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SUMMARY

Decisions based on the timing of sensory
events are fundamental to sensory processing.
However, the mechanisms by which the brain
measures time over ranges of milliseconds to
seconds remain unclear. The dominant model
of temporal processing proposes that an oscil-
lator emits events that are integrated to provide
a linear metric of time. We examine an alternate
model in which cortical networks are inherently
able to tell time as a result of time-dependent
changes in network state. Using computer sim-
ulations we show that within this framework,
there is no linear metric of time, and that a given
interval is encoded in the context of preceding
events. Human psychophysical studies were
used to examine the predictions of the model.
Our results provide theoretical and experimen-
tal evidence that, for short intervals, there is
no linear metric of time, and that time may be
encoded in the high-dimensional state of local
neural networks.

INTRODUCTION

All forms of sensory processing are ultimately based on

decoding the spatial and/or temporal structure of incom-

ing patterns of action potentials. The elucidation of the

neural mechanisms underlying the processing of spatial

patterns has advanced considerably in the past 40 years.

For example, the coding and representation of simple

spatial patterns, such as the orientation of a bar of light,

are well characterized in primary visual cortex (Hubel

and Wiesel, 1962; Ferster and Miller, 2000). Indeed,

much has been discovered about the mechanisms under-

lying the emergence of orientation-selective cells and their

role in perception (e.g., Miller et al., 1989; Ferster and

Miller, 2000; Gilbert et al., 2000; Schoups et al., 2001;

Yang and Maunsell, 2004).
In comparison with spatial stimuli, there is a significant

gap in our understanding of how the brain discriminates

simple temporal stimuli, such as estimating the duration

of time for which a light or tone is presented. Recent stud-

ies have begun to examine the neural (Kilgard and Merze-

nich, 2002; Hahnloser et al., 2002; Leon and Shadlen,

2003) and anatomical (Rao et al., 2001; Lewis and Miall,

2003; Coull et al., 2004) correlates of temporal processing.

However, the neural mechanisms that allow neural circuits

to tell time and encode temporal information are not clear.

Indeed, it has not yet been determined if timing across

different time scales and modalities relies on centralized

or locally independent timing circuits and mechanisms

(Ivry and Spencer, 2004).

Timing is critical in both the discrimination of sensory

stimuli (Shannon et al., 1995; Buonomano and Karmarkar,

2002; Ivry and Spencer, 2004; Buhusi and Meck, 2005)

and the generation of coordinated motor responses

(Mauk and Ruiz, 1992; Ivry, 1996; Meegan et al., 2000;

Medina et al., 2005). The nervous system processes tem-

poral information over a wide range, from microseconds

to circadian rhythms (Carr, 1993; Mauk and Buonomano,

2004; Buhusi and Meck, 2005). We will focus on the scale

of milliseconds and seconds, in which the dominant model

of temporal processing is the internal clock model. A pro-

totypical clock model includes an oscillator (pacemaker)

that emits pulses that are counted by an accumulator

(Creelman, 1962; Treisman, 1963; Church, 1984; Gibbon

et al., 1997). Within this framework, the pulse count pro-

vides a linear metric of time, and temporal judgments

rely on comparing the current pulse count to that of a ref-

erence time. This model has proven effective in providing

a framework for much of the psychophysical data relating

to temporal processing (Church, 1984; Meck, 1996;

Rammsayer and Ulrich, 2001). However, electrophysio-

logical and anatomical support for the putative accumula-

tor remains elusive, and mounting evidence indicates that

clock models are not entirely consistent with the experi-

mental data (for reviews see Mauk and Buonomano,

2004; Buhusi and Meck, 2005).

A number of alternate models of timing have been sug-

gested (see Discussion; for reviews see Gibbon et al.,

1997; Buonomano and Karmarkar, 2002; Buhusi and
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Meck, 2005). One such class of models, state-dependent

networks (SDNs), propose that neural circuits are inher-

ently capable of temporal processing as a result of the

natural complexity of cortical networks coupled with

the presence of time-dependent neuronal properties

(Buonomano and Merzenich, 1995; Buonomano, 2000;

Maass et al., 2002). This framework, based on well-

characterized cellular and network properties, has been

shown to be able to discriminate simple temporal intervals

on the millisecond scale, as well as complex spatial-tem-

poral patterns (Buonomano and Merzenich, 1995; Buono-

mano, 2000; Maass et al., 2002). Here we examine the

mechanisms and nature of the timing in this model and

show that it encodes temporally patterned stimuli as sin-

gle ‘‘temporal objects,’’ as opposed to the sum of the

individual component intervals. This generates the coun-

terintuitive prediction that we do not have access to the

objective (absolute) time of a given interval if it was imme-

diately preceded by another event. This prediction is

tested and confirmed using independent psychophysical

tasks. Together, our results provide a mechanistic ac-

count of the distinction between millisecond and second

timing and suggest that within the millisecond range,

timing does not rely on clock-like mechanisms or a linear

metric of time.

RESULTS

State-Dependent Networks

An SDN composed of 400 excitatory (Ex) and 100 inhibi-

tory (Inh) recurrently connected integrate-and-fire units

was simulated using NEURON. The synapses in the net-

work exhibit short-term forms of synaptic plasticity and

both fast and slow IPSPs (see Experimental Procedures).

Short-term synaptic plasticity (Zucker, 1989) plays a criti-

cal role in SDNs by altering the state of the network in

a time-dependent fashion after each input, which in turn

produces time-dependent neuronal responses. In es-

sence, in the same manner that long-term plasticity may

provide a memory of a learning experience (Martin et al.,

2000), SDNs use short-term synaptic plasticity to provide

a memory trace of the recent stimulus history of a network

(Buonomano, 2000).

The functional properties of an SDN can be understood

if we consider the sequential presentation of two brief and

identical events (e.g., two auditory tones) 100 ms apart

(Figure 1A). When the first event arrives in the network, it

will trigger a complex series of synaptic processes result-

ing in the activation of a subset of neurons. When the same

event is repeated 100 ms later, the state of the network will

have changed from S0 to S100. Due to the time-dependent

changes in network state (imposed by short-term synaptic

plasticity), the population response to the second stimulus

inherently encodes the fact that an event occurred 100 ms

before. In this fashion the network implements a temporal-

to-spatial transformation—i.e., the presence, absence, or

number of spikes from a given subset of neurons will de-

pend on the temporal structure of the stimulus. The model
428 Neuron 53, 427–438, February 1, 2007 ª2007 Elsevier Inc.
is stochastic in the sense that determining which neurons

will be interval sensitive is a complex function of the net-

work’s random connectivity, assigned synaptic strengths,

and short-term plasticity (Buonomano, 2000). Once time is

encoded in a spatial code, it can be read out by a set of

output neurons (see below; Buonomano and Merzenich,

1995; Buonomano, 2000; Maass et al., 2002; Knüsel

et al., 2004).

In this model, there is no explicit or linear measure of

time like the tics of an oscillator or a continuously ramping

firing rate (see Discussion; Durstewitz, 2003). Instead,

time is implicitly encoded in the state of the network—

defined not only by which neurons are spiking, but also

by the properties that influence cell firing, such as

the membrane potential of each neuron and synaptic

strengths at each point in time. Thus, even in the absence

of ongoing activity, the recent stimulus history remains en-

coded in the network. The simulation in Figure 1 consists

of 500 neurons and a total of 12,200 synapses, allowing

us to define the network’s state in 12,700-dimensional

space. Since the state of the network ultimately deter-

mines the response to the next input, we can think of its

evolving trajectory through this space as encoding time.

Principal component analysis was performed to provide

a visual representation of this trajectory (see Experimental

Procedures). In response to a single stimulus, the first

three principal components establish a rapidly evolving

neural trajectory through state-space, followed by a

much slower path settling back toward the initial state

(Figure 1B). When a second event is presented at t =

100 ms, it produces a perturbation in state-space different

from the t = 0 event (Figure 1C). Similarly, additional pre-

sentations of the same stimulus at varying delays would

continue to produce cumulative changes in network state.

The time it takes for the network to return to its initial

state—its reset time—is a function of the longest time

constants of the time-dependent properties. For short-

term synaptic plasticity, this is on the order of a few

hundred milliseconds (Zucker, 1989; Markram et al.,

1998; Reyes and Sakmann, 1998). The dynamics of

short-term plasticity must run its course; thus, the network

cannot return to its initial state on command. As ad-

dressed below, this property has important implications

for temporal processing.

Temporal Objects

An important feature of SDNs is that they naturally extend

beyond simple interval discrimination to the processing of

complex temporal sequences. This is due to the cumula-

tive nature of changes in network state (Buonomano and

Merzenich, 1995; Maass et al., 2002). However, potential

weaknesses in SDNs arise because of both the absence

of an explicit metric of time and their sensitivity to changes

in initial state.

To examine these issues we investigated the ability of

the network to discriminate between 100 and 200 ms inter-

vals (we will use the notation [100] 3 [200] ms), as well as

two simple patterns that contain these intervals, namely
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Figure 1. State-Dependent Network

Simulation

(A) Voltage plot of a subset of neurons in the

network. Each line represents the voltage of

a single neuron in response to two identical

events separated by 100 ms. The first 100 lines

represent 100 Ex units (out of 400), and the re-

maining lines represent 25 Inh units (out of 100).

Each input produces a depolarization across all

neurons in the network, followed by inhibition.

While most units exhibit subthreshold activity,

some spike (white pixels) to both inputs, or ex-

clusively to the first or second. The Ex units are

sorted according to their probability of firing to

the first (top) or second (bottom) pulse. This

selectivity to the first or second event arises

because of the difference in network state at

t = 0 and t = 100 ms.

(B) Trajectory of the three principal compo-

nents of the network in response to a single

pulse. There is an abrupt and rapidly evolving

response beginning at t = 0, followed by

a slower trajectory. The fast response is due

to the depolarization of a large number of units,

while the slower change reflects the short-term

synaptic dynamics and slow IPSPs. The speed

of the trajectory in state-space can be visual-

ized by the rate of change of the color code

and by the distance between the 25 ms marker

spheres. Because synaptic properties cannot

be rapidly ‘‘reset,’’ the network cannot return

to its initial state (arrow) before the arrival of

a second event.

(C) Trajectory in response to a 100 ms interval.

Note that the same stimulus produces a differ-

ent fast response to the second event. To allow

a direct comparison, the principal components

from (B) were used to transform the state data

in (C).
a 100 or 200 ms interval preceded by a 150 ms interval

([150; 100] and [150; 200]). We calculated the information

each neuron in the network contains for the discrimina-

tion of both sets of stimuli. Mutual information was deter-

mined based on the number of spikes in each neuron

(see Experimental Procedures). The neurons containing

information for the [100] 3 [200] and the [150; 100] 3

[150; 200] discriminations fall in largely nonoverlapping

populations (Figure 2A). This occurs even though the

discrimination could in principle be based on the same

[100] 3 [200] interval. Since the individual intervals are

encoded in the context of the whole stimulus, the network

cannot recognize that the [100] and [150; 100] patterns

share a common feature. Nevertheless, it can discriminate

between all four stimuli (Figure 2B). Each stimulus is coded

as a distinct temporal object regardless of its component

features.

Reset Task

The prediction that emerges from the model is that if a dis-

tractor precedes a 100 ms target interval at random inter-

vals, discrimination of the target should be impaired in

comparison to a 100 ms interval with no distractor (or
one preceded by a fixed distractor). This prediction was

examined using psychophysical studies. We designed

a task (Figure 3A) in which each trial consisted of a ran-

domly interleaved presentation of a single two-tone (2T)

or three-tone (3T) stimulus, and participants were asked

to judge the interval between the last two tones. In the

3T case the first tone acts as a distractor. By indepen-

dently and adaptively varying the intervals, discrimination

thresholds were calculated for the 2T and 3T tracks (see

Experimental Procedures). The randomly interleaved—

and thus unpredictable—presentation of the 3T stimuli

also ensured that the subjects did not adopt strategies

to ignore the distractor. The standard interval (SI) was pre-

sented at the beginning of a trial and maintained implicitly

as a result of feedback to each response (Grondin and

Rammsayer, 2003; Karmarkar and Buonomano, 2003).

Subjects were asked to judge whether the target interval

was shorter or longer than the standard. Two classes of

distractors, fixed (FIX) and variable (VAR), were examined.

In the FIX condition, the distractor was always presented

at a fixed interval before the target interval. In the VAR con-

dition, the distractor was presented at a range of times

(±50% of the standard).
Neuron 53, 427–438, February 1, 2007 ª2007 Elsevier Inc. 429
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This task was termed the ‘‘Reset task’’ based on the

unique constraints it places on the temporal encoding

mechanisms. If a subject were using a simple stopwatch

strategy, he or she would have to start the stopwatch at

the first tone, even though it is irrelevant in the 3T trials.

The true role of the second tone can only be determined

retroactively by the presence or absence of a third tone.

With a stopwatch, one approach could be to quickly record

the time at t2 and then reset the watch. Alternately, the time

at t2 and t3 could be noted and then t2 subtracted from t3 to

obtain the interval between the second and third tones. We

will refer to the first strategy as a clock reset mechanism

and the second as temporal arithmetic. Both can be imple-

mented with internal clock models, either because the

accumulator could be reset, or because the presence of

a linear temporal metric would allow for temporal arithme-

tic. Both clock-based models predict that performance on

the 2T and 3T tracks should be similar in both the FIX and

VAR conditions because the predictability of the distractor

should not affect the encoding of t1-t2 and t2-t3.

Figure 2. Encoding of Temporal Patterns

(A) Information per neuron. The blue trace displays the mutual informa-

tion that each Ex unit provides for the discrimination of a 100 versus

200 ms interval (sorted). The red line shows the information for the

same intervals preceded by a 150 ms interval; that is, discrimination

of the pattern [150; 100] versus [150; 200]. While individual neurons

contain significant information for both stimuli, a different population

of neurons encodes each one.

(B) Discrimination of all four stimuli. All Ex units were connected to four

output neurons trained to recognize the network activity produced by

the last pulse of all four stimuli. Average responses were calculated

from six independent (different random number generator seeds) sim-

ulations. Note that a mutual information measure based on total spike

count to each stimulus, as in (A), would introduce a confound because

the number of spikes is also a function of the number of events (see

Experimental Procedures). Each group of four bars represents the re-

sponses of the four output neurons.
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In contrast, in the SDN model, a reset strategy cannot

be implemented because short-term plasticity cannot be

reset on cue. Temporal arithmetic cannot be performed

due to the absence of a linear metric of time. SDNs predict

that performance on the FIX condition will be similar for the

2T and 3T stimuli because the feedback at the end of each

trial can be used to establish consistent states on which to

build internal temporal representations for both stimuli.

However, they also predict an impaired performance in

the 3T-VAR trials compared with the 2T or FIX conditions

since the state of the network will not be reproducible

across trials.

Subjects were first tested with a target interval of

100 ms (SHORT). Consistent with previous studies,

thresholds for the 2T conditions were in the range of

20% of the target (Wright et al., 1997; Karmarkar and

Buonomano, 2003). A two-way analysis of variance

(ANOVA) revealed a significant interaction between condi-

tions (FIX 3 VAR) and tone number (2T 3 3T; F = 57.75; n =

15; p < 0.0001), demonstrating a dramatic impairment in

the 3T-VAR condition only (Figure 3B). Indeed, the thresh-

old in the 3T-VAR condition for a 100 ms interval was sim-

ilar to that observed in independent (2T only) experiments

on a 200 ms interval (46 ± 3.4 ms versus 45 ± 7 ms; data

not shown). Thus, under the SHORT condition, the

psychophysics supported the predictions of the SDN. In

contrast, when the Reset task involved a target of 1000

ms (LONG), there was no effect of the variable distractor,

as evident in the lack of interaction in the ANOVA (Fig-

ure 3C; F = 0.087; n = 12; p > 0.5). Importantly, the point

of subjective equality (PSE) was approximately equal to

the target intervals in both the SHORT and LONG experi-

ments, independent of the presence or absence of the

distractor in both the FIX and VAR conditions (Figures

3D and 3E). Therefore, a memory component of the task

cannot account for the differences observed between

the two target lengths.

The specific effect of the variable distractor on the

SHORT group is consistent with the prediction of the SDN

model. It is unlikely that this result is due to effects such

as the increased uncertainty caused by the variable distrac-

tor, as the same degree of uncertainty was present in the

LONG trials without an accompanying timing impairment.

Additionally, the randomly interspersed presentation of

the 2T and 3T stimuli ensures the same level of uncertainty

for both stimuli (in both conditions), but the 2T-VAR perfor-

mance was not affected. However, to further examine the

general psychophysical effects of a variable distractor, we

conducted two additional controls. The first was a task in

which the distractor interval was 100 (FIX) or 50–150 ms

(VAR) coupled with a 1000 ms target (Short-Long). In addi-

tion, subjects performed a frequency discrimination task in

which the target frequency was preceded by a tone either at

a fixed or variable interval (see Experimental Procedures).

Neither the Short-Long [F = 0.18; n = 10; p > 0.5] or fre-

quency [F = 0.23; n = 14; p > 0.5] experiments revealed

a decrement in performance produced by the variability of

the distractor (Figures 4A and 4B).
.
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Figure 3. Reset Task: a Variable Distrac-

tor Impairs Discrimination of a Short, But

Not a Long, Interval

(A) Reset task. Top rows represent the stan-

dard 2T interval discrimination task in a single

stimulus protocol. Subjects are asked to press

different mouse buttons if they judged the inter-

val to be short (S) or long (L). The feedback

across trials results in the creation of an internal

representation of the target interval. Bottom

rows represent the 3T task in which a distractor

is presented at a fixed or variable (dashed) in-

terval across trials.

(B) Thresholds for the 100 ms (SHORT) Reset

task. (Left) Thresholds for the 100 ms 2T inter-

val discrimination (open bars) and the 100 ms

interval preceded by a distractor presented at

the same interval across trials (3T-FIX, gray).

(Right) Threshold for the standard 100 ms

task (open) and 3T task in which the distractor

was presented at variable intervals across trials

(3T-VAR; gray). Error bars = SEM. The asterisk

represents a significant difference from the

other three groups.

(C) Reset task (represented as in A), using

a 1000 ms (LONG) target interval. Neither of

the main effects nor the interaction was signif-

icant.

(D and E) Point of subjective equality (PSE)

values for the same experiments shown in (B)

and (C), respectively. The PSE was not signifi-

cantly different from the target intervals of 100

(D) and 1000 ms (E) in any condition.
Effect of the Interstimulus Interval on Performance

It is important to rule out the possibility that the impair-

ments observed in the Reset task were not produced by

some complex interaction between uncertainty and the

intervals being judged, or that the distractor in the FIX con-

dition was serving as a reference interval (see Discussion).

Thus, we examined the prediction of the SDN model using

a second independent psychophysical test. The SDN

model predicts impaired performance under conditions

when the network state at the time of the target stimulus

varies across trials. This condition can also be produced

by insufficient reset time before the next stimulus is pre-

sented. To test this directly, we examined performance

on a traditional two-interval two-alternative forced-choice

task (Wright et al., 1997) in which the interstimulus interval

(ISI) was varied. In this paradigm, subjects heard both the

100 ms target and a longer comparison interval, then

made a judgment as to whether the longer stimulus oc-

curred first or second. We presented the two intervals

with a mean ISI of either 250 or 750 ms. Since experimen-

tal data suggests that short-term plasticity operates on the

time scale of a few hundred milliseconds (Markram et al.,

1998; Reyes and Sakmann, 1998), the state-dependent
model predicts that the network will not have completely

returned to its initial state in the ISI250 condition, thus im-

pairing temporal discrimination. Indeed, a comparison of

the ISI250 to the ISI750 condition showed a significant

decrease in performance for the shorter ISI [t = 3.53;

n = 10; p < 0.01] (Figure 5A). Subjects also performed a fre-

quency discrimination task under the short and long ISI

conditions, for which they reported if the tone pitch was

higher for the first or second stimulus. There was no differ-

ence between the two conditions [t = 0.53; n = 10; p > 0.5]

(Figure 5A), indicating that the effect of the shorter ISI was

specific to time discrimination.

The state-dependent framework predicts that the two

intervals are more difficult to compare, resulting in higher

temporal discrimination thresholds, because their state-

space trajectories have different starting points which

vary from trial to trial. The total length of time from the first

tone of the first stimulus to the first tone of the second is

determined by the exact duration of the ISI (250% ±

%25%). As a result, the variability in the initial state for

the second stimulus is caused by the first—the first inter-

val interferes with the second. However, if the target and

comparison stimuli were presented at the same ISI, but
Neuron 53, 427–438, February 1, 2007 ª2007 Elsevier Inc. 431
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to different local networks, the impairment produced by

the short ISI should be decreased or absent. To examine

this prediction, we took advantage of the known tonotopic

organization of the auditory system. We performed inter-

val discrimination tasks under two experimental condi-

tions: (1) as above, a 100 ms standard and a comparison

(100 + DT ms) played at 1 kHz at ISI250 and ISI750; (2) a sim-

ilar condition except that one of the stimulus intervals was

played at 4 kHz and the other at 1 kHz. Replicating the

Figure 5. Short Interstimulus Intervals Impair Interval, but Not

Frequency, Discrimination

(A) Bars on the left show the thresholds for a two-interval two-alterna-

tive forced-choice discrimination with a 100 ms target. When the inter-

val between the stimuli was short (250 ms), performance was signifi-

cantly worse compared with that in the long ISI condition (750 ms).

In contrast, performance on a frequency discrimination task was unal-

tered by the ISI.

(B) Bars on the left illustrate the results for short (250 ms) and long

(750 ms) ISI when both the standard and comparison intervals were

presented at the same frequency. Bars on the right represent the inter-

val discrimination thresholds when the standard and comparison stim-

uli were presented at different frequencies. We believe the difference in

absolute interval discrimination between both studies (right bars in A

and B) reflects interference between the different task and stimulus

sets in both studies, as well as the inherent subject variability observed

in timing tasks.

Figure 4. Control Interval and Frequency Discrimination

Tasks

(A) Short-Long Reset task. The variable distractor in these trials was

between 50–150 ms, and the target interval was 1 s. When a short

unpredictable distractor preceded a long target interval, there was

no effect of whether the distractor was fixed or variable.

(B) Frequency task. A tone was presented in the absence of a distractor

(open bars) or in the presence of a distractor tone presented at a fixed

(gray bar, left) or variable (gray bar, right) interval before the target tone.

Conventions as in Figure 3.
432 Neuron 53, 427–438, February 1, 2007 ª2007 Elsevier Inc
above results, Figure 5B shows that there was a significant

increase in the threshold of the ISI250 compared with the

ISI750 tasks [t = 6.85; n = 9; p < 0.001] in the same fre-

quency condition. However, using different frequencies

for the standard and comparison intervals eliminated any

impairment in performance on the short ISI [t = 0.85; n = 9;

p > 0.3].

Interval Discrimination despite Differences

in Initial State

While the insufficient reset time in the above experiments

(Figure 5A) impaired discrimination thresholds, it did not

entirely prevent subjects from performing the task. We

were thus interested in returning to the theoretical model

to determine how performance varied as a function of

ISI and whether some degree of timing was still possible

with only a partial reset of the network. First, the trajectory

of the network in state-space was calculated in response

to two 100 ms intervals separated by a 250 or 750 ms ISI.

As shown in (Figure 6A), a 750 ms ISI allows the network to

return to a point very close to its ‘‘naive’’ initial state. As

a result, the trajectory produced by the second stimulus

closely traces that produced by the first one. In contrast,

for the 250 ms ISI, the network does not return to the

neighborhood of the initial state, and its trajectory for the

second interval is significantly different. Measures of these

distances are presented in Figure 6B.

To quantify the effect of initial state on interval discrim-

ination, output units were trained to discriminate 100 ms

from other intervals in the range of 50–150 ms. We then

determined the ability of the model to perform this discrim-

ination when the comparison intervals followed the

100 ms target by ISIs that varied from 250–750 ms. Perfor-

mance worsened with decreasing ISIs (Figure 6C). Impor-

tantly, performance changed in a graded manner, indicat-

ing that the reset effect is not expected to be all or none.

Thus, the behavior of the theoretical model is consistent

with the results seen in the human psychophysical data.

DISCUSSION

The standard model of temporal processing postulates

a single centralized internal clock, which relies on an

oscillator and an accumulator (counter) (Creelman, 1962;

Treisman, 1963; Church, 1984; Grondin, 2001). The clock

concept is generally taken to imply that the passage of

time is counted in units that can be combined or com-

pared linearly. In contrast, SDN models propose that for

spans on the scale of tens to hundreds of milliseconds,

time may be represented as specific states of a neural net-

work. Within this framework, a 50 ms interval followed by

a 100 ms interval is not encoded as the combination of the

two. Instead, the earlier stimulus interacts with the pro-

cessing of the 100 ms interval, resulting in the encoding

of a distinct temporal object. Thus, temporal information

is encoded in the context of the entire pattern, not as con-

junctions of the component intervals.
.
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Figure 6. Dependence of the State-

Dependent Network on Initial State

(A) Trajectory of the same network shown in

Figure 1 and Figure 2, in response to two

100 ms intervals separated by a 250 (A1) or

750 (A2) ms ISI. Note that the trajectories under

the 750 ms ISI are much closer to overlapping

than they are in the 250 ms condition. Arrows

indicate the times of the onset of the second

interval.

(B) Distance matrix. The diagonal represents

the distance in Euclidean space between the

trajectories shown in (A1) and (A2) starting

at 0. The distance is zero until the onset of the

second tone (the noise ‘‘seed’’ was the same

for both simulations). The secondary diagonals

permit the visualization of the distances be-

tween two trajectories shifted in time. This al-

lows the comparison of the trajectory starting

at the onset of the second interval (for the

250 ms ISI) with that of the first interval (blue

rectangle and blue line in lower panel), or the

second interval of the 750 ms ISI with the first

interval (red rectangle and red line in lower

panel). These distances, shown in the lower

panel, allow for quantification of the effect of

the network not returning to its initial (resting)

state before presenting the next stimulus.

Note that while the initial distance is lower in

the 750 ms ISI, it is not zero.

(C) Percent correct performance of networks

trained to discriminate two intervals separated

by varying ISIs. Average data from four stimula-

tions. Output units were trained to discriminate

intervals ranging from 50–150 ms. Perfor-

mance was then tested by examining general-

ization to these same intervals when presented

at varying ISIs after the presentation of a

100 ms interval. Results for the 100 3 150 ms

discrimination are shown. Performance is

highly dependent on the initial state of the

network.
State-Dependent Networks and the Reset Task

SDN models propose that timing is a ubiquitous com-

ponent of neural computations, and that local cortical cir-

cuits are inherently capable of processing both temporal

and spatial information (Buonomano and Merzenich,

1995; Buonomano, 2000; Maass et al., 2002). In these

models timing relies on mechanisms analogous to using

the evolving state of a physical system—like the ripples

on the surface of a lake—to tell time. However, as shown

here (Figure 1 and Figure 2), reliance on the state of a com-

plex system to tell time creates potentially serious limita-

tions due to the resulting dependence on the initial state

and the lack of a linear metric of time.

Interestingly, our psychophysical results reveal the

same limitations—interval discrimination is impaired by

the presence of a distractor that appears at unpredictable

times. However, interval discrimination was not altered if

the distractor occurred at a fixed time prior to the target.

Thus, internal representations of the target interval can de-

velop across trials for the 2T and 3T-FIX stimuli, but not for
the target interval of the 3T-VAR stimuli. This is because

the state of the system at the onset of the second tone

is variable. The impairment in the 3T-VAR condition is

not due to the unpredictability of the distractor’s presence

itself; since the 2T and 3T stimuli are randomly intermixed,

the unpredictability is the same under all conditions.

Rather, the impairment in the 3T-VAR condition is limited

to the predictability (consistency) of the interval of the

distractor.

An alternate interpretation of the 3T-VAR impairment is

that in the 3T-FIX condition, the distractor interval served

as a reference cue for the target interval. The two-interval

discrimination task, in which both a standard and compar-

ison interval are presented on each trial, was used to rule

out this possibility (Grondin and Rousseau, 1991; Ramm-

sayer, 1999; Wright et al., 1997). Performance was

impaired if the time between the stimuli was 250 ms, but

not 750 ms (Figure 5A). It could be argued that the impair-

ment for short ISIs reflects a difficulty in segmenting or

attending to rapidly presented stimuli. We find this
Neuron 53, 427–438, February 1, 2007 ª2007 Elsevier Inc. 433
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interpretation unlikely since performance on the short and

long ISI conditions did not differ when the two intervals

were presented at different frequencies.

The influence of preceding stimuli on temporal judg-

ments is surprising because much of the timing performed

by the nervous system on the scale of hundreds of milli-

seconds is based on a continuous barrage of incoming

stimuli, such as speech or Morse code recognition. The

subjects in the current study were naive; thus, a critical is-

sue relates to the effect of learning. We speculate that

training would allow subjects to improve their discrimina-

tion of intervals independent of temporal context. Indeed,

SDN models do not predict that spatial-temporal patterns

preceded by other events are impossible to process.

Rather, they propose that there must be previous expo-

sure to a large number of instances of the stimuli so that

a correspondence between the target information in a

number of different contexts can be learned.

Clock Models

The standard clock models predict a linear metric of time,

which implies that the clock can time the sequential inter-

vals independent of the presence of a variable distractor

across trials. However, most of these models do not ex-

plicitly address the issue of the clock reset properties.

Thus, it seems reasonable to consider whether a clock

with some state-dependent properties could account for

the impaired timing of short ISIs or intervals with a distrac-

tor. For example, one could assume that resetting or read-

ing the time of the clock is state-dependent, and thus, the

reset process could inject noise into the system or be

delayed dependent on the initial state.

There are two aspects of our results which could argue

against a state-dependent clock mechanism. First,

though a state-dependent reset of a centralized clock

could explain impaired timing in the short ISI condition

(Figure 5A), it would not predict the lack of impairment in

the short ISI condition with different frequencies (Fig-

ure 5B). The second issue concerns the specificity of the

reset problem. In our Reset experiments (Figure 3), a clock

would be started by the first tone and stopped and reset

(restarted) by the second. The third tone would again

stop the clock. As mentioned above, a state-dependent

reset would take time or inject noise into the process,

and impair the 3T-VAR sequence compared with the 2T

one. However, such a clock would also be expected to im-

pair timing of 3T stimuli in the FIX condition. In both cases,

the second tone would stop and reset the clock, because

there is a 50% chance that the second tone would be the

end versus the beginning of the target interval. This pre-

diction is counter to our psychophysical results. One

might then propose the use of multiple clocks, in which

the first tone activates a primary clock, the second tone

activates a secondary clock (and stops the first), and the

third tone stops the second clock. This explanation would

correctly suggest that timing is not impaired in the FIX

condition, but would also hold for the VAR, again violating

the dissociation found in our data.
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Nevertheless, we cannot eliminate the possibility that

there exists a set of assumptions which can enable clock

models to account for the observed millisecond timing

results. However, we argue that the SDN model provides

the most parsimonious explanation of the current psycho-

physical data on the processing of short intervals.

Other Models of Temporal Processing

A number of other mechanistic models have been put forth

to account for measuring and encoding time.These include

climbing firing rate models (Durstewitz, 2003; Reutimann

et al., 2004), multiple oscillator models (Miall, 1989; Matell

and Meck, 2004), and those based on ongoing network

dynamics (Medina and Mauk, 2000; Buonomano, 2005).

The latter focus primarily on generating appropriately timed

motor responses and will not be discussed here.

The climbing or ramping firing rate models suggest that,

like many other stimulus features, time is encoded in the

firing rate of neurons. Experimentally it is established

that some cortical neurons undergo a more or less linear

ramping in their firing rate over time (Niki and Watanabe,

1979; Brody et al., 2003; Leon and Shadlen, 2003). In their

simplest form climbing models propose that firing rate

represents a linear metric of absolute time. However, re-

cent data suggests that, at least in some cases, these neu-

rons are coding expectation rather than absolute time

(Janssen and Shadlen, 2005). Climbing rate models have

been discussed primarily in relation to timing of intervals

or durations; how they would account for timing of tempo-

ral patterns has not yet been addressed. Thus, their pre-

dictions for our tasks are not immediately clear. For the

Reset task it could be argued that ramping would begin

at the first stimulus. Time could be read out in the firing

rate at the onset of the second and third tone, assuming

activity is not reset by the second tone. However, climbing

models would not predict the dramatic impairment ob-

served in the 3T-VAR condition or the effect of short

ISIs. We would speculate that ramping firing rates are

likely to play an important role in the timing of expected

motor responses, but less likely to be involved in the tim-

ing of rapid sensory stimuli, particularly for complex tasks

such as speech or interpretation of Morse code.

The multiple oscillator model suggests that time is en-

coded in a population of oscillators with different base fre-

quencies (Miall, 1989; Matell and Meck, 2004; Buhusi and

Meck, 2005). Time can be read out by a set of coincidence

detectors. This model has the advantages of not requiring

an accumulator and being capable of timing multiple con-

secutive intervals once the oscillators have been trig-

gered. However, how this model will behave in the tasks

examined here is again dependent on its assumptions. If

each event does not reset the oscillators, this model would

be expected to produce a decrease in performance in the

3T-VAR condition, consistent with our results. However, it

would not necessarily predict the decrease in perfor-

mance observed with the short ISIs observed in Figure 5,

since its reset mechanisms could be all or none. Further-

more, this model posits that timing is centralized. Thus,
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it would not predict that any effect of a short ISI would be

dependent on whether the frequencies of the comparison

stimuli were the same. We would concur that a multiple

oscillator model could contribute to timing in the range

of seconds (Matell and Meck, 2004; Buhusi and Meck,

2005), but would argue that it is unlikely to account for

the timing on the scale of a few hundred milliseconds.

Millisecond versus Second Timing

Timing in both the range of milliseconds and seconds has

often been considered to rely on the same underlying

mechanisms (Church, 1984; Macar et al., 2002). The re-

sults described here demonstrate qualitative differences

in the processing of short and long intervals. Unlike the

millisecond range, timing of intervals lasting one second

or longer appears consistent with mechanisms that gener-

ate a linear metric of time. For a 1 s target subjects could

accurately judge the first or second of two consecutive in-

tervals in the Reset task, even though they did not know

a priori which was the target. Performance was also inde-

pendent of both fixed and variable distractors preceding

the target interval. This implies that subjects could inde-

pendently keep track of the objective time of two sequen-

tial second-long intervals and implies the presence of a

linear metric of time. As described above, two simple

strategies that a standard clock model could utilize to per-

form this task are resetting a clock at the second tone, or

contributing values to the performance of temporal arith-

metic. For the long intervals we did not observe any de-

crease in timing accuracy in the 3T versus 2T stimuli. We

would suggest that this observation is more consistent

with the temporal arithmetic scenario. Specifically, that

timing on the order of seconds relies on a linear metric

of time, and that the second of two consecutive intervals

can be calculated by subtracting the first interval from

the final count.

The theoretical framework and psychophysical results

described here, together with previous psychophysical

(Rammsayer and Lima, 1991), pharmacological (Ramm-

sayer, 1999), and imaging studies (Lewis and Miall,

2003), support the existence of distinct loci for subsecond

and second processing. The precise boundary between

these forms of temporal processing cannot yet be estab-

lished. However, it seems likely that they are highly over-

lapping, and that timing in intermediary ranges (e.g.,

400–800 ms) may be accurately performed by both the

mechanisms underlying time perception and time estima-

tion. Based on the time constants of short-term synaptic

plasticity and other time-dependent neural properties,

we suggest that the SDN model is limited to intervals be-

low 500 ms. Additionally, even within a specific time scale,

there may be multiple mechanisms contributing to timing,

and thus the above models are not mutually exclusive.

Relation to Previous Psychophysical Data

A comprehensive model of temporal processing should

provide a detailed description of the neural mechanisms
underlying timing, generate novel testable predictions,

and account for existing experimental data. Two of the

most robust features of temporal processing determined

experimentally relate to the scalar property and the role

of attention in subjective time estimation. The scalar prop-

erty refers to the observation that the ratio of the absolute

criterion interval and the standard deviation of temporal

estimates tends to be constant for long intervals (Gibbon,

1977; Gibbon et al., 1997; Buhusi and Meck, 2005). How-

ever, this is not the case for interval discrimination in the

range of a few hundred milliseconds (Wright et al., 1997;

Mauk and Buonomano, 2004). Thus, we examined how

performance scales with short intervals in the SDN model.

Results showed that, consistent with the human psycho-

physical data, temporal resolution is proportionally worse

for short intervals (see Figure S1 in the Supplemental

Data).

Attention has been widely reported to alter estimates of

time in the range of seconds (Hicks et al., 1976; Macar

et al., 1994; Brown, 1997; Coull et al., 2004). Internal clock

models can account for attention-dependent effects in the

second range by assuming a gating mechanism that

controls the number of events generated by the oscillator

that are counted by the accumulator (Meck, 1984; Zakay

and Tsal, 1989). In contrast, on the shorter time scale,

divided attention or cognitive load does not appear to spe-

cifically alter temporal judgments (Rammsayer and Lima,

1991; Lewis and Miall, 2003). Therefore, the SDN model

would be expected to be fairly insensitive to shifts in atten-

tion. However, recent studies have revealed that temporal

distortions of short intervals can be produced by saccades

or stimulus features (Morrone et al., 2005; Johnston et al.,

2006). These studies suggest that on short scales, timing is

local, and are generally consistent with the SDN model that

predicts that temporal processing could occur in a number

of different cortical areas on an as-needed basis.

Conclusion

We propose here that cortical networks can tell time as

a result of time-dependent changes in synaptic and cellu-

lar properties, which influence the population response to

sensory events in a history-dependent manner. This

framework is applicable to the processing of simple inter-

vals as well as more complex spatial-temporal patterns,

and does not invoke any novel hypothetical mechanisms

at the neural and synaptic level. Additionally, we propose

that timing is not centralized, and can potentially occur lo-

cally at both early and late stages of cortical processing.

The psychophysical experiments examined here emerged

as a direct prediction of this model, and the results are

supportive of this general framework. However, establish-

ing the neural basis for timing will ultimately require the

accumulation of converging evidence from a number of

different fields; of particular relevance will be the use of

more complex temporal stimuli in conjunction with

in vivo electrophysiology to determine if the population

response to ongoing sensory events also contains infor-

mation about the preceding stimuli.
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EXPERIMENTAL PROCEDURES

Neural Network Simulations

The simulated network was composed of 400 Ex and 100 Inh recur-

rently connected Hodgkin-Huxley units (Buonomano, 2000). Excit-

atory neurons were randomly interconnected with a probability of

0.2. The mean synaptic weights were adjusted so that neurons re-

sponded with zero to three spikes to a short stimulus, as is typical

for primary sensory cortex in awake animals (Brody et al., 2002;

Wang et al., 2005). Short-term dynamics of excitatory synapses

were simulated according to Markram et al. (1998). Short-term synap-

tic plasticity of Ex/Ex synapses was facilitatory, based on experi-

ments suggesting that paired-pulse facilitation is present in adult

cortex (Reyes and Sakmann, 1998; Zhang, 2004). The mean U (utiliza-

tion), trec (recovery from depression), and tfac (facilitation) parameters

were 0.25, 1 ms, and 100 ms, respectively. All three values were ran-

domly assigned using a normal distribution with an SD of 20% of the

mean. Short-term plasticity IPSPs in the form of paired-pulse depres-

sion was implemented as previously described (Buonomano, 2000).

Mutual Information and Network Readout

Mutual information was calculated using the total number of spikes in

response to a stimulus, thus providing an assumption-independent es-

timate of the amount of information available (Buonomano, 2005). For

the discrimination between stimuli with different numbers of pulses

(Figure 2A), training of the output units was based on previously de-

scribed supervised learning rules (Buonomano, 2000; Maass et al.,

2002) using only the pattern produced by the last pulse. Training

was performed on a set of 25 stimulus presentations and tested on

10 novel test presentations. In the stimulations shown in Figure 6,

the outputs were trained to discriminate pairs of intervals (100 ms

versus intervals ranging from 50–150 ms). In each case the shortest

interval was defined as the short stimulus and the longest as the

long stimulus.

Principal Component Analysis

The data set was comprised of the voltage of all Ex and Inh neurons, as

well as the synaptic weights (which were time-varying) of excitatory

and inhibitory synapses. To reduce the dimensionality of the data

set, only 20% of all synaptic weights were used. The data were normal-

ized and the principal components were calculated using the

PRINCOMP function in Matlab. Although the dimensionality is very

high, the dimensions are highly correlated during the silent period

between events (if one cell is hyperpolarized, most cells are hyper-

polarized). As a result, the first three principal components can ac-

count for a significant amount of the total variability (approximately

75% in Figure 1B). As expected, these components do not account

well for the actual response to each event, which is dominated by

highly nonlinear dynamics.

Psychophysics

Subjects consisted of graduate and undergraduate students between

the ages of 18 and 30 from the UCLA community. All subjects had nor-

mal hearing.

Reset Task

These experiments were based on a single-stimulus two-alternative

forced-choice protocol as described previously (Karmarkar and Buo-

nomano, 2003). A within-subject design was used; thus, each subject

performed the two distractor conditions (FIX and VAR) with each

condition having two tracks (2T and 3T). Sessions of the FIX and

VAR conditions were given on alternating days over a 1 day period

(counterbalanced). Each block within a session consisted of 120 trials:

60 2T and 60 3T. Each tone (1 kHz) was 15 ms in duration and included

a 5 ms linear ascending and descending ramp. In the FIX condition,

a distractor tone was presented at a fixed interval equal to that of

the SI prior to the target. In the VAR condition the distractor oc-

curred before the target at an interval uniformly distributed between
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SI ± (0.5 3 SI). Thresholds for the 2T and 3T tracks were obtained by

presenting the target interval as SI ± DT, where DT varied adaptively

according to a three-down one-up procedure (Levitt, 1971; Karmarkar

and Buonomano, 2003). Threshold was defined as two times the mean

of the reversal values, which corresponds to a 79% correct perfor-

mance level.

In each trial subjects made a forced choice decision as to whether

the stimulus seemed shorter or longer than the target interval by press-

ing one of two buttons on a computer mouse. They were provided with

immediate visual feedback. All stimuli were generated in Matlab and

presented through headphones.

The 2T and 3T stimuli were randomly interleaved to ensure that sub-

jects did not develop a strategy that involved ignoring the distractor

tone. Additionally, the simultaneous measure of performance on a con-

ventional 2T task and a task with the presence of a distractor provided

a control for nonspecific effects such as difficulty of the overall task,

attention, and memory. Target intervals were either 100 or 1000 ms.

A similar protocol to the one used above was also used for the fre-

quency discrimination task. Rather than adaptively varying the interval

of the tones, their frequency was varied according to F ± DF (where F,

the target frequency, was 1 kHz). Tone duration was 25 ms.

Two-Interval Forced Choice Procedure

In this task subjects were presented with two intervals on each trial: an

SI and the comparison interval (standard + DT) (Allan, 1979; Karmarkar

and Buonomano, 2003). Subjects were asked to press one of two but-

tons depending on whether they judged the first stimulus or the second

interval to be longer. The SI was 100 ms, and the ISIs for the short and

long ISI conditions were 250 and 750 ms, respectively.

The frequency task in the ISI experiments used the same type of

stimuli, but shifted the frequency of both tones of the comparison stim-

ulus. Note that in contrast to the single stimulus protocol, subjects

could reference the target frequency on each trial as opposed to devel-

oping an internal representation of it across trials. We believe this dif-

ference, together with the absence of a distractor, is responsible for

the improvement in the frequency thresholds as compared with the

Reset task. All subjects performed all four tasks in a counterbalanced

manner.

Statistics

In the Reset task, the key analysis was the performance on the 3T-VAR

task in comparison with both the 2T-VAR and 3T-FIX tasks. A differ-

ence between only one of these comparisons would suggest a

‘‘cross-track’’ effect of the variable distractor independent of whether

it was in the 2T or 3T condition, or impairment of 3T discriminations in-

dependent of whether the distractor was presented at a fixed or vari-

able interval. Thus, we performed a two-way ANOVA to determine if

there was an interaction between the 2T/3T and FIX/VAR factors.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/53/3/427/DC1/.
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Knüsel, P., Wyss, R., König, P., and Verschure, P.F.M.J. (2004). De-

coding a temporal population code. Neural Comput. 16, 2079–2100.

Leon, M.I., and Shadlen, M.N. (2003). Representation of time by neu-

rons in the posterior parietal cortex of the macaque. Neuron 38,

317–327.

Levitt, H. (1971). Transformed up-down methods in psychoacoustics.

J. Acoust. Soc. Am. 49, 467–477.

Lewis, P.A., and Miall, R.C. (2003). Distinct systems for automatic and

cognitively controlled time measurements: evidence from neuroimag-

ing. Curr. Opin. Neurobiol. 13, 250–255.
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