the noise
levels, with a resolution of 50 msec during the Go periods, the
first 500 msec of the fixation period, and the extra-peak period
(Fig. 4 A and E). Remarkably, the maximum margin plots
emphasized the beginning and end of the saccade sequences, a
pattern similar to that previously found to hold for the spike
activity of a subset of DLPFC neurons (23). Individual per-
ceptrons showed sharp time-stamp decoding (Fig. 4 B and F).
Profiles with large, sharp changes in firing rate at different times
in the task enhanced the robustness and precision of the time
decoders (Fig. 4 D and H; SI Text). Changing the resolution and
the number of input neurons did not alter the results (Fig. S6;
SI Text).

We next asked whether we could decode time trial-by-trial by
using the raw spikes—required if the decoders are representative

of real neurons—instead of by using the activity profiles, which
were based on spikes from multiple trials. For this analysis, we
reasoned that if each neuron belongs to a group of neurons that
all have the same (or closely similar) profiles, the group-averaged
spike rates in a single trial will approximate well the individual
neuron’s profile, especially when the group size is large. Our
clustering results (Fig. 2) suggested that such groups exist. We
therefore generated for each prefrontal and striatal activity
profile a group of 500 artificial neurons whose spikes were
sampled from the profile (Materials and Methods). The trial-by-
trial spike responses of the decoders were sharp, as illustrated in
Fig. 4 C and G, for the decoders (Fig. 4 B and F) given raw spikes
from the corresponding groups of artificial neurons: in the 10
trials shown, each decoder spiked within 10–30 msec of the
decoded time. It was further possible to build online decoders
with the raw spikes of the recorded neurons only, using the
averaged cluster profiles shown in Fig. 2 and Fig. S2. The
numbers and sizes of the clusters were small, and consequently,
the maximum margins were small, and noise at each trial was
high. Nevertheless, reliable prefrontal online first Go decoders
could be built (Fig. S7).

Discussion
Our findings suggest that prefrontal and striatal neurons carry
time-stamp representations of short time, and that the popula-
tion activity patterns of prefrontal and striatal neurons encode
time information that can be read out by a simple linear
threshold model. Critically, our findings indicate that time is
encoded by these neurons even when the animals perform a
simple task that does not have precise-timing requirements.
Much evidence suggests a distributed neural encoding of time.
Imaging, pharmacological, and lesion studies demonstrate that
both neocortical and subcortical brain regions are involved in
timing short intervals (4–5, 7–8, 19–20, 27–36). A range of
neuronal firing patterns has been proposed to underlie the
computation of time, including oscillatory activity (5, 7, 10),
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ramping spike activity (19–20), spectral responses (6), and
network-produced ensemble patterns (8, 11).

Our findings suggest that time may be encoded as part of the
infrastructure of neural representations of events and actions.

Time-Stamp Coding. The responses that we identified as providing
time-stamp representations had dominant peaks at latencies
distributed from �150 to 500 msec after single visual events
signaling task start, first Go, or last target-off. They occurred
after only one of these events. Thus they provided signals tied to
a single event and the passage of time since that event, with
separate sets of neurons time-stamping different events.

These firing patterns are strikingly similar to the response
profiles posited in the spectral timing theory, which postulates
that time-encoding neurons respond to a transient event with
varying time delays (6). Such encoding of time after events, also
called a ‘‘complete compound stimulus’’ (37), is used in rein-
forcement learning to solve the temporal credit assignment
problem (15–17). The presence of time-stamp coding that we
found here in both the prefrontal cortex and the striatum thus
supports reinforcement learning models positing cortico-basal
ganglia loops with the capacity to solve the credit-assignment
problem (16). This kind of time-stamped representation of short
time also makes the learning of timed actions easy, as simple
associations made from subgroups of such neurons and other
neurons in motor control regions would suffice. Thus the
time-stamp coding that we found could underpin flexible neural
computations in short time.

Our ability to observe this time-stamp activity may have been
due to the fact that we sampled the activity of thousands of
neurons and that we did not impose explicit training on partic-
ular intervals, features that distinguish our experiments from
most previous timing studies.

Population Encoding of Time. Besides these time-stamp responses,
we found that populations of cortical and striatal neurons have
a variety of response profiles during the task. The firing rates of
these neurons waxed and waned in various epochs of the task, so
that as a population, the neurons could have encoded time
information at a fine resolution. We demonstrated this by
constructing perceptrons that were driven by the neuronal
populations throughout the task but responded only at single
time points with 50-msec resolution. The responses of the
perceptrons were similar to those of the time-stamp neurons.
This result supports theories suggesting that population activity
is used to build temporal representations in cortico-basal ganglia
circuits (4–5, 10).

The firing pattern of a given neuron recorded in our task could
have been influenced by a multitude of external events, such as
the Go signals, and also by events generated by the subjects, such
as the saccade onsets. These signals carried only crude time
information: the central light fixation point signaled the onset of
the fixation period; the Go signals and the saccades indicated the
target-saccade events during the movement period; and the last
target light offset signaled task end, which was followed by a
variable delay and then reward. The neural encoding of time that
we observed was at a much finer scale. The neurons responded
with different delays to the same events, and they had different
response onsets even when their response profiles were similar.

We found that neurons with sharp variations in their firing
rates contributed the most to the accuracy and robustness of the
time decoders (Fig. 4 D and H). This relationship is consistent
with the general result that narrow tuning curves are most
accurate in reconstruction of one-dimensional physical variables
(38), in our case the time. Notably, times at the action boundaries
of the entire task were more robustly encoded than times within
the task. This could reflect the control demands of initiating and
then ending a series of related actions forming an entire se-

quence (23). Several technical issues related to detecting tem-
poral code in our data are discussed in SI Text.

Timing in Cortico-basal Ganglia Loops. How are the time represen-
tations in the DLPFC and the CN constructed? One possibility
is that the latencies of the neural responses to visual inputs are
distributed (39) because visual signals reach the DLPFC and the
CN by multiple routes with varied latencies. Indeed, the disper-
sion of visual responses in the DLPFC is �273 msec (40), which
approximately matches the range of the peak response latencies
after the visual cues that characterized the time-stamp neurons
in our recordings. A wide distribution of latencies could be a
precondition for fine-scale time encoding with population ac-
tivity. In this view, time encoding would be unlikely in regions
with limited response ranges, such as the primary visual cortex
(V1; 63 msec) and the frontal eye field (FEF; 50 msec) (41), but
quite possible in other regions with large response range, such as
the human hippocampus (�500 msec) (42). However, additional
mechanisms are needed to transform the dispersed visual re-
sponses into a variety of neural response profiles, including the
time-stamp responses, that could encode unique time points in
tasks with durations far beyond the visual response range. We
suggest that the time representations we observed reflect an
intrinsic tendency of the brain to form the basis of temporal
computations, perhaps through a reward-independent self-
organizing process, similar to the formation of cortical feature
maps driven by natural visual stimuli (43–45), even in situations
in which precise timing is not critical for performance.

Although we recorded more phasically responding neurons in
the DLPFC than in the CN, and found the neurons in the CN to
have noisier firing patterns, the time encoding in these two
regions was quite similar. This result suggests that the prefrontal
cortex and the striatum might be intimately interrelated
moment-to-moment through prefrontal cortico-basal ganglia
loops (24). This suggestion is supported by the fact that the firing
patterns in two brain regions were similar despite the emphasis
of phasic responses in DLPFC and smooth firing in CN. We did
not have local field potential recordings in sufficient number to
look for evidence of a relation between the spike activity patterns
that we observed and oscillatory activity in the prefrontal cortex
or striatum, and thus could not address the striatal beat fre-
quency model proposed by Matell and Meck (5, 10). Our data do
suggest that the spiking patterns would be compatible with such
a model.

Our results raise the possibility that the representation of time
may reflect an inherent tendency for the brain to represent time
as part of ongoing task-specific information processing. If so,
neural circuits might build time representations as an infrastruc-
ture to use when needed. Such encoding would have major
advantages for neural processing related to learning how to
control actions, because all of the elements needed to form on
demand new associations between events and precisely timed
actions would be available. The great variety of neural responses
that we observed, the fine-scale coverage of time in the per-
ceptron decoding, and the differential coding robustness at
salient events suggest that cortico-basal ganglia circuits may
actually encode all events and the passage of time since the
events, at least at short time scales. Decoding algorithms based
on our findings should also be valuable for brain-machine
interface strategies to improve timing deficits encountered clin-
ically, as in Parkinson’s disease.

Materials and Methods
For details, see SI Text.

Behavior, Electrophysiology, and Single-Unit Analysis. Two monkeys were
fitted with recording chambers and eye coils according to National Institutes
of Health and Massachusetts Institute of Technology guidelines for animal
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experimentation (1). The monkeys were trained to make saccades in response
to visual targets presented sequentially on a 9 � 9 grid on a computer screen.
Multiple tungsten electrodes were implanted chronically in the prefrontal
cortex and caudate nucleus bilaterally and used for up to 1–3 months. Spike
activity was sorted into clusters by Autocut under manual control and was
analyzed with custom software (3–4). Single units with low firing rates or
unstable firing patterns across the session or no task-related activities or
assessed as the same as previously recorded units on the same electrodes were
excluded from the analysis. The PETH of a single unit was constructed by
aligning spikes from the RSQ4 trials with fixation onset and counting spikes in
10-msec bins spanning from �100 msec to 5,000 msec. PETHs were also
constructed relative to other task events. A smoothed PETH (sPETH) was
obtained by using the least-square fitting to the PETH with B-form cubic
splines. The distance between two sPETHs is defined as one minus the Pear-
son’s product-moment correlation coefficient with the means subtracted. A
‘‘core point clustering algorithm,’’ which constructs the neighborhood struc-
ture of the points representing the sPETHs and groups points close to each
other, was used to cluster the response profiles of the single units.

Distinguishing Sensory and Motor Responses. Peaks in sPETHs were detected by
least-square fitting the curves with asymmetric Gaussian functions with linear
base. The peak latency and the height were taken as the position and value of
the maximum of the fitted curve, respectively. The robustness of the peak was
assessed by using the bootstrap resampling technique. A peak was assessed as
“motor” response if its height was significantly reduced when the saccade
timings were randomized across trials. It is assigned as “visual” otherwise.

Population Coding of Time. The duration of the task (�100 to 5,000 msec
relative to the fixation onset) was divided into 510 bins of 10 msec. At each
time bin T, a perceptron was constructed. Its response at task time t is
determined by the weighted linear sum of the firing rates of selected single
units in the DLPFC and in the CN taken from the normalized sPETHs aligned at
the fixation onset. If the sum exceeded a threshold, the perceptron fired. The
weights and threshold were adjusted such that the perceptron fired only
when t � T, and that the margin, defined as the minimum of the differences
between the sum at T and those at other times, was maximized (maximum
margin). The maximum margin depends on the resolution of the perceptron,
as well as the number and tuning widths of the input neurons (shown with a
theoretical model discussed in SI Text; Fig. S8). To demonstrate that it is
possible for the perceptron to decode time by using spikes at single trials
instead of the response profiles constructed from spikes over multiple trials,
the inputs to the perceptron were replaced by the spikes of artificial neurons
at a single trial, which were created by using a sampling process based on the
response profiles of the single units. There were 500 artificial neurons for each
single unit. Online perceptrons were also constructed by using the raw spikes
of the single units.
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