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Dealing With Dependence (Part I): 
Understanding the Effects
of Clustered Data

D. Betsy McCoach1 and Jill L.  Adelson2

Abstract

This article provides a conceptual introduction to the issues surrounding the analysis of clustered (nested) data. We define 
the intraclass correlation coefficient (ICC) and the design effect, and we explain their effect on the standard error. When 
the ICC is greater than 0, then the design effect is greater than 1. In such a scenario, the standard error produced under the 
assumption of independence is underestimated. This increases the Type I error rate. We provide a short illustration of the 
effect of non-independence on the standard error. We show that after accounting for the design effect, our decision about the 
statistical significance of the test statistic changes. When we fail to account for the clustered nature of the data, we conclude 
that the difference between the two groups is statistically significant. However, once we adjust the standard error for the 
design effect, the difference is no longer statistically significant.
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In this Methodological Brief, Dr. Betsy McCoach (University 
of Connecticut) and Dr. Jill Adelson (University of Louis-
ville) provide an overview of the use of hierarchical linear 
modeling with nested data. This is the first piece in a two-part 
series that focuses on HLM and we hope readers find it useful 
as they work with nested data. 
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GCQ Methodological Briefs, Editor

Associate Editor, GCQ

In traditional statistics courses, we learn a variety of inferen-
tial statistical techniques, each of which makes the assump-
tion of independence of observations. The assumption of 
independence means that cases “are not paired, dependent, 
correlated, or associated in any way” (Glass & Hopkins, 
1996, p. 295). However, in educational research, we rarely 
collect data that meet this stringent assumption. For 
instance, students who receive instruction together in the 
same classroom, delivered by the same teacher, tend to be 
more similar in their achievement (and other educational 
outcomes) than students who were instructed by different 
teachers. Generally speaking, observations that are clustered 
tend to exhibit some degree of interdependence. Examples of 
clustering include students clustered within classes, teachers 
clustered within schools, children clustered within families, 
or even observations across time, which we consider to be 
clustered within persons.

Having clustered data presents researchers with several 
problems, both conceptual and statistical. Conceptually, the 
researcher may be interested in studying relationships among 
variables that occur at multiple levels of the data hierarchy 
as well as potential interactions among them. For instance, a 
researcher may wish to study the relationships between stu-
dent ability, teaching style, and academic achievement. Stu-
dent ability is measured at the individual level, whereas 
teaching style is measured at the classroom/teacher level. 
There is a potential moderating effect of the teacher’s teach-
ing style on the impact of student ability on student achieve-
ment. For example, behaviorist teachers may be more effective 
with low-ability students and less effective with high-ability 
students. In contrast, constructivist teachers may be more 
effective with high-ability students and less effective with 
low-ability students. Therefore, the relationship between abil-
ity and achievement would be stronger in constructivist class-
rooms than it would be in behaviorist classrooms. These are 
the types of questions that multilevel analyses are able to 
address. Using traditional methodologies such as regression 
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and ANOVA does not allow the researcher to ask and answer 
same sort of nuanced research questions that span across the 
different levels.

In addition, nested data present researchers with statisti-
cal challenges. Although researchers traditionally make the 
assumption that their observations are independent, having 
nested data violates this assumption. Research consistently 
has demonstrated that students in one cluster (such as a class, 
school, etc.) tend to be more similar to each other in terms of 
an outcome variable (such as achievement) than they are to 
students in another cluster. This interdependence, which is a 
result of the sampling design (choosing to study students 
within classes or students within schools, for example, rather 
than taking a random sample of students without regard to 
the classroom or school in which they are enrolled), affects 
the variance of the outcome, which in turn affects the estimates 
of the standard errors. Ignoring this clustering effect or 
nonindependence, as we often do in traditional tests of sig-
nificance, incorrectly reduces the standard error, artificially 
increases the confidence in our estimates or associations 
with the outcome, and, thus, increases the possibility of mak-
ing a Type I error (rejecting the null hypothesis when we 
should have failed to reject it) (O’Connell and McCoach, 
2008).

Fortunately, researchers are able to address these concep-
tual and statistical issues using multilevel modeling, also com-
monly referred to as hierarchical linear modeling, or HLM 
(Raudenbush & Bryk, 2002). HLM has many benefits. The 
standard errors from HLM analyses take into account the clus-
tered nature of the data, resulting in a more correct Type I 
error rate. In addition, HLM allows researchers to model 
multiple levels of a hierarchy simultaneously, partition vari-
ance across the levels of analysis, and examine relationships 
and interactions among variables that occur at multiple levels 
of a hierarchy. The remainder of this article addresses the sta-
tistical issue of nonindependence in clustered data and the 
implications this has on traditional tests of significance, illus-
trating the benefit of using HLM to model the nested nature 
of much of educational research.

Treating clustered data as if they were independent data 
results in standard errors that are underestimated. Conceptu-
ally, this is because when people exhibit some level of homo-
geneity, there is some redundancy (or correlation) in their 
responses, and that redundancy can be explained or accounted 
for by their cluster membership. Because of this redundancy, 
the “effective sample size” for the study is smaller than the 
actual sample size for the study. The degree to which the 
effective sample size and the actual sample size differ affect 
the degree to which standard errors from traditional statistical 
tests are underestimated. To get a rough estimate of the degree 
to which the clustered nature of the data affects the standard 
errors, it is necessary to take into account the degree of homo-
geneity within clusters as well as the average cluster size.

The Intraclass Correlation

The intraclass correlation (ICC) provides a measure of how 
similar, or homogeneous, individuals are within clusters. The 
ICC is the proportion of variability in the outcome that is 
accounted for by the clusters or groups. To calculate the ICC, 
often referred to as ρ (rho or roh), we partition the total vari-
ability into two pieces: that which is within clusters (σ2) and 
that which lies between clusters (τ00). To compute the ICC, 
we simply divide the between-cluster variability (τ00) by the 
total variability (τ00 + σ2), as the following formula shows:

A large ICC indicates that there is a large degree of homoge-
neity within clusters (σ2 is small) and/or a large degree of 
heterogeneity across clusters (τ00 is large). A recent review by 
Hedges and Hedberg (2007) indicates that when the school 
represents the cluster variable, the average ICC for student 
academic achievement (in either mathematics or reading) 
is .22. After controlling for pretest scores and/or demographic 
characteristics such as socioeconomic status and so on, the 
average ICC is .11 to .12.

Using the ICC, we calculate a design effect (DEFF; Kish, 
1965). The DEFF is a ratio of the sampling variability for 
the study design compared with the sampling variability that 
would be expected if the study used a simple random sample 
(SRS) and can be calculated using the following equation:

where nj is the average sample size within each cluster and ρ 
is the ICC. If this ratio is equal to 1, then there is no clustering 
effect. However, if it is greater than 1, the research design has 
violated the assumption of independence of observations, 
which would lead to bias in traditional tests of significance. 
The design effect can then be used to calculate the effective 
sample size, or the sample size that we should use to estimate 
the standard error for the study. The N effective is simply 
(Snijders & Bosker, 1999) the following:

To address this violation, the researcher could use HLM 
or could use the DEFT, the square root of the DEFF, to 
adjust the standard errors. The DEFT indicates the degree to 
which the standard errors need to increase to account for the 

r ¼ τ00

τ00 þ s2
:

varðdesignÞ
varðSRSÞ ¼ 1þ rð�nj � 1Þ;

N

DEFF
¼ N

1þ rð�nj � 1Þ :
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clustering.1 Generally, DEFT increases both as the average 
cluster size increases and as the ICC increases. Often, in 
school-based research, the cluster is the classroom. Even 
with an ICC as small as .15 (see Figure 1) and average 
cluster size of 25, the standard errors have significant  
bias. In this case, DEFT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :15 · ð25� 1Þ

p
¼ 2:14;  which 

indicates that the standard errors assuming a simple random 
sample are less than half as large as they should be if 
we took the clustering into account. The effect is even more 
pronounced when the school is the cluster because the 
average sample size at the school level is often quite large. 
As mentioned before, the typical ICC for school effects 
research on achievement is .22. With an ICC of .22 and an 
average cluster size of 100, DEFT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ :22 · ð100� 1Þ

p
¼ 4:77;  

indicating that the standard errors produced by standard soft-
ware programs are close to five times smaller than they 
should be if they took the clustered nature of the data into 
account.

Illustration of the Design Effect
With Nested Gifted Education Data
To illustrate the impact of the ICC on statistical signifi-
cance, as well as how to demonstrate how to use the DEFT 
to correct standard errors for the degree of clustering, we 
use actual Peabody Picture Vocabulary Test data from an 
intervention study (Coyne, McCoach, Zipoli, & Ruby, in 
press).

In this small data set, 121 students were nested within 
eight classrooms. Seventy-eight students received a 

vocabulary intervention, whereas 43 served as control 
students. There were not enough clusters in the data set to 
run a multilevel analysis; however, the researchers wished 
to account for the nonindependence in their data set when 
they were computing the statistical tests. Therefore, they 
began by running an unconditional random-effects ANOVA 
model to partition the total variance into between-classroom 
variance (13.25) and within-classroom variance (168.98). 
They then divided the between-classroom variance (13.25) 
by the total variance (168.98 + 13.25) to compute the ICC 
(.078). Next, they computed the DEFF, which is 
1þ rð�nj � 1Þ:  In this case, 121 students were nested within 
eight classes, which made the average cluster size 15.125. 
Therefore, the DEFF = 1 + .078(15.125 − 1) or 2.10. 
Next, to obtain the DEFT, they took the square root of the 
DEFF, which is 1.45. A DEFT of 1.45 means that they 
should multiply the standard errors from other traditional 
statistical analysis by a factor of 1.45 to get a more realis-
tic estimate of the standard errors, given the dependence in 
the data.

Next, the researchers ran a t test comparing the treatment 
and control groups on the Peabody Picture Vocabulary Test. 
The researchers’ naive analysis of the difference between the 
treatment and control groups was statistically significant. The 
mean difference between the treatment and control groups 
was 6.48; the standard error was 2.40 (t = 2.70, p = .008). 
Next, they applied the correction for the DEFT to the stan-
dard error and recomputed the t ratio and p value. The cor-
rected standard error was 2.40 × 1.45 = 3.48. This resulted in 
a corrected t ratio of 6.48/3.48 = 1.86, corresponding to a p 

Figure 1. The DEFT as a function of nj, with the ICC held constant at .10 or .22.
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value of .07. Therefore, the results were no longer statisti-
cally significant at p = .05. This example illustrates the impact 
that even a modest ICC can have. Given that ICCs in teacher 
and school effects research often lie within the .10 to .25 
range, it is easy to see how ICCs of this magnitude could 
change the inferences that we make about the statistical sig-
nificance of a given study.
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Note

1.	 It is worth noting that using the DEFT to correct standard errors 
is an approximation technique and that more exact methods of 
computing standard error estimates such as using Taylor series 
expansion, balanced repeated replications, and bootstrap meth-
ods, as are implemented in specialized statistical software pack-
ages such as SUDAAN, WESVAR, SPSS Complex Samples, and 
AM, provide more accurate estimates of standard errors.

References

Coyne, M., McCoach, D. B., Zipoli, R., & Ruby, M. (in press). 
Direct and Extended Vocabulary Instruction in Kindergarten: 
Investigating Transfer Effects. Journal of Research on Educa-
tional Effectiveness.

Glass, G. V., & Hopkins, K. D. (1996). Statistical Methods in Edu-
cation and Psychology. Boston: Allyn & Bacon.

Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values 
for planning group randomized trials in education. Educational 
Evaluation and Policy Analysis, 29, 60-87.

Kish, L. (1965). Survey sampling. New York: John Wiley.
O’Connell, A. A., & McCoach, D. B. (2008). Multilevel modeling 

of educational data. Charlotte, NC: Information Age.

Raudenbush, S., & Bryk, A. (2002). Hierarchical linear models 
(2nd ed.). Thousand Oaks, CA: Sage.

Snijders, T. A., & Bosker, R. J. (1999). Multilevel analysis. 
Thousand Oaks, CA: Sage.

Bios

D. Betsy McCoach is an associate professor in the Measurement, 
Evaluation and Assessment program at the University of Connecticut, 
where she teaches coursework in hierarchical linear modeling, struc-
tural equation modeling, instrument design, and research design. Her 
research interests include the underachievement of academically able 
students, growth curve modeling, and model fit issues. She has coed-
ited the book Multilevel Modeling of Educational Data, and she is 
currently authoring a textbook on instrument design. She has pub-
lished numerous peer review journal articles and book chapters in the 
areas of gifted education, research methodology, and educational 
research and currently serves as the research methodologist for several 
federally funded projects. She is the current coeditor of the Journal of 
Advanced Academics. She also serves on the editorial review boards 
for the American Educational Research Journal, the Journal of Edu-
cational Psychology, the Journal of Educational Research, and Gifted 
Child Quarterly. She is the 2007 recipient of the National Association 
for Gifted Children (NAGC) Early Scholar award and is currently the 
chair elect of NAGC’s Research and Evaluation Network.

Jill L. Adelson, PhD, is an assistant professor in the Department of 
Educational and Counseling Psychology at the University of Louis-
ville, where she teaches courses in educational statistics and mea-
surement. Jill earned her doctorate in measurement, evaluation, and 
assessment and in gifted education from the University of Connecti-
cut. Her research includes applying advanced methodologies, such as 
hierarchical linear modeling, propensity score analysis, and struc-
tural equation modeling. Her substantive interests include the effects 
of gifted programming, the talent development of mathematically 
talented elementary students, attitudes towards mathematics, and 
special issues for mathematically talented females. She serves in 
leadership positions in both the National Association for Gifted Chil-
dren and the American Educational Research Association.

 at Serials Records, University of Minnesota Libraries on July 15, 2010gcq.sagepub.comDownloaded from 

http://gcq.sagepub.com/



