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Psychometric intelligence correlateswith reaction time in elementary cognitive tasks, as well as
with performance in time discrimination and judgment tasks. It has remained unclear,
however, to what extent these correlations are due to top–down mechanisms, such as
attention, and bottom–upmechanisms, i.e. basic neural properties that influence both temporal
accuracy and cognitive processes. Here, we assessed correlations between intelligence (Raven
SPM Plus) and performance in isochronous serial interval production, a simple, automatic
timing task where participants first make movements in synchrony with an isochronous
sequence of sounds and then continue with self-paced production to produce a sequence of
intervals with the same inter-onset interval (IOI). The target IOI varied across trials. A number of
different measures of timing variability were considered, all negatively correlated with
intelligence. Across all stimulus IOIs, local interval-to-interval variability correlated more
strongly with intelligence than drift, i.e. gradual changes in response IOI. The strongest
correlations with intelligence were found for IOIs between 400 and 900 ms, rather than above
1 s, which is typically considered a lower limit for cognitive timing. Furthermore, poor trials, i.e.
trials arguably most affected by lapses in attention, did not predict intelligence better than the
most accurate trials. We discuss these results in relation to the human timing literature, and
argue that they support a bottom–up model of the relation between temporal variability of
neural activity and intelligence.

© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A number of studies show that there is a relation between
intelligence and millisecond variability in timed behaviors.
Intelligence is thus negatively related to the variability as well
as the mean of reaction time (RT) in a wide range of
elementary cognitive tasks (Deary, 2000; Jensen, 2006). The
correlation between RT variability and intelligence is often
larger than the correlation between mean RT and intelligence
(Baumeister, 1998; Jensen, 1992). Recent studies combining
choice RT tasks and temporal discrimination tasks also
demonstrate that the discrimination tasks show higher
correlations with intelligence than do RT and RT variability,
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and that the portion of intelligence explained by the RT tasks
predominantly represents variance also explained by the
temporal tasks (Helmbold, Troche, & Rammsayer, 2007;
Rammsayer & Brandler, 2007).

But why would temporal variability be related to intelli-
gence? One can think of two broad but not mutually exclusive
types of explanations. The first type is bottom–up models
where certain basic neural properties influence the amount of
temporal variability in neural activity. This variability is in
turn reflected both in timing tasks and in the quality of
cognitive processing. Top–down types of explanations, in
contrast, involve some higher-order component of the neural
system, such as attention, that affects both timing and
cognitive performance. The main purpose of this study was
to further explore the relation between intelligence and
temporal variability and to elucidate the underlying nature of
this relation. Specifically, correlations were assessed between

mailto:guy.madison@psy.umu.se
http://dx.doi.org/10.1016/j.intell.2008.07.006
http://www.sciencedirect.com/science/journal/01602896


69G. Madison et al. / Intelligence 37 (2009) 68–75
intelligence and timing performance in a simple timing task –

isochronous serial interval production – for different varia-
bility components and for different durations of the interval
to be timed.

Separating between bottom–up and top–down mechan-
isms is theoretically important because it addresses the
neural basis of intelligence. A purely top–down model
would mean that there is no causal relation between
intellectual performance and timing variability per se. The
lower temporal variability of more intelligent persons could,
in this case, be due to more effective higher-order control
mechanisms that are used both in timing tasks and in
problem solving: for example, less intelligent people could
exhibit more temporal variability because they have more
frequent lapses of attention. On a bottom–up account, in
contrast, temporal accuracy of neural activity is one of the
biological underpinnings of intelligence: it is measurable as
behavioral variability in simple timing tasks, but more
importantly has a causal effect on the neural processes that
are involved in cognition.

The timing tasks employed in previous studies of the
relation between timing performance and intelligence make
it difficult to distinguish between the contribution of top–
down and bottom–up mechanisms because they conceivably
involve both. Temporal discrimination and judgment tasks
obviously require decisionmaking and processing of informa-
tion in working memory. Even elementary cognitive tasks are
to a large extent dependent upon decision criteria, however,
as evidenced by early responses (sometimes even before the
stimulus) and substantial effects of manipulating the time
between trials (Grosjean, Rosenbaum, & Elsinger, 2001).

One way of approaching this problem is to determine
whether intelligence is related to performance in a simple
timing task in which temporal variability is largely the result
of automatic processes that are inaccessible to conscious
control. If this is the case, it would provide support for a
bottom–up account of the relation between intelligence and
temporal variability. To this end isochronous serial interval
production (ISIP) was employed as a model behavior. ISIP is
also known as self-paced tapping or continuation tapping,
and consists of making regular, i.e. isochronous movements,
typically using the index finger or a drum stick. In each ISIP
trial, the participant first beats in synchrony with an iso-
chronous sequence of stimulus sounds (synchronization) and
then self-paced at the same rate after the sounds cease
(continuation) (Stevens, 1886). The standard deviation (SD) of
the intervals produced during the continuation phase is the
most common measure of variability.

Several observations support that millisecond variability
in ISIP is controlled by neural processes that are relatively
unaffected by top–down control mechanisms. First, ISIP –

unlike temporal judgment and discrimination tasks – does
not include explicit instructions to process temporal informa-
tion in working memory. Second, ISIP qualifies as an
automatic rather than a cognitive timing task according to
the classification of automatic and cognitive temporal
processing recently provided by Lewis and Miall (2003).
According to their meta-analysis, three task characteristics in
particular favor an automatic rather than cognitive mode of
processing: (i) the use of temporal intervals shorter than 1 s;
(ii) intervals appearing repetitively in continuous succession;
and (iii) involvement of motor production. ISIP with interval
durations in the sub-second range fulfils all three criteria.
Third, a number of findings show that participants have
limited conscious control of ISIP variability: perturbations in
ISIP performance by distractor sounds occur involuntarily and
without conscious awareness (Repp, 2006); the timing of
movements are affected by subliminal perturbations of
pacing stimuli (Madison & Merker, 2004); and participants
automatically track sound sequences in which intervals
gradually change by an unnoticeable amount (Madison &
Merker, 2005). Fourth, other tasks show very little inter-
ference with ISIP. Remarkably, ISIP variability thus only shows
a marginal increase during a concurrent choice reaction time
task (Michon, 1966) or speech production (Nagasaki, 1990).

In addition, correlations between intelligence and ISIP
variability can be subjected to more detailed analyses that
shed further light on the nature of the intelligence–timing
relation. First, ISIP variance can be partitioned into compo-
nents (Madison, 2001; Vorberg &Wing, 1996) that likely have
different control mechanisms, i.e. higher-order phenomena
such as drift (gradual change of tempo) and local interval-to-
interval variability. The relationship of drift and local
variability to intelligence can thus be studied separately.
This is of interest in the sense that deficits in attention or
other top–down control processes arguably should be notice-
able in drift and other higher-order dependencies at least as
much as in local variability. For example, the difference in
variability between children with attention-deficit hyperac-
tivity disorder (ADHD) and normally developing childrenwas
substantially larger for drift than for local variability (Jucaitė,
Dahlström, Farde, Forssberg, & Madison, submitted for
publication). Second, the relation between intelligence and
variability can be studied for different inter-onset intervals
(IOIs) of the pacing stimuli in the synchronization phase. This
is useful in two ways: (i) trials with different IOIs can be
regarded as replications, and if similar relations between
intelligence and timing are seen across IOIs it indicates that
the relation is robust; (ii) in relation to the previously
mentioned meta-analysis of Lewis and Miall (2003), if a
relation between intelligence and variability is found for IOIs
in the sub-second range, this would provide additional
evidence for that the intelligence–timing relation is not only
due to differences in top–down control. Third, it is commonly
found that on multi-trial elementary cognitive tasks, such as
choice reaction time tasks, the worst performance trials
predict intelligence better than best performance trials (the
“worst performance rule”) (Coyle, 2003). Is an analogue of the
worst performance rule found for ISIP? The answer to this
question gives important information about the nature of the
intelligence–timing relation. If a worst performance rule is
found, it would mean that trials with high variability – i.e.
trials where momentary attentional lapses may have
impaired performance – are better predictors of intelligence
than the trials where the participant performed optimally.
This scenario suggests that top–down mechanisms may play
an important role for the intelligence–timing relation. If no
worst performance rule is found, on the other hand, it would
appear that attentional lapses are not responsible for
correlations between intelligence and variability. In this
case, it would rather appear that the relation is primarily
due to bottom–up mechanisms, i.e. temporal variability in
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neural activity that is present in all trials regardless of fluc-
tuations in attention.

The present study consists of two experiments. In both
experiments, intelligence was measured with an untimed
administration of the Raven SPM Plus. ISIP data was collected
individually from each subject. In Experiment 1, the partici-
pants consisted of males that were in addition subjected to
brainmorphometry bymeans ofmagnetic resonance imaging.
The imaging results are reported elsewhere (Ullén, Forsman,
Blom, Karabanov, & Madison, 2008). Correlations between
intelligence and components of ISIP variability (drift and local
variability) were investigated for different IOIs. To investigate
whether a worst performance rule was present, produced
intervals were also sorted within each trial according to
temporal accuracy, and correlations with intelligence were
investigated separately for intervals of different accuracy.
These analyses showed that local variability was more
strongly negatively correlated with intelligence than drift for
all IOIs, and revealed no evidence for a worst performance
rule. The main purpose of Experiment 2 was to replicate these
findings in a new sample of both males and females, and to
extend the design by including also longer IOIs (N1 s).

2. Experiment 1

2.1. Methods

2.1.1. Participants
Participants were recruited from the public by local

newspaper advertisements. Thirty-six right-handed, Cauca-
sian males (age 19–49 years; mean 32.8, and SD 8.3 years)
with no history of neurological disease participated in the
study. There was a wide range of musical experience among
the participants, but none was a professional musician. The
experimental procedures were undertaken with the under-
standing and written consent of each participant, conform-
ing to The Code of Ethics of the World Medical Association
(Declaration of Helsinki). Ethical approval was given by the
Karolinska Hospital Ethical Committee (Dnr 2005/320-32).

2.1.2. Materials
All aspects of the ISIP task were controlled by custom

designed software running on a PC with a real-time operating
system.AnAlesis D4drummodule connected viaMIDI to thePC
produced the sounds and collected the responses. The temporal
resolution of the system was 1 ms. Stimuli consisted of 20
sampled cowbell sounds presented in isochronous sequence
through Peltor HTB7A sound-attenuated headphones at 78 dBA
soundpressure level. The last two soundswere attenuated to 72
and 66 dBA, respectively, to reduce the startle reaction when
stimuli cease. The sounds have a sharp attack and a relatively
fast decay, resulting in a supra-threshold duration of approxi-
mately 80 ms. Responses were given by beating a drumstick
against a drum pad with a piezoelectric element.

A paper-and-pencil version of Raven's Standard Progres-
sive Matrices Plus (SPM Plus) (Raven, Raven, & Court, 2000)
was used to measure intelligence.

2.1.3. Procedure
Each participant was tested individually, sitting upright on

a chair with the feet to the floor. The ISIP task was performed
first. In each ISIP trial, the participant synchronized right hand
movements with 20 stimulus sounds, and then continued to
beat another 45 times without interruption after the sounds
had stopped. This procedure was repeated for each trial,
which had one of seven different stimulus inter-onset inter-
vals (IOIs) according to a geometric series (215, 300, 375, 469,
586, 733, and 916 ms). The first block was for practice and
consisted of 7 trials, one for each IOI. The second block was
the experiment proper that consisted of 14 trials, two for each
IOI. IOIs were presented in a different random order within
each block for each participant. The two blocks took 30–
40 min to complete.

After the ISIP task participants were offered a break of
about 10 min. They were then subjected to the Raven SPM
Plus (untimed), which took between 40 and 120 min to
complete.

2.1.4. Dependent measure computation
For the ISIP task, all data from the practice trials were

ignored. For the experimental trials, data from the continua-
tion phase, excluding the first five data points, were analyzed.
Excluding the first five data points of the continuation phase
is a standard procedure in ISIP research to exclude possible
behavioral artifacts during the transition from synchroniza-
tion to continuation (Madison, 2001). Thus, the 39 time
intervals between the last 40 beats in each continuation phase
were analyzed. Outlier intervals were excluded according to
the following procedure. A moving average (MA) was
computed on those of seven successive intervals in the
response series that were within the range 200–1600 ms.
Intervals outside this range were considered unintentional
errors, being either close to simple reaction time or the limit
for experiencing temporal recurrence (Mates, Radil, Müller, &
Pöppel, 1994), which was the basis for the present task. Such
errors were very rare and consisted mostly of detection
failures in the data acquisition process, that is, either double-
triggering with an interval of 0–50 ms or failed triggerings
with double or triple the stimulus interval. If the number of
valid intervals within a 7-point window were less than 3, the
MA was assigned the value of the stimulus interval. Intervals
50% shorter or longer than the MA were replaced with the
MA, disregarding the outlier itself. This way, the outlier
criterion was mainly related to the intervals actually pro-
duced, accounting for possible drift in the mean. The typical
SD for adults is on the order of 5% of the interval; the 50% limit
should therefore be transgressed very rarely, and does
therefore not constitute filtering of the data.

The raw number of correct items in the Raven SPM Plus
was used as a measure of intelligence.

2.1.5. Local and drift variability
The total variance in ISIP data can be partitioned into

different components. One source of variability is drift, i.e.
gradual changes in ISIP intervals. This should be distinguished
from local variability, i.e. variability in the duration of
consecutive intervals. Here, these two variance components
were estimated separately (see Appendix). Local variability
(Local) was estimated as the variance of difference scores
between temporal intervals two intervals apart, i.e. with a lag
2 difference. This estimate is thus minimally influenced by
drift. Local was estimated from difference scores between



Table 1
Correlations between intelligence and ISIP variability components in
Experiment 1 (N=34)

ISIP variability component

CV(total) Local Drift WPR 1 WPR 2 WPR 3 WPR 4

Raven scores −0.42 −0.44 −0.41 −0.41 −0.36 −0.37 −0.38
Raven scores,
age corrected

−0.43 −0.45 −0.42 −0.39 −0.37 −0.39 −0.38

All correlations were significant at pb0.05. Variability measures are mean
values within-participant across all replications and IOIs. Abbreviations: CV
(total), the total coefficient variation; Local, local variability; Drift, drift
variability; WPR 1–4, local variability inworst performance rule bins 1–4. For
further explanations of the variability measures see Methods and Appendix.
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intervals with a lag 2 difference, rather than a lag 1 difference
(i.e. consecutive intervals), for the following reason. Con-
secutive intervals in ISIP are negatively correlated. This lag 1
negative autocorrelation may reflect feedback error correc-
tion, where short produced intervals tend to be followed by
longer ones and vice versa (Madison, 2000). It would be
inappropriate to let a measure of local variability reflect this
error correction process, which in fact is important for stable
performance. Therefore lag 2 difference scores were used.
Drift was estimated as the remaining portion of the variance,
i.e. total variance− local variance, which consists mainly of the
aforementioned drift in the mean interval (Madison, 2001,
2006).

2.1.6. Worst performance rule like variability
The same lag 2 difference scores that were used in the

calculation of Local were also used to test whether an
analogue of the worst performance rule in RT tasks (Coyle,
2003) is present in ISIP. The following procedure was used.
First, within each trial, the 36 lag 2 interval differences were
rank ordered, disregarding sign, and divided into four bins
with 9 data points in each. The first bin would thus contain
the intervals with the smallest difference scores, i.e. the most
accurate intervals of a trial. The next bin would contain less
accurate intervals, and so on, with the least accurate intervals
sorted into the last bin. Secondly, the coefficient of variation
(CV) of each binwas computed. Third, the means of these CVs
were calculated across trials within-participant, resulting in
four mean CV values for each participant. Finally, the
correlations between intelligence and mean CV were calcu-
lated separately for each of these four bins. If a worst
performance rule like phenomenon was present, correlations
with intelligence would increase from the first bin that
contains the smallest interval differences (i.e. the best
performance), to the last bin that contains the largest interval
differences.

2.2. Results and discussion

Two participants were omitted as outliers due to their
erratic ISIP sequences, which yielded extreme variability
estimates even after correction of outlier intervals. All the
following analyses were based on the remaining 34 partici-
pants. The groupmean Raven score was 47.2 (range 34–58, SD
6.57), which corresponds approximately to the 75th percen-
tile according to 1999 norms for Germany (Raven et al., 2000).
Aggregated CV across stimulus IOIs were computed for each
variability estimate and participant: Local was 3.62 (range
2.19–6.05, SD 0.76), and Drift was 2.17 (range 1.04–4.89, SD
1.02).

The correlations between intelligence (raw and age-
corrected Raven scores) and all relevant variability measures
are shown in Table 1. A scatterplot of the correlation between
intelligence and Local is shown in Fig. 1A. Intelligence was not
correlated with age (r=−0.04; n.s.). For comparison, the total
variability in terms of the coefficient of variation is also
included in the table (CV(total)=SD/mean×100).

All bins of theworst performance rule measures, including
the fourth bin (WPR 4) with highest variability (i.e. worst
performance), were slightly less correlated with intelligence
than was Local. There was no trend that correlations with
intelligence increased for bins with higher variability, as can
be gleaned from comparing the four bins from the smallest
(WPR 1) to the largest (WPR 4) variability (all p-values above
0.8 for tests of difference between r-values). We thus found
no indication of a worst performance rule in ISIP.

To explore the role of IOI, correlations between intelli-
gence and the two variability components, Local and Drift,
were computed separately for each IOI (Fig. 1B). Across the
whole range of IOIs, stronger negative correlations were
found with Local than with Drift. A trend can be observed for
Local that render correlations computed for the four longest
IOIs significant but those computed for the three shortest IOIs
non-significant.

One possibility would be that trivial scaling effects
influence differences in correlations between IOIs. For
example, it appears possible that the component of timing
variability that is related to intelligence is attenuated by other
noise components, and that the proportion between these
might vary as a function of IOI. To address this issue, means of
Local and Drift as a function of IOI were computed. As can be
seen in Fig. 1C, Local and Drift behave quite differently as a
function of IOI than the previously described correlations. In
particular, the fact that Local is almost constant at 3.6% across
IOIs speaks against that a scaling effect would explain the
pattern of correlations between Local and intelligence. As
seen in Fig. 1B, this correlation is almost zero for 215 ms IOI
and increases monotonically with IOI to −0.5 for 916 ms IOI.
Local thus accounts for a substantially larger correlation with
intelligence than does Drift, although the aggregate correla-
tions across IOIs of these two variables are quite similar
(−0.44 and −0.41, respectively, for non age-corrected Raven
scores; Table 1). In contrast, Drift is larger for 733 and 916 ms
IOI (Fig. 1C). This is consistent with a scaling effect that may
influence correlations between Drift and intelligence scores.

Experiment 1 was based on a relatively small sample
(n=34), so some of the differences between IOIs could be due
to chance. On the other hand can trials with different IOIs be
seen as replications, and the fact that Local was more strongly
related to intelligence than Drift for all IOIs indicates that the
finding is quite robust.

3. Experiment 2

Experiment 1 suggested a trend for higher correlations
between local variability and intelligence as a function of IOI.
This is of particular importance since timing of durations



Fig. 1. Local and Drift variability in Experiment 1. (A) Scatterplot of the
relation between Raven scores and Local. The correlation had an r-value of
−0.44. (B) Correlations between the Local and Drift components of ISIP
variability and intelligence calculated separately for each IOI. The dashed line
indicates the 0.05 level of significance. (C) Local and Drift as a function of IOI.

Table 2
Correlations between intelligence and ISIP variability components in
Experiment 2 (N=30)

ISIP variability component

CV(total) Local Drift WPR 1 WPR 2 WPR 3 WPR 4

Raven scores −0.38⁎ −0.44⁎ −0.36 −0.41⁎ −0.38⁎ −0.39⁎ −0.40⁎
Raven scores,
age corrected

−0.36 −0.42⁎ −0.35 −0.40⁎ −0.38⁎ −0.39⁎ −0.38⁎

⁎Correlations significant at pb0.05. Variability measures are mean values
within-participant across all replications and IOIs. Abbreviations: CV(total),
the total coefficient variation; Local, local variability; Drift, drift variability;
WPR1–4, local variability in worst performance rule bins 1–4. For further
explanations of the variability measures see MethodsAppendix.
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above around 1 s has been suggested to be more cognitive
in nature (see Introduction). The main purpose of Experi-
ment 2 was to explore this phenomenon further, in addition
to providing a replication of the main findings in Experi-
ment 1. The range of IOIs was thus extended to 1280 ms in
Experiment 2. In addition, one intermediate level of IOI was
added between each level of IOI employed in Experiment 1.
3.1. Methods

Dependent measure computations, materials, and proce-
dure were the same as in Experiment 1, except that a wider
range of IOIs was employed, the synchronization stimuli were
30 instead of 20, and there were 12 instead of 7 practice trials.

3.1.1. Participants
Twenty women and 10 men were recruited from the

public by local billboard and newspaper advertisements (age
19–62 years, mean 32.8, and SD 9.9 years). None had a history
of neurological disease or had participated in Experiment 1.
Themusical experience varied in the group, but no participant
had more than one year of musical education or was a regular
performer of music. Handedness was not considered since
neuroanatomical analyses were not to be performed. All
participants were Caucasian. A written consent was obtained
from each participant, and ethical considerations and
approval were the same as in Experiment 1.

3.1.2. Materials and procedure
The participant synchronized movements of the preferred

hand with 30 stimulus sounds, and then continued to beat
another 45 times without interruption after the sounds had
stopped. This procedure was repeated for a total of 46 trials:
The experiment proper block with 17 different IOIs according
to a geometric series (215, 240, 268, 300, 335, 375, 419, 469,
524, 586, 655, 733, 819, 916, 1024, 1145, and 1280 ms) was
preceded by a practice block with a subset of 6 IOIs (215, 300,
419, 586, 819, 1145 ms), all conditions occurring twice and
presented in a different random order for each participant.

3.2. Results and discussion

The group mean Raven score was 42.5 (range 27–59, SD
6.66), which corresponds approximately to the 50th percen-
tile according to 1999 norms for Germany (Raven et al., 2000).
This group was therefore more similar to the general pop-
ulation, and this difference between participants across expe-
riments was significant (one-way ANOVA; F(1, 62)=10.19;
p=0.002). Mean aggregated CV for each participant across
stimulus IOIs were very close, and only slightly smaller than
those obtained in Experiment 1: Local was 3.53 (range 2.31–
4.77, SD 0.64), and Drift was 1.84 (range 0.97–3.19, SD 0.53).
The differences in CV between the experiments were not
significant (pN0.10). Although the lower intelligence of Expe-
riment 2 participants would predict higher mean variability,



Fig. 2. Local and Drift correlations with intelligence in Experiment 2. (A) Scatterplot of the relation between Raven scores and Local. The correlation had an r-value
of −0.44. (B) Correlations between the Local and Drift components of ISIP variability and intelligence calculated separately for each IOI. The dashed line indicates
the 0.05 level of significance.
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we believe that the larger numbers of both practice and
experimental trials (12 and 34 vs. 5 and 14 in Experiment 1)
mayhave facilitated performance.Mean CV as a function of IOI
also exhibits the same pattern as seen in Fig. 1B, namely that
Local is constant at 3.5% whereas Drift increases from around
1.5 to 2% between 586 and 733ms IOI (with 655ms exhibiting
an intermediate value of 1.85). Drift did not increase any
further above 733 ms.

Correlations between intelligence and variability mea-
sures are shown in Table 2. A scatterplot of the correlation
between intelligence and Local is shown in Fig. 2A. Age-
corrected scores did not yield higher correlations with ISIP
variability, in spite of an r=−0.30 negative correlation
between Raven scores and age. This is substantially higher
than in Experiment 1 and might be accounted for by the
wider age range in this sample. The correlation is somewhat
steeper than in Experiment 1 (r=−0.44), in accord with the
wider range of Raven scores. In theWPR analysis therewas, as
in Experiment 1, no trend that correlations with intelligence
increased for bins with higher variability (all p-values above
0.8 for tests of difference between r-values).

Fig. 2B shows correlations between intelligence and Local
and Drift as a function of IOI. The pattern is similar to that
obtained in Experiment 1, both in magnitude and shape,
except that the slope of change is steeper in the range 300–
400 ms. Importantly, the correlations do not increase for the
extended range of IOIs, but tend rather to decrease across the
range 1024–1280 ms. As can be seen, the tendency for a non-
monotonic function of IOI between 586 and 916 ms (i.e. a
smaller correlation for 733ms) found in Experiment 1 (Fig.1B)
was replicated. While such a scattering of correlation
coefficients may well be due to chance alone, this tendency
is further reinforced by its replication for 819ms, the latter IOI
being included only in Experiment 2.

4. General discussion

4.1. Timing variability and intelligence — arguments for a
bottom–up relation

We found that variability in a simple, automatic timing
task – isochronous interval production – is negatively corre-
lated with intelligence. All variability components considered
exhibited negative correlations with intelligence, but local
interval-to-interval variability, Local, had the highest predic-
tive power across inter-onset intervals (IOIs) in both experi-
ments. Notably, the largest correlations were observed for an
intermediate range of IOIs from about 500 to 900 ms.

We argue that several findings in this study, taken in
conjunction with earlier literature, favor that bottom–up
mechanisms are involved in the relation between intelligence
and variability. First, the mere fact that local variability in the
ISIP correlates with intelligence supports a bottom–up
mechanism. As mentioned in the Introduction, the earlier
literature shows that millisecond variability in the ISIP is both
subliminal and relatively inaccessible to top–down control:
responses to distractors are unconscious and involuntary
(Repp, 2006), responses occur to subliminal perturbations
(Madison & Merker, 2004, 2005), and ISIP variability shows
only marginal interference effects in dual task situations
(Michon,1966; Nagasaki, 1990). Secondly, deficits in attention
or other top–down control processes should be noticeable in
higher-order dependencies such as drift at least as much as in
local interval-to-interval variability. What we found is, on the
contrary, that higher-order dependencies consistently con-
tribute less to the variance in intelligence than does local
variability. Third, we found no support for a worst perfor-
mance rule in ISIP. In other words, there was no indication
that trials with high variability – i.e. the trials where
momentary attentional lapses may have impaired perfor-
mance – were better predictors of intelligence than the trials
where the participant performed optimally. Fourth, correla-
tions with intelligence were strongest for durations below 1 s,
i.e. for durations shorter than those typically controlled by
cognitive timing systems (Lewis & Miall, 2003).

4.2. Putative neural mechanisms of the intelligence–timing
relation

Behavioral data thus show that local ISIP variability is
relatively independent of cognitive control. In line with this,
neuroimaging studies of brain activity suggest that ISIP loads
relatively little on the fronto-parietal association areas that
are known to be implicated in highly g-loaded problem
solving tasks (Jung & Haier, 2007). Brain activation during ISIP
and related tasks is rather found in a network of brain regions
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including primary sensorimotor cortex, the supplementary
and pre-supplementary motor areas and lateral premotor
areas in the frontal lobe, auditory regions in the superior
temporal gyrus and, subcortically, the basal ganglia and the
cerebellum (Jäncke, Loose, Lutz, Specht, & Shah, 2000); for
reviews see Rao et al. (1997) and Zatorre, Chen, and Penhune
(2007). Activity in prefrontal regions is typically higher in
more cognitive timing tasks, i.e. tasks that involve discrete
durations rather than repetitive patterns, long durations
(N1 s) and no motor production (Lewis & Miall, 2003).

Neural activation studies thus provide further support for
the idea that the relation between ISIP variability and
intelligence is not mainly due to differences in top–down
mechanisms. However, this also raises a puzzling question. If
there is relatively little overlap in brain activity between ISIP
and problem solving tasks, how could ISIP variability play a
causal role for intelligence? We suggest that the answer may
be that local ISIP variability reflects a general level of temporal
variability in the neural activity of the brain. This variability
can be measured as local variability during ISIP but, we
propose, is also present more broadly in neural processes that
are involved in cognition. Support for this idea is found in that
ISIP variability is substantially correlated with performance in
cognitive timing tasks (Keele, Pokorny, Corcos, & Ivry, 1985).

Obviously the potential sources of temporal variability and
noise in neural activity are multifarious and occur at different
levels, from ion channels to neuronal network properties
(Faisal, Selen, & Wolpert, 2008). We recently investigated
neuroanatomical correlates of ISIP variability and intelligence,
and found that both higher temporal accuracy and higher
intelligence were related to larger volume of prefrontal white
matter in overlapping regions (Ullén et al., 2008). The white
matter contains connections between brain regions. These
findings suggest that the amount of prefrontal connectivity
may be one common factor underlying both ISIP variability
and intelligence. A more specific hypothesis in line with Jung
and Haiers parieto-frontal model of intelligence (Jung & Haier,
2007) is thus that individual differences in variability of
neuronal activity in fronto-parietal circuits are important for
intelligence, and reflected as variability in the ISIP. It should
also be noted, however, that anatomical correlates of intelli-
gence arewidespread and found in all brain lobes (Haier, Jung,
Yeo, Head, & Alkire, 2004, 2005; Johnson, Jung, Colom, &Haier,
2008; Jung & Haier, 2007; Ullén et al., 2008). It is therefore
possible that other regions, e.g. in the temporal lobe, that are
known tobe involved in rhythmic control (Zatorre et al., 2007),
are also of importance for the variability-intelligence relation.

More work is needed to understand how temporal vari-
ability could underlie intelligence. We would like to mention
two generic possibilities, however. First, a large literature
demonstrates that precise and reliable timing of neuronal firing
is of importance for information processing in cortical neuronal
networks (for a review see e.g. Tiesinga, Fellous, & Sejnowski,
2008). More specifically, Singer (1999) has suggested that
millisecond level synchronization of discharges in neuronal
ensembles is a mechanism to dynamically represent both
sensory percepts and cognitive contents. Abnormal patterns of
neuronal synchronization are associated with cognitive deficits
in both schizophrenia and Alzheimer's disease (Uhlhaas &
Singer, 2006). Secondly, millisecond differences in the timing of
pre- and post-synaptic neuronal action potentials have pro-
found influences on synaptic plasticity (Kampa, Letzkus, &
Stuart, 2007). A relation between intelligence and neural
plasticity is suggested by the fact that “general learning ability”,
i.e. the common factor underlying the positive co-variation
among a battery of learning tasks, is highly related to general
intelligence (Jensen, 1998). For a comprehensive discussion of
individual differences in neural plasticity as a possible factor
underlying intelligence, see Garlick (2002).

4.3. The role of inter-onset interval in the relation between ISIP
variability and intelligence

A secondary focus of the present study was the influence
of the interval to be timed. Intuitively, one might think that
the processing of very brief intervals would be a measure of
cognitive speed (Jensen,1987), and that the processing of long
intervals would be a measure of cognitive ability (Lewis &
Miall, 2006). In contrast, our results indicate that ISIP within a
quite narrow, intermediate range from approximately 400 to
900 ms yields the highest correlation with intelligence.
Interestingly, this is also approximately the range within
which ISIP performance is optimal, i.e. has the smallest
coefficient of variation (Fraisse, 1982; van Noorden &
Moelants, 1999). The fact that correlations with intelligence
were strongest within a particular range also speaks against
that they would reflect variability in motor execution.

At the lower end of the IOI range, relative variability is larger
for durations shorter than 300–350 ms (Hibi, 1983; Peters,
1989). Possibly, this breakpoint reflects a larger involvement of
the cerebellum for shorter intervals (Miall & Reckess, 2002;
Riecker, Wildgruber, Mathiak, Grodd, & Ackermann, 2003). On
the upper end of the IOI range, the 1 s breakpoint reviewed by
Lewis and Miall (2003) is supported by numerous studies
that demonstrate a qualitative difference in timing between
intervals shorter and longer than around 1 s (Madison, 2001,
2006). In conclusion, the approximate 400 and 900 ms limits
for the IOI range found to yield the highest correlations with
intelligence are likely to be related to switching between
underlying mechanisms and strategies, probably because this
range provides the most optimal conditions and therefore the
smallest intrinsic error variability.
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Appendix A. Estimation of variance components
in ISIP data

The total variance in ISIP data was partitioned into two
components. The first component, Local, was calculated for
each trial as:

Local ¼ 1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N−2

1
xiþ2−xið Þ2

2 N−2ð Þ

vuuut

where xi is the duration of the temporal interval between beat
i and beat i+1, x ̄ is the mean of all intervals of the trial, and
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N is the number of intervals in a trial (i.e. 39). The expression
inside the square root is a variance measure based on local
differences between data points. Because ISIP sequences are
known to exhibit lag 1 negative autocorrelation, i.e. con-
secutive intervals are negatively correlated (Vorberg & Wing,
1996), lag 2 instead of lag 1 differences are used. This is also
why the term N−2 must be employed in the denominator.
Furthermore, as far as random data are considered, sequential
differences are on average twice as large as differences from
the mean, which is why the denominator is 2(N−2). Finally,
the square root of this variance measure (corresponding to a
standard deviation) is divided by the mean duration of all
intervals in the trial, to make Local comparable to a coefficient
of variation.

Similarly, we computed an estimate for the remaining part
of the variance, Drift, which consists mainly of gradual
changes in ISIP inter-onset intervals (Madison, 2006):

Drift ¼ 1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2−
∑
N−2

1
xiþ2−xið Þ2

2 N−2ð Þ

vuuut

Variables are notated as for Local; σ2 refers to the total
variance in a trial.
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