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Dealing With Dependence  
(Part II): A Gentle Introduction  
to Hierarchical Linear Modeling

D. Betsy McCoach1

Abstract

In education, most naturally occurring data are clustered within contexts. Students are clustered within classrooms, classrooms 
are clustered within schools, and schools are clustered within districts. When people are clustered within naturally occurring 
organizational units such as schools, classrooms, or districts, the responses of people from the same cluster are likely to 
exhibit some degree of relatedness with each other. The use of hierarchical linear modeling allows researchers to adjust for 
and model this non-independence. Furthermore, it may be of great substantive interest to try to understand the degree to 
which people from the same cluster are similar to each other and then to try to identify variables that help us to understand 
differences both within and across clusters. In HLM, we endeavor to understand and explain between- and within-cluster 
variability of an outcome variable of interest. We can also use predictors at both the individual level (level 1), and the 
contextual level (level 2) to explain the variance in the dependent variable. This article presents a simple example using a real 
data set and walk through the interpretation of a simple hierarchical linear model to illustrate the utility of the technique.
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In this Methodological Brief, Dr. Betsy McCoach (Univer-
sity of Connecticut) continues an exploration of hierarchical 
linear modeling (HLM; see Gifted Child Quarterly, 54(2), 
152-155) by providing a simple example of the use of HLM 
with nested data. This is the last of a two-part series that 
focused on HLM.
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In education, most naturally occurring data are clustered 
within contexts. Students are clustered within classrooms, 
classrooms are clustered within schools, and schools are clus-
tered within districts. As mentioned in the previous Method-
ological Brief (McCoach & Adelson, 2010), most traditional 
statistical analyses assume that observations are independent 
of each other. When people are clustered within naturally 
occurring organizational units such as schools, classrooms, 
or districts, the responses of people from the same cluster are 
likely to exhibit some degree of relatedness with each other. 
In other words, they are not independent of each other. The 
degree of relationship among units from the same cluster is 
captured by the intraclass correlation coefficient (ICC; 
McCoach & Adelson, 2010). The use of hierarchical linear 
modeling (HLM) allows researchers to adjust for and model 
this nonindependence.

The advantages of HLM are not purely statistical. It may 
be of great substantive interest to try to understand the degree 
to which people from the same cluster are similar to each 
other and then to try to identify variables that help us under-
stand differences both within and across clusters. In HLM, 
information is used from cluster samples to understand and 
explain between- and within-cluster variability of an outcome 
variable of interest. Predictors at both the individual level 
(Level 1) and the contextual level (Level 2) can be used to 
explain the variance in the dependent variable.

In traditional regression-based approaches, the relationship 
between two variables is estimated. Generally, it is assumed 
that this relationship is constant across the entire sample. 
However, when data are gathered from different contexts or 
clusters, it is plausible that the relationships among key vari-
ables of interest may vary by cluster or context. By using 
HLM, the relationship between an independent variable and 
the dependent variable can randomly vary across clusters. If 
the impact of the independent variable on the dependent 
variable varies across clusters, the variability in this 
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relationship using cluster-level variables can potentially be 
explained. For example, allowing the relationship between 
students’ IQ and achievement to vary by class it might be 
found that the impact of IQ on achievement does vary by 
class. In this case, the variability might be explained by using 
class-level predictors, such as teacher experience or the 
teacher’s use of differentiation strategies. If a Level-2 vari-
able, such as teacher’s use of differentiation strategies, does 
moderate the relationship between a Level-1 variable (IQ) 
and the dependent variable (achievement), this is called a 
cross-level interaction. Using HLM allows one to simultane-
ously model the impact of both individual (or Level-1) and 
contextual (or Level-2) variables on the dependent variable 
of interest, as well as model the cross-level interactions 
between higher level and lower level variables on the out-
come of interest.

A simple HLM example using a real data set follows 
with the interpretation to illustrate the utility of the tech-
nique. For a more complete treatment of the analysis and 
interpretation of hierarchical data, the interested reader 
should consult Raudenbush and Bryk (2002), Snijders and 
Bosker (1999), or O’Connell and McCoach (2008).

Example of HLM Analysis
To illustrate the use of multilevel modeling, reading data 
collected as part of a federally funded Javits grant are used 
(Reis et al., 2005). The purpose of this analysis is to demon-
strate a simple hierarchical linear model. Thus, the number 
of covariates at each level is small. Therefore, the reader is 
cautioned that the analysis presented here is not necessarily 
the most complete analysis of these data and is only used for 
illustration of the HLM technique.

For this analysis, there are 1,192 elementary school students 
nested within 70 classrooms. The dependent variable is the 
post–Iowa Test of Basic Skills (ITBS) reading comprehension 
score. The effects of two student-level variables, gifted status 
and pretest ITBS reading comprehension score, on students’ 
posttest reading comprehension scores are considered. Gifted 
status is a dichotomous variable and is coded “1” for identified 
gifted students and “0” for all other students. The pretest score 
is the student’s score on the ITBS reading comprehension sub-
test and is a continuous variable. In addition, the impact of two 
classroom-level variables, the percentage of gifted students in 
the classroom and the classroom mean pretest score, on pre-
dicted reading comprehension scores is examined. The effects 
of the two classroom-level variables on the relationship 
between pretest reading comprehension and posttest reading 
comprehension are also investigated. These represent cross-
level interaction effects: They capture the effects of classroom-
level variables on the effects of individual variables on the 
dependent variable. Although it is common to refer to “effects” 
in the multilevel literature, the “effects” that are referred to are 
correlational, not causal in nature, as the independent variables 
examined were not exp erimentally manipulated.

Model 1: Unconditional (Random  
Effects Analysis of Variance) Model

The process begins by estimating an unconditional model to 
determine the ICC. The unconditional model is

 Yij = β0j + rij,

 β0j = γ00 + u0 j .

In this simplest, unconditional model, each person’s score 
on the dependent variable consists of three elements: the 
overall mean (γ00), the deviation of the cluster mean from the 
overall mean (u0j), and the deviation of the person’s score from 
his or her cluster mean (rij). The u0 term allows the dependence 
of observations from the same cluster to be modeled 
because u0j is the same for every observation within cluster j 
(Raudenbush & Bryk, 2002). In other words, every student 
in the same school will have the same value for u0j. The u0 
term is referred to as a random effect for the intercept 
because of the assumption that the value of u0 randomly 
varies across the Level-2 units (clusters) with a mean of 0 
and a variance of t00.

Using this simple random-effects analysis of variance 
(ANOVA) model, the ICC is the ratio of the between class 
variance to the total variance. In this example, the between 
class variance in reading comprehension (t00) is 558.46. The 
within class variance (s2) in reading comprehension is 
578.62. Therefore, the total variance in reading comprehen-
sion is t00 + s2, or 1137.08 (corresponding to a standard 
deviation of 33.72). Therefore, the intraclass correlation is 
the between-cluster variance divided by the total variance, 
t00 ⁄ (t00 + s2), which is 0.491, meaning 49% of the variabil-
ity in reading comprehension scores is accounted for by the 
cluster (classroom). Given this large ICC, it would be incor-
rect to treat these data as if they were independent. The 
parameter estimate for the intercept of this simple model, γ00, 
is 209.62 (Table 1). This represents the mean posttest read-
ing comprehension score.

Model 2: Level-1 Model
Next, a model that includes pretest reading comprehension 
scores as a control variable and gifted status as an additional 
Level-1 variable is estimated. To make the intercept of the 
multilevel equation interpretable, the pretest score is grand-
mean centered.1 However, gifted status is left in its raw met-
ric. The set of equations for this Level-1 model is

 Yij = β0j + β1j(GIFTED)ij + β2 j(PRE-ITBS)ij + rij,

 β0j = γ00 + u0 j ,

 β1j  = γ10 ,

 β2 j  = γ20  + u2 j .
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In this model, γ00 (207.60) represents the predicted posttest 
reading comprehension score for a nongifted student when 
pretest is held constant at the mean. γ10, the gifted identi-
fication slope (12.58; see Table 1), represents the differential 
between gifted and nongifted students on the posttest, after 
controlling for pretest scores. This indicates that after controlling 
for pretest scores, gifted students are expected to score 12.58 
points higher than nongifted students on the reading comp-
rehension posttest. γ20, the pretest slope, is 0.70. This rep-
resents the expected change in reading comprehension 
achievement per unit change in pretest scores. In other words, 
for every point increase on the reading comprehension pretest, 
it is anticipated that students’ scores would be 0.70 points 
higher on the posttest.

Percentage of variance explained. As might be expected, 
adding pretest and gifted status as student-level variables 
helps to explain a tremendous amount of both the between 
classroom variance and the within classroom variance in post-
test reading achievement. Because the total variance in the 
dependent variable is partitioned into multiple pieces across 
the multiple levels of analysis, there is no real multilevel 
equivalent to R2, or the proportion of variance explained in a 
single-level regression model. However, Raudenbush and 
Bryk (2002) have proposed a proportional reduction in vari-
ance statistic that can be computed for any variance compo-
nent in the multilevel model. To compute this proportional 
reduction in variance statistic, the residual variance from the 
model with a greater number of variables is compared with 
the residual variance from a simpler baseline model. First, 
the variance of the larger model is subtracted from the vari-
ance of the simpler baseline model. The difference is then 
divided by the variance of the baseline model. This propor-
tional reduction in variance provides a rough estimate of the 
proportion of variance that is explained using a set of inde-
pendent variables (Raudenbush & Bryk, 2002).

To illustrate the proportional reduction in variance statis-
tics, a comparison of the within-class variance in reading 
comprehension achievement and the between-class variance 
in reading comprehension achievement is done using the for-
mulas provided by Raudenbush and Bryk (2002). The between-
class variance for the unconditional model is 558.46. The 
between-class variance for the Level-1 model is 41.13. Thus 
the proportional reduction in Level-2 variance is (558.46 - 
41.13)/558.46, or 0.926. In other words, adding pretest score 
and gifted status as student level predictors actually helps 
explain more than 90% of the between-class variance in stu-
dents’ reading posttest scores. The within-class variance for 
the unconditional model is 578.62. The within-class variance 
for the Level-1 model is 308.24. Thus, the proportional 
reduction in Level-1 variance is (578.62 - 308.24)/578.62, 
or 0.467. Therefore, adding the pretest and gifted identifica-
tion variables also helps explain close to 50% of the within-
class variance in reading comprehension achievement.

Model 3: Full Level-2 Model
Finally, a full two-level model is estimated, in which the 
percentage of identified gifted students and the classroom’s 
mean pretest scores are included as predictors of both the 
intercept and the pretest slope. The set of equations for this 
full model is

 Yij = β0j + β1j(GIFTED)ij + β2 j(PRE-ITBS)ij + rij,

 β0j = γ00 + γ01 (%GIFTED)
 + γ02 (MEAN PRE-ITBS) +u0 j ,

 β1j = γ10,

 β2 j  = γ20 + γ21(%GIFTED) 
 + γ22 (MEAN PRE-ITBS) + u2 j .

Table 1. Summary of REML Parameter Estimates for Two-Level Model of Reading Comprehension

 Unconditional Model Level-1 Model Full Level-2 Model

Parameter Parameter Estimate SE Parameter Estimate SE Parameter Estimate SE

Fixed effects      
Intercept (γ00)  209.62* 2.92 207.60* 2.03 207.04* 1.60

Percentage gifted (γ01) — — — — -0.10* 0.04
Class mean ITBS (γ02) — — — — 0.29* 0.06

Gifted status (γ10) — — 12.58* 1.79 13.88* 2.90
Pre-ITBS (γ20) — — 0.70* 0.03 0.65* 0.03

Percentage gifted (γ01) — — — — 0.002 0.001
Class mean ITBS (γ02) — — — — -0.003 0.001

Variance estimates      
Within-class variance (s2) 578.62 — 308.24 — 309.95 —
Intercept variance (t00) 558.46 — 41.13 — 24.95 —
Pre-ITBS slope variance (t11) — — 0.021 — 0.014 —

Note. REML = restricted maximum likelihood; SE = standard error; ITBS = Iowa Test of Basic Skills.
*p < .05
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Both classroom-level variables are centered on their res-
pective means to aid interpretation. Therefore, in this model, 
γ00, the overall intercept, now represents the predicted 
posttest reading comprehension score for a nongifted student 
who scores at the mean on the pretest and who is in a class 
that scores at the class mean at the pretest and has an average 
number of identified gifted/talented students. Next, we 
consider the effects of the Level-2 variables on the intercept. 
γ01 rep resents the effect of increasing the percentage of 
gifted students in the classroom on that predicted reading 
comprehension score, after controlling for the class mean 
pretest scores. This coefficient is negative, indicating that 
holding classroom pretest scores constant at the mean, for 
every point increase in the percentage of gifted students in 
the class, the predicted posttest reading comprehension 
achievement level in the class would decrease by 0.10. This 
may seem odd; however, γ02 the effect of the class mean 
pretest score on the intercept is positive, indicating that for 
every point increase in the class’s mean at pretest, the 
expected value of the reading posttest score increases by 
0.29. It is important to remember that the percentage of 
gifted students in the class and the class mean pretest 
reading comprehension score are likely to be positively 
correlated. Thus, as the percentage of gifted students in the 
class increases, the average pretest reading comprehension 
score is also likely to increase. If the percentage of gifted 
students in the class increases, without a resulting increase 
in reading comprehension scores, then this model would 
actually predict a decrease in the predicted posttest reading 
comprehension achievement of the class, but this scenario is 
highly unlikely. The same-level interaction between class 
mean pretest reading comprehension scores and the 
percentage of gifted students in the class could also be 
considered. However, this interaction was tested and it was 
not statistically significant (p > .05).

Next, the Level-1 slopes for gifted status and pretest read-
ing comprehension scores are examined. These represent the 
effects of the Level-1 variables on the predicted dependent 
variable, after controlling for all of the other variables in the 
model. The effect of gifted status on the intercept (γ10) is 
13.88, indicating that after controlling for pretest scores and 
the classroom level variables, gifted students are expected to 
outperform nongifted students by 13.88 points. γ20, the inter-
cept of the pretest reading comprehension slope is 0.65 
(Table 1). This indicates that in a classroom with an average 
number of gifted students and an average class-mean pretest 
score, for every point increase in the pretest, the expected 
value for the posttest reading comprehension score increases 
by 0.65 points. Finally, consideration is given to the cross-
level interaction terms. These are the moderational effects of 
the Level-2 variables on the relationship between the Level-1 
variables and the dependent variable. In other words, cross-
level interaction effects answer the question, “How do 
Level-2 variables moderate the impact of the Level-1 vari-
ables on the dependent variable? After controlling for class 

mean pretest reading comprehension scores, the percentage 
of gifted students in the class (γ21) has a small positive influ-
ence on this slope. That is, for every percentage point above 
the mean a class is in terms of the number of students who 
are gifted, the effect of the pretest on the posttest increases 
by 0.002 points. In other words, after controlling for class 
mean pretest scores, the more gifted students that there are in 
a class, the stronger the relationship between pretest score 
and the posttest score. This cross-level interaction effect 
indicates that having more gifted students in a class appears 
to strengthen the relationship between students’ pretest and 
posttest scores. In contrast, the coefficient for the effect of 
the class mean pretest score on the effect of the pretest on 
posttest is negative (γ22 = -0.003). This indicates that hold-
ing the percentage of gifted students in the class constant, as 
the average pretest score of the class increases, the relation-
ship between the pretest score and the posttest score decreases. 
Pretest scores are less predictive of posttest scores in class-
rooms where the class average reading comprehension score 
is higher (again, after controlling for or holding constant the 
percentage of gifted students in the class). It is important to 
understand that this example is for illustrative purposes only. 
It may be that there are other omitted variables or unmodeled 
same-level interaction effects that could help better under-
stand these data.

Percentage of variance explained. When compared with the 
model that includes only student level predictors, this final 
two-level model explains an additional 39% of the between 
class variance in the intercepts [(41.13 - 24.95)/41.13)] and 
it explains about 33% of the between class variance in the 
pretest slope [(0.021 - 0.014)/0.021)]. However, there is 
still additional between school variability remaining to be 
exp lained in both the intercept and pretest slope. There may 
be other classroom-level variables, such as the teacher’s 
instructional style or classroom management skills that 
could help explain additional between class variance. Notice 
that the addition of the classroom-level variables does not 
help explain any additional within class variability in resid-
ual posttest reading scores. Conceptually, this makes sense 
as it is not expected that between-class variables would exp-
lain within-class variability.

Although there is much more that could be done with 
these analyses, it is hoped that this simple example provides 
the reader with the flavor of multilevel modeling and a sense 
of its ability to answer sophisticated research questions about 
the cross-level interaction effects of contextual variables on 
the dependent variable.
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Note

1. A discussion of centering is beyond the scope of this article. 
However, the interested reader should consult Enders and 
Tofighi (2007) for an excellent discussion of the complex 
issues surrounding centering in multilevel models.
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