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Concerns about the ability-achievement discrepancy method for specific learning disability (SLD)
determination led to alternative research-based methods, such as failure to respond to intervention.
Neither of these regulatory methods address the statutory SLD definition, which explicitly includes
a deficit in basic psychological processes. Examining neuropsychological processing differences
among typical children and children with math SLD, commonality analyses revealed that Differen-
tial Ability Scales – Second Edition (DAS-II) predictors accounted for more achievement variance
in typical children (46% to 58%) than in children with math SLD (33% to 50%), with substantial
loss of predictive validity when General Conceptual Ability was used instead of subcomponent
scores. Results suggest that differences in typical predictor-outcome relationships may provide a
foundation for developing specific cognitive and academic interventions for children with math
SLD. C© 2008 Wiley Periodicals, Inc.

Intelligence test interpretation remains one of the most controversial and divisive issues in
psychological assessment. Although examining a child’s level of performance using a global intelli-
gence score (e.g., IQ) interpretation has been steadfastly advocated by some (e.g., Watkins, Glutting,
& Lei, 2007), others have heuristically and empirically challenged this practice (e.g., Hale, Fiorello,
Kavanagh, Holdnack, & Aloe, 2007), suggesting that global IQ scores may have limited utility in
clinical practice (Fiorello, Hale, Holdnack, Kavanagh, Terrell, & Long, 2007). At least since Thur-
stone (1938), many researchers have emphasized individual components of intelligence, with this
multifactorial view dominating the field in recent times (Daniel, 1997). As a result, several authori-
ties (e.g., Groth-Marnat, Gallagher, Hale, & Kaplan, 2000; Hale & Fiorello, 2004; Kamphaus, 2001;
Kaufman, 1994; Lezak, 1995; Miller, 2007; Miller & Hale, 2008; Prifitera, Weiss, & Saklofske, 1998;
Sattler, 2001) offer methods and tables to assist practitioners in examining cognitive subtest or factor
scores, a technique often referred to as profile analysis of a child’s cognitive or neuropsychological
pattern of performance.

Differential Ability Scales–Second Edition c© standardization and clinical data used by permission of Harcourt
Assessment, Inc. All rights reserved.
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Level of Performance Interpretation: Fact or Fancy?

Those who advocate interpreting a child’s level of performance have insisted that intellectual
or cognitive ability tests simply measure global intelligence or psychometric g (Spearman, 1927).
The positive manifold among subtests (Brody, 1997) supports use of g’s proxy, global IQ, which has
excellent reliability and validity (Jensen, 1998) and strong predictive validity (e.g., Ceci & Williams,
1997; Gottfredson, 1997; Neisser et al., 1996). Additional support for IQ interpretation has come
from arguments that intelligence subtest profiles are so unreliable (Canivez & Watkins, 1998, 1999,
2001; Macmann & Barnett, 1997) and invalid (Gresham & Witt, 1997; Reschly & Gresham, 1989),
that practitioners have been admonished to “just say no” to subtest analysis (McDermott, Fantuzzo,
& Glutting, 1990). In addition, significant profile variability base rates are so high that variability is
the norm, not the exception (Fiorello, Hale, McGrath, Ryan, & Quinn, 2001; Glutting, McDermott,
Watkins, Kush, & Konold, 1997; Hale et al., 2007; Kahana, Youngstrom, & Glutting, 2002), albeit
these researchers offer very different conclusions regarding the meaning of profile variability.

The strongest attacks on subtest profile analysis have been based on techniques that statistically
control for IQ variance, and then explore the utility of factors, subtests, or profiles, which typically
yield little additional diagnostic information (e.g., Glutting, Watkins, Konold, & McDermott, 2006;
Glutting, Youngstrom, Ward, Ward, & Hale, 1997; Kahana et al., 2002; Maller & McDermott, 1997;
McDermott & Glutting, 1997; Watkins & Glutting, 2000; Watkins et al., 2007; Youngstrom, Kogos,
& Glutting, 1999). The implicit conclusion offered by this research group is that it is unscientific and
irresponsible to interpret anything beyond global IQ. These conclusions are made explicit by others,
who argue that IQ, g, and intelligence are virtually synonymous and that global ability should be
used in educational, occupational, social, and political decisions and policy (e.g., Gottfredson, 1997;
Herrnstein & Murray, 1994).

Despite these redundant findings, there is clear and convincing evidence that the measures
and/or statistical methods used in these studies do not support the authors’ conclusions or claims.
For instance, in The Bell Curve, Herrnstein and Murray (1994) reported racial differences in “in-
telligence,” yet their measure primarily tapped prior learning (Roberts, Goff, Anjoul, Kyllonen,
Pallier, & Stankov, 2000), suggesting that results could be explained by racial achievement—not
intelligence—differences (see Hale & Fiorello, 2001). Equally problematic is the use of hierarchical
regression methods for evaluating the “incremental validity” of subtest, factor, or profile differences
beyond the global IQ. As has been demonstrated elsewhere (Fiorello et al., 2001, 2007; Fiorello,
Hale, & Snyder, 2006; Hale et al., 2007; Hale & Fiorello, 2001, 2004; Hale, Fiorello, Kavanagh,
Hoeppner, & Gaither, 2001), hierarchical regression analyses that use global IQ scores in the same
analysis as lower-order factor and subtest scores are inappropriate because the global (e.g., IQ)
and subcomponent (e.g., factor, subtest profile, variability group) scores are derived from the same
subtest scores. The subtest and/or factor scores account for all the variance of the global score. This
precludes their inclusion in the same regression equation (Pedhazur, 1997), and is a fatal flaw in the
research cited in the previous paragraph.

To correct for the dubious results and unwarranted conclusions of the incremental validity
studies, data partitioning using regression commonality analysis (see Pedhazur, 1997) allows for
calculation of the unique and shared variance that each multicollinear predictor contributes to the
dependent variable. In a series of Wechsler Intelligence Scale for Children, 3rd. and 4th editions
(WISC-III and WISC-IV) studies, Fiorello, Hale, and colleagues (see Fiorello et al., 2001, 2007;
Hale et al., 2001, 2007, 2008; Hale, Fiorello, Sherman, & Bertin, 2002) demonstrated that there
is little shared factor/subtest variance in the prediction of IQ, achievement, neuropsychological,
and behavioral domains among typical children with variable profiles and those with disabilities,
with the loss of predictive validity substantial when one interprets global over subcomponent scores
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in clinical populations (see Hale et al., 2007; 2008). If the shared variance among predictors,
or true g, is typically less than 10% for a vast majority of the population, including those with
variable profiles and disabilities, then we have spent the last 100 years reifying a construct that is
no longer useful in clinical practice (Fiorello et al., 2001). In addition, because unique and shared
variance among predictors of achievement and neuropsychological functioning vary among different
populations (Hale et al., 2001, 2007, 2008; Hale, Hoeppner, & Fiorello, 2002), subcomponent score
interpretation would appear to be warranted if empirical methods are developed to interpret a child’s
cognitive profile or pattern of performance.

Pattern of Performance Interpretation: Empirical Evaluation of Profile Analysis

Although it is widely used in clinical practice (Pfeiffer, Reddy, Kletzel, Schmelzer, & Boyor,
2000), the term “profile analysis” is, unfortunately, used to describe at least three different methods for
analyzing subtest scores. One method compares the examinee’s subtest score pattern to one or more
subtest profiles found in standardization or clinical samples, such as attention-deficit/hyperactivity
disorder (ADHD; Mayes & Calhoun, 2006) or reading disability (Fiorello et al., 2006). These patterns
may reflect only small subtest score variations (see Glutting, McDermott, Prifitera, & McGrath, 1994;
Glutting, McGrath, Kamphaus, & McDermott, 1992; Holland & McDermott, 1996), thereby limiting
their discriminant validity. Moreover, this method assumes clinical samples to be homogeneous,
whereas in practice it is commonly found that children identified with such disabilities as ADHD or
reading disability have very diverse cognitive profiles and form distinctive subgroups. Collapsing
them into one clinical group has the effect of attenuating, or even eliminating, statistically significant
and valid cognitive profiles found within the group. The second approach, ipsative analysis, is
especially problematic because disparate abilities are collapsed into a mean score (Hale & Fiorello,
2004), and then g is removed from the analysis by comparing each score to that mean (McDermott,
Fantuzzo, Glutting, Watkins, & Baggaley, 1992).

A third type of profile analysis requires delineation and verification of the examinee’s scores on
validated groups (i.e., factors, scales, or clusters) of subtests as possibly reflecting different cognitive
functions, taking both level and pattern of performance into account (Hale et al., 2007). Advocated in
this article, this form of profile analysis is similar to the methods suggested by Elliott (2007), Hale and
Fiorello (2004), Kaufman (1994), Miller (2007), Sattler (2001), and the authors of the Cattell-Horn-
Carroll (CHC) Cross-Battery Approach (e.g., Flanagan & McGrew, 1997; Flanagan, McGrew, and
Ortiz, 2000; Flanagan & Ortiz, 2001; Flanagan, Ortiz, & Alfonso, 2007; McGrew, 1997; McGrew &
Flanagan, 1998; Woodcock, 1990, 1993) based in part on the massive review and analysis of factor-
analytic studies by Carroll (1993, 1997). The Cross-Battery application of CHC theory has been
challenged (e.g., Watkins, Youngstrom, & Glutting, 2002) and defended (e.g., Ortiz & Flanagan,
2002a, 2002b), with some offering a moderate position for applying CHC theory to clinical practice
(e.g., Fiorello & Primerano, 2005; Hale & Fiorello, 2002). It is worth noting that the apparent
convergence of CHC and current neuropsychological theories (Fiorello, Hale, Snyder, Forrest, &
Teodori, 2008; Hale & Fiorello, 2004) provides crucial construct validity support for both positions.

Similar to the neuropsychological process approach, the Cognitive Hypothesis Testing (CHT;
Hale & Fiorello, 2004) approach to profile analysis is essential practice because neuropsychological
and neuroimaging research has demonstrated that children with disabilities not only have diffi-
culty learning in the classroom, they also have specific learning deficits (Castellanos et al., 2002;
Francis, Shaywitz, Stuebing, Shaywitz, & Fletcher, 1996) that are likely due to differences in brain
structure and/or function (see Basso, Burgio, & Caporali, 2000; Berninger, 2002; Cao, Bitan, Chou,
Burman, & Booth, 2006; Casanova, Christensen, Giedd, Rumsey, Garver, & Postel, 2005; Castellanos
et al., 2002; Collins & Rourke, 2003; Demb, Boynton, & Heeger, 1998; Eden, VanMeter, Rumsey,
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Maison, & Zeffiro, 1996; Fiez & Petersen, 1998; Filipek, 1999; Fine, Semrud-Clikeman, Keith,
Stapleton, & Hynd, 2007; Fleischner, 1994; Geary, Hoard, and Hamson, 1999; Isaacs, Edmonds,
Lucas, & Gadian, 2001; Leonard, Lombardino, Giess, & King, 2005; Mazzocco, 2001; Naglieri &
Bornstein, 2003; Nicholson & Fawcett, 2001; Njiokiktjien, de Rijke, & Jonkman, 2001; Pugh et al.,
2000; Richards et al., 2006; Ruff et al., 2003; Semrud-Clikeman & Pliszka, 2005; Shaywitz, Lyon,
& Shaywitz, 2006; Stein, 2001; Tallal, 2006; Zadina, Corey, & Casbergue, 2006). If verified through
CHT, examining a child’s neuropsychological pattern of performance provides practitioners with
the insight into individual differences in cognition, learning, and behavior essential for accurate
differential diagnosis and effective individualized instruction (Hale & Fiorello, 2004).

Using Empirical Profile Analysis to Predict Math Skills

We do not have a different brain for intelligence, neuropsychological functioning, achievement,
and acting within the environment (Hale et al., 2007). This fact, combined with the evidence cited
above, suggests that empirical profile analysis is warranted and necessary when predicting a child’s
mathematics achievement and other important outcomes. Although children with math learning
disabilities (MLD) may score similarly to peers on global measures, they often show cognitive
strengths and weaknesses (Proctor, Floyd, & Shaver, 2005), consistent with the Individuals with
Disabilities Education Act (IDEA) statutory requirements that affected individuals display a deficit
in the basic psychological processes in the presence of cognitive integrities (Hale, Kaufman, Naglieri,
& Kavale, 2006). Several studies have begun to examine such cognitive patterns of performance,
with results providing a foundation for empirical profile analysis.

For their WISC-III SLD commonality study, Hale et al. (2001) showed that crystallized (Gc),
quantitative/fluid (Gq/Gf), and memory (Gsm-WM) were strong predictors of math computation
skills, but there was some unique visual (Gv) variance and shared variance between Processing
Speed (Gs), Gq/Gf, and Gv. Further subtest analysis in Hale et al. (2002) revealed that most math
computation variance was accounted for by the six WISC-III Verbal and two Processing Speed
subtests, with some contribution by Block Design. The Wechsler Individual Achievement Test
(WIAT) Math Reasoning (MR) results were similar, with measures of Gv and Gq/Gf playing an
even larger role. For the WISC-IV/WIAT-II Math Composite commonality analysis, Hale et al.
(2007) found Gc and Gf to be the strongest predictors, and this predictive validity was enhanced
by their combination with Gsm-WM. Gs provided a substantial, unique contribution, and it shared
variance with other predictors as well.

Also working within CHC theory, Floyd, Evans, and McGrew (2003) used structural equation
modeling to show that Woodcock-Johnson III (WJ III; Woodcock, McGrew, & Mather, 2001)
specific cognitive abilities predicted math achievement better than general cognitive ability in the
standardization data. Similar to earlier large-scale studies (McGrew, Flanagan, Keith, & Vanderwood,
1997), complex relationships among CHC factors and math achievement domains were found
for different age levels (Floyd et al., 2003). They found that Gc, Gf, Gsm, Gsm-WM, and Gs
were moderate to strong predictors, with Long-term Retrieval (Glr) and Auditory Processing (Ga)
demonstrating moderate relationships at younger ages. Gc’s importance increased with age, and
was more related to MR, which would be consistent with the notion that Gc reflects both prior
knowledge and language development/facility (Hale & Fiorello, 2004). Similar to the Hale et al.
(2002) findings, Floyd et al. (2003) found Gf or novel problem solving skills to be consistently
related to math achievement. Gs was related to calculation skills more than MR, and Glr and Ga
were predictive of math achievement for young children. Although Gsm appears to be an important
predictor of math performance, not all children with math difficulties experience deficits in this area
(Proctor et al., 2005). In addition to supporting CHC component analyses over general ability, these
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findings also reflect the dynamic nature of mathematics development during childhood, validating
the need for individual assessment for children with MLD.

Empirical Examination of the Differential Ability Scales

The recently revised Differential Abilities Scales-Second Edition (DAS-II; Elliott, 2007) and its
predecessor are popular measures of intellectual and cognitive functioning among school psychology
practitioners and have excellent technical qualities (Dumont, Willis, & Sattler, 2001; Elliott, 2007;
Platt, Kamphaus, Keltgen, & Gilliland, 1991). The Verbal (Gc), Nonverbal Reasoning (Gf), and
Spatial (Gv) abilities factor structure hypothesized for the DAS and DAS-II Core subtests has
been validated using large standardization samples (Elliott, 1990, 2007); children with cultural,
linguistic, or racial differences (DiCerbo & Barona, 2000; Keith, Quirk, Schartzer, & Elliott, 1999;
Riccio, Ross, Boan, Jemison, & Houston, 1997); and children with developmental and learning
disabilities (Dumont, Cruse, Price, & Whelley, 1996; Elliott, 2001; Gibney, McIntosh, Dean, &
Dunham, 2002; Hughes & McIntosh, 2002; Kercher & Sandoval, 1991; McIntosh & Gridley, 1993;
Shapiro, Buckhalt, & Herod, 1995). The structure is also supported by independent exploratory and
confirmatory factor analysis (Daleo et al., 1999; Dunham, McIntosh, & Gridley, 2002; Keith, 1990).
The DAS-II Introductory and Technical Handbook (Elliott, 2007) provides evidence that the Core
subtest factor structure remains unchanged from the original DAS. In addition, there are two new
Working Memory and Processing Speed factors derived from the Diagnostic subtests, adding to the
clinical utility of this instrument.

Despite the apparent clinical utility of the DAS-II Core and Diagnostic measures, some aca-
demics have used the dubious hierarchical statistical techniques described earlier to admonish
practitioners to interpret only General Conceptual Ability (GCA) scores in predicting academic
achievement (Youngstrom et al., 1999). Kahana et al. (2002) reported that discrepancy or subtest
data did not yield significant improvement beyond GCA in the prediction of achievement domains,
but again, the GCA was force entered into the regression equation first, followed by a dummy-coded
discrepancy variable, thereby violating basic regression requirements because these variables are not
statistically independent (see Hale et al., 2007). Not surprisingly, similar methods provided similar
results when comparing ipsative and normative analysis of DAS subtests (McDermott & Glutting,
1997). This academic group also appeared to show that children with unique DAS profiles do not
differ from matched controls on meaningful outcome criteria, such as special education placement,
academic performance, and behavior ratings (Glutting, McDermott, Konold, Snelbaker, & Watkins,
1998), but these results also suffer methodological problems related to matching participants on GCA
(see Hale et al., 2007). Finally, consistent with the Wechsler studies reported earlier, Kahana et al.
reported that approximately 80% of the DAS standardization sample had one or more statistically
significant between-ability scores, with the authors concluding that profile analysis is unwarranted.
However, this is an illogical conclusion, equivalent to saying that because individual differences in
visual acuity are so common that detailed eye examinations are unwarranted. Instead, this suggests
that cognitive and intellectual diversity are the norm – not the exception – and that this diversity
requires examination of both level and pattern of child performance.

Present Study Purpose

This interpretation debate is not trivial. Many school psychologists (see Pfeiffer et al., 2000)
and neuropsychologists (see Kaplan, 1988; Lezak, 1995; Miller & Hale, in press) routinely analyze
patterns of factor, scale, cluster, or subtest scores to determine individual cognitive strengths and
deficits. If global IQ scores are largely irrelevant and subtests or groups of subtests (e.g., factors,
indices, scales, clusters) yield relevant diagnostic information for typical and clinical populations
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(see Fiorello et al., 2001, 2007; Hale et al., 2001, 2002, 2007), then clinicians should be strongly
encouraged to examine individual cognitive strengths and weaknesses as reflected by patterns of
performance, and verify findings with other data sources in an attempt to achieve concurrent,
predictive, and treatment validity (e.g., CHT; Hale & Fiorello, 2004). Not only can this type of profile
analysis aid in differential diagnosis of learning and other disabilities, and ensure that children with
SLD meet the statutory and regulatory requirements under IDEA (2004), but it could also serve
as a foundation for developing individualized interventions for differentiated instruction following
identification (Fiorello et al., 2006; Hale, 2006; Hale et al., 2006; Hale, Naglieri, Kaufman, & Kavale,
2004; Kavale, Kaufman, Naglieri, & Hale, 2005; Mather & Gregg, 2006). In clinical populations,
subcomponent (i.e., factor/subtests) predictors account for much more achievement variance than
does global intelligence (Hale et al., 2007), with the loss of variance so great that failure to conduct
empirical profile analysis might be considered irresponsible and unscientific.

This regression commonality analysis study was undertaken to examine the unique and shared
variance components among DAS-II CHC factors in the prediction of WIAT-II Numerical Operations
(NO) and Math Reasoning (MR) skills for the normative sample and for children with MLD.
If DAS-II CHC factors contribute mostly shared variance (that is, shared across all factors) in
predicting math achievement scores, then a global ability or GCA interpretation would be warranted.
However, if the underlying CHC factors provided large amounts of unique variance in predicting
achievement domains (suggesting adequate interpretive specificity), or numerous shared variance
components below the global level, then empirical profile analysis would be necessary to examine
the unique strengths and deficits of individual children. It was predicted that unique CHC factor
contributions to math achievement would be substantial across samples, but that different patterns
of unique and shared variance would emerge for the normative and MLD groups, suggesting that
profile analysis beyond global GCA is necessary when examining math achievement competency and
disability.

METHOD

Participants

The participants were drawn from the DAS-II standardization sample of 3,480 children aged
2 years 6 months to 17 years 11 months, described in depth in the DAS-II Introductory and
Technical Handbook (Elliott, 2007). The DAS-II standardization sample was carefully chosen to
be representative of the general U.S. population according to the October 2002 Census for race,
ethnicity, parent education level, and geographic region. The DAS-II/WIAT-II Linking Sample data
of 413 children aged 6 to 17 years included 371 typical children and 42 children identified as having
MLD according to school district and psychometric data (see Elliott, 2007). Although male and
female representation was comparable in the Typical Group (52% female), a majority of the children
in the MLD Group were male (64%). For the Typical Group racial breakdown, 59% were Caucasian,
20% were Latino American, 16% were African American, and 5% were Asian/Other. In the MLD
Group, 52% were Caucasian, 24% were African American, 14% were Latino American, and 10%
were Asian/Other. The Typical Group mean age was approximately 11 years, 6 months (mean
[M] = 11.49, standard deviation [SD] = 3.58), whereas the MLD group was younger on average
(M = 9.69, SD = 2.00). The mean Typical Group DAS-II GCA was solidly average (M = 100.21,
SD = 13.23), but the MLD Group had a low average mean GCA score (M = 89.39, SD = 10.60).
Further information regarding the samples can be found in the DAS-II Introductory and Technical
Manual (Elliott, 2007).
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Instrumentation

The DAS-II (Elliott, 2007) is an individual test of cognitive ability. The School-Age Battery
(ages 7 years through 17 years, 11 months) includes six Core and eight Diagnostic subtests. The
Core subtests yield a GCA score and three subcomponent Cluster scores: Verbal Ability (Word
Definitions [WD] and Verbal Similarities [SI] subtests), Nonverbal Reasoning Ability (Matrices
[MA] and Sequential and Quantitative Reasoning [SQ] subtests), and Spatial Ability (Recall of
Designs [RD] and Pattern Construction [PC] subtests). The subtests have evidence of sufficient
reliability (mean [Item Response Theory]-based reliabilities: WD = .83, SI = .80, MA = .85, SQ
= .92, RD = .87, PC = .96) and considerable evidence of internal and external validity (see Elliott,
2007). The Cluster and GCA scores are reported as standard scores (SS; M = 100, SD = 15).
The Verbal Ability Cluster (VE) primarily measures crystallized intelligence (Gc), the Nonverbal
Reasoning Ability Cluster (NV) primarily measures fluid reasoning (Gf), and the Spatial Ability
Cluster (SP) primarily measures visual-spatial abilities (Gv) (Elliott, 2007). Based on confirmatory
factor analyses reported in Elliott (2007), the three Core Clusters, and three additional Cluster scores
derived from the Diagnostic subtests were used as predictors in this study. Two Diagnostic cluster
scores are provided in the manual – the Working Memory Cluster (WM; Gsm; Recall of Digits
Backward [DB] and the Recall of Sequential Order [SO] subtests) and the Processing Speed cluster
(PS; Gs; Speed of Information Processing [IP] and Rapid Naming [RN] subtests). As in the case
of the Core subtests, the Diagnostic subtests show evidence of good reliability (mean IRT-based
reliabilities: DB = .91, SO = .93, IP = .91, RN = .81). The Visual-Verbal Memory factor (Glr
measure) includes only one subtest, the Recall of Objects-Immediate subtest score (ROI). Although
the Elliott (2007) CFA results suggest separate interpretation of ROI, results should be interpreted
with caution.

The WIAT-II (Psychological Corporation, 2002) is an individual test of academic achievement.
It was standardized on 2,950 students aged 4 to 19 years, and the normative sample closely rep-
resented the October 1998 Census information on race, ethnicity, geographic region, and parent
education level. The mathematics subtests are NO; (a test of math calculation skills) and MR (a test
of math problem-solving skills), and are reported as SS. NO (average split-half reliability = .91)
and MR (average split-half reliability = .92) are reliable and have adequate content-, construct-, and
criterion-related evidence of validity (Psychological Corporation, 2002).

Procedure

The archival DAS-II/WIAT-II Linking Sample and MLD Sample (Elliott, 2007) data sets were
obtained from Harcourt Assessment and uploaded to SPSS 15.0. Descriptive data and correlational
analyses were performed separately for the Typical and MLD groups to develop group profiles.
Multiple regression analyses were performed using the WIAT-II NO and MR subtests as dependent
variables in separate regression equations, and the DAS-II factors (Verbal [VE], Nonverbal Reasoning
[NR], Spatial [SP], Working Memory [WM], Processing Speed [PS], and Verbal-Visual Memory
[VVM]) as predictors. The ROI subtest was converted to a SS to foster interpretability.

Commonality equations were written using standard variance partitioning procedures described
by Pedhazur (1997). This technique allows for the examination of the proportion of dependent
variable variance (i.e., NO and MR scores) that is accounted for by unique and shared predictor
variance (e.g., DAS-II factor scores). To conduct the six-predictor commonality analysis, equations
were entered into a SPSS syntax file using compute commands. For each dependent variable, force-
entry multiple regression equations were computed with all possible combinations of predictors
to acquire the required R2 components for the commonality computations. These R2 values were
entered into a new data file with each being a new variable. The compute statements were applied
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Table 1
Descriptive Statistics for Typical Children and Those with Math Disabilities

Typical Math LD

Measure M SD M SD F p

DAS-II Factors
Verbal 100.49 13.91 95.79 13.88 4.32 .038
Nonverbal Reasoning 100.47 13.24 88.26 10.99 33.14 <.001
Spatial 99.42 13.45 89.48 10.50 21.47 <.001
Working Memory 100.52 13.59 88.74 13.05 28.61 <.001
Processing Speed 101.66 14.51 86.07 14.16 43.79 <.001
Visual-Verbal Memory 98.18 16.23 92.04 18.03 5.30 .022

WIAT-II Math Subtests
Math Composite 102.76 17.85 78.40 11.63 74.53 <.001
Numerical Operations 102.32 16.41 81.29 13.67 64.00 <.001
Math Reasoning 102.70 16.26 79.88 10.97 78.59 <.001

Note. LD: learning disability; DAS-II: Differential Ability Scales – Second Edition; WIAT-II:
Wechsler Individual Achievement Test.

to this new data file to acquire the unique and common variance components of the commonality
analysis. Only commonalities exceeding .01 are reported, as these indicate significant amounts of
interpretable dependent variable variance.

RESULTS AND DISCUSSION

The Typical Group had average DAS-II cognitive factor and achievement scores, but only the
VE and VVM SS values were in the average range for the MLD group, with all other scores low
average (see Table 1). This pattern shows that children with MLD struggle with NR, SP, WM, and
PS, possibly reflecting difficulty with right hemisphere and frontal executive functions, which would
be consistent with Rourke’s (1995) theory that children with MLD have white matter dysfunction
that leads to difficulty with global, holistic, and implicit processing of nonverbal and verbal content
(see Bryan & Hale, 2001).

Typical Group

Typical Group zero order correlations were strong for the DAS-II Clusters and the WIAT-II
math subtest scores (see Table 2). The VE correlations with math achievement were high, indicating
that the expected Gc relationship with math outcomes, but also the NR/Gf and SP/Gv relationships
with math outcomes were strong. MR correlations were relatively higher than those obtained for
NO, except in the area of PS, where the reverse was true.

For the Typical Group commonality analyses (see Table 3), the factorial complexity of the DAS-
II in the prediction of math achievement was clearly evident. DAS-II predictors remarkably accounted
for 46% of NO and 58% of MR variance, which is substantial, especially when one considers that
some response-to-intervention (RTI) proponents argue that intelligence testing is largely irrelevant
(e.g., Reschly, 2005). For both math analyses, there was substantial unique variance (11% for NO;
14% for MR), suggesting some factor specificity for interpretation; whereas only 2% of math variance
could be accounted for by the shared variance among all six predictors. It could be argued that the
Core factor commonality (CVE/NR/SP) is a more appropriate measure of general intelligence, but it
accounted for only 3% of NO and 4% of MR variance. As has been suggested elsewhere (Fiorello
et al., 2001, 2007; Hale & Fiorello, 2004; Hale et al., 2001, 2002, 2006, 2007), these data suggest
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Table 2
Zero-order Correlations for DAS-II Predictors and WIAT-II Math Scores for Typical Group

Measure Numerical Operations Math Reasoning

Verbal .514∗∗ .601∗∗

Word Definitions .482∗∗ .551∗∗

Verbal Similarities .454∗∗ .550∗∗

Nonverbal Reasoning .561∗∗ .615∗∗

Matrices .450∗∗ .487∗∗

Seq. & Quant. Reasoning .566∗∗ .634∗∗

Spatial .549∗∗ .618∗∗

Pattern Construction .543∗∗ .609∗∗

Recall of Designs .426∗∗ .492∗∗

Working Memory .474∗∗ .559∗∗

Recall of Digits–Backward .437∗∗ .482∗∗

Recall of Seq. Order .378∗∗ .474∗∗

Processing Speed .296∗∗ .260∗∗

Speed of Info. Processing .251∗∗ .197∗∗

Rapid Naming .246∗∗ .240∗∗

Visual-Verbal Memory (ROI) .321∗∗ .355∗∗

Note. DAS-II: Differential Ability Scales – Second Edition; WIAT-II: Wechsler Individual
Achievement Test; Seq.: sequential; Quant.: quantitative; Info.: information; ROI: Recall of Objects–
Immediate.

∗∗p < .01.

that practitioners should not emphasize global GCA, and instead interpret factor scores and their
interrelationships in developing hypotheses regarding individual strengths and weaknesses, which
are subsequently evaluated for concurrent, ecological, and treatment validity (e.g., CHT; Hale &
Fiorello, 2004).

For total variance explained, the Core factors explained the most total math variance (range
26% for VE/Gc prediction of NO to 38% for SP/Gv prediction of MR). However, the diagnostic
WM/Gsm factor was also a strong predictor, with unique and shared components accounting for
23% of NO and 31% of MR variance. WM/Gsm shared considerable variance with the VE/Gc
and NR/Gf factors, possibly suggesting that their combination reflects executive control of these
robust Core predictors of math achievement or the working memory necessary for higher level
processing, which is entirely consistent with our previous WISC-III findings (Hale et al., 2002) and
our knowledge of dorsolateral prefrontal cortex functioning (e.g., Lichter & Cummings, 2001; Hale,
Fiorello, & Brown, 2005). Both the PS/Gs and VVM/Glr factors contributed smaller amounts of
variance, with virtually no unique variance, suggesting that they have limited predictive validity of
math performance without examining their relationships with other factors.

For unique variance, the strongest predictors were VE/Gc, reflective of quantitative knowledge
and math fact storage; NR/Gf, necessary for novel problem solving and exploring math algorithms;
and SP/Gv, likely necessary for attention to operands, column alignment in multistep problems, and
estimation skills (see Hale et al., 2002; Mazzocco, 2001). Gc has been a consistent predictor of math
performance (Floyd et al., 2003; Hale et al., 2001, 2002, 2007), but it likely reflects computational
knowledge and language facility, because it is a stronger predictor of the auditory-verbal MR subtest
than the visual-motor NO subtest. As has been shown elsewhere (Floyd et al., 2003; Hale et al.,
2001, 2002), Gf appears to be a strong predictor of math competency, and it is typically deficient in
children with MLD (Hale et al., 2002, 2007; Proctor et al., 2005). Although Gv has limited utility

Psychology in the Schools DOI: 10.1002/pits



DAS-II Predictors of Math Achievement 847

Table 3
DAS-II Factor Predictors of WIAT-II Math Performance for Typical Children

DAS-II Factor/CHC Classification

Component VE/Gc NR/Gf SP/Gv WM/Gsm PS/Gs ROI/Glr

DAS-II/WIAT-II Numerical Operations (R2
Total = .458)

UVE .030
UNR .030
USP .032
UWM .009
UPS .007
UROI .001
CVE/NR .021 .021
CNR/SP .036 .036
CNR/WM .011 .011
CVE/NR/SP .034 .034 .034
CVE/NR/WM .022 .022 .022
CNR/SP/WM .021 .021 .021
CVE/NR/SP/WM .052 .052 .052 .052
CVE/NR/SP/WM/ROI .024 .024 .024 .024 .024
CALL(g) .019 .019 .019 .019 .019 .019

UNIQUE .030 .030 .032 .009 .007 .001
SHARED .234 .284 .269 .216 .080 .102
TOTAL .264 .314 .301 .225 .087 .103

DAS-II/WIAT-II Math Reasoning (R2
Total = .579)

UVE .046
UNR .018
USP .049
UWM .021
UPS .000
UROI .002
CVE/NR .027 .027
CVE/SP .010 .010
CVE/WM .013 .013
CNR/SP .039 .039
CNR/WM .016 .016
CVE/NR/SP .044 .044 .044
CVE/NR/WM .033 .033 .033
CNR/SP/WM .030 .030 .030
CVE/NR/SP/WM .074 .074 .074 .074
CVE/NR/SP/WM/ROI .035 .035 .035 .035 .035
CALL(g) .022 .022 .022 .022 .022 .022

UNIQUE .046 .018 .049 .021 .000 .002
SHARED .315 .360 .333 .291 .067 .124
TOTAL .361 .378 .382 .312 .067 .126

Note. Commonalities < .01 omitted. DAS-II: Differential Ability Scales – Second Edition;
WIAT-II: Wechsler Individual Achievement Test; VE: Verbal Ability; Gc: Crystallized Ability; NR:
Nonverbal Reasoning Ability; Gf: Fluid Reasoning; SP: Spatial Ability; Gv: Visualization; WM:
Working Memory Ability; Gsm: Short-term Memory; PS: Processing Speed; Gs: Speediness; ROI:
Recall of Objects-Immediate; Glr: Long-term Memory Encoding/Retrieval.
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in predicting math performance in typical populations (e.g., Floyd et al., 2003), it predicts math
performance in disabled populations (Hale et al., 2001; Proctor et al., 2005), suggesting that the
underlying psychological processes on Gv subtests are more relevant for predicting math than the
apparent visual/nonverbal content. Consistent with previous research (Floyd et al., 2003; Hale et al.,
2002), unique WM/Gsm demands were not essential for NO performance, but they played a larger
role in MR, attesting to the executive requirements necessary to keep information in memory and
manipulate it when solving math word problems. In contrast to individuals with math difficulties
(Hale et al., 2001, 2007; Proctor et al., 2005), PS/Gs played only a minor role in predicting Typical
Group math performance.

Interestingly, NR/Gf unique variance was less for MR than NO, which at first glance is the
opposite of what would be expected given our knowledge of fluid abilities and quantitative reasoning
(Flanagan, Ortiz, Alfonso, & Mascolo, 2002). However, this pattern makes sense when one examines
the NR/Gf commonalities, where shared variance among NR/Gf and WM/Gsm becomes important.
Because these two DAS-II factors likely reflect right frontal activity (e.g., novel problem solving),
particularly dorsolateral executive functions (e.g., working memory), they must work with each other
to govern more posterior neuropsychological functions reflected in Gc and Gv in the prediction of
MR. In fact, this hypothesis is entirely consistent with the NR/Gf, SP/Gv, and WM/Gsm commonality,
which could reflect frontal (e.g., WM/Gsm-NR/Gf) and right hemisphere (e.g., NR/Gf-SP/Gv)
systems and the white matter integrity known to be critical for math computation and problem-
solving skills (Rourke, 1995). As for the prediction of NO, unique NR/Gf variance could reflect the
sequential processing demands of the Sequential and Quantitative Reasoning subtest (Elliott, 2007)
necessary to carry out math computation steps (e.g., Hale et al., 2002).

The SP/Gv cluster was a stronger predictor of math performance than has been previously
reported (e.g., Floyd et al., 2003), possibly because the Recall of Designs graphomotor requirements
are necessary for written math problems. The SP/Gv results were similar to those obtained in
Hale et al. (2002), where Gv skills played a greater role in predicting auditory-verbal MR than
visual-motor calculation skills, which seems counterintuitive. Although not diagnostic in isolation,
Gv is also a fairly consistent weakness in children with math difficulties or disabilities (Hale
et al., 2001; Proctor et al., 2005). Obviously, this could be related to the global, holistic, and
implicit right hemisphere processing demands often impaired in many children with “nonverbal”
learning disabilities (e.g., Rourke, 1995). However, Pattern Construction, like the WISC-IV Block
Design subtest, is likely related to right (global) and left (local) hemispheric functions (e.g., Schatz,
Ballantyne, & Trauner, 2000), and graphomotor skills are also related to right (e.g., spatial-global) and
left (e.g., detail-directional-motor) hemisphere functions (see Hale & Fiorello, 2004), so interpreting
SP/Gv as a uniform measure of right hemisphere functions would be erroneous. As suggested by
Hale et al. (2001), this consistent finding suggests that the psychological processes tapped by
this cluster (e.g., analysis and synthesis) may be more important in predicting math achievement
than the observable input (e.g., auditory-visual) or output (e.g., verbal-motor) demands, consistent
with the neuropsychological literature that supports interpretation of underlying neuropsychological
processes over observable behaviors (see Hale & Fiorello, 2004).

Higher level commonalities are difficult to interpret (Pedhazur, 1997), but it is interesting
that there was a CVE/NR/SP/WM/VVM. This commonality did not include PS/Gs and it was the only
VVM/Glr commonality (below g) that was significant. Perhaps this commonality reflects the integrity
of the memory system in general, such as hippocampal functioning, or memory retrieval of math
facts from long-term memory, which is thought to be primarily a right frontal function (see Tulving
& Markowitsch, 1997).

Similar to previous study results (e.g., Floyd et al., 2003; Geary & Hoard, 2001; Hale et al.,
2001, 2002, 2007; Proctor et al., 2005), these findings suggest that multiple neuropsychological
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Table 4
Zero-orderCcorrelations for DAS-II Predictors and WIAT-II Math Scores
for Children with Math Disabilities

Numerical Operations Math Reasoning

Verbal .354∗ .456∗∗

Word Definitions .367∗ .462∗∗

Verbal Similarities .255 .354∗

Nonverbal Reasoning .263 .418∗∗

Matrices .214 .331∗

Seq. & Quant. Reasoning .259 .405∗∗

Spatial .308∗ .652∗∗

Pattern Construction .297 .605∗∗

Recall of Designs .242 .546∗∗

Working Memory .318∗ .425∗∗

Recall of Digits-Backward .279 .249
Recall of Seq. Order .216 .455∗∗

Processing Speed .478∗∗ .247
Speed of Info. Processing .412∗∗ .328∗

Rapid Naming .418∗∗ .111
Visual-Verbal Memory (ROI) .321∗ .261

Note. DAS-II: Differential Ability Scales – Second Edition; WIAT-II: Wechsler
Individual Achievement Test; Seq.: sequential; Quant.: quantitative; Info.: informa-
tion; ROI: Recall of Objects-Immediate.

∗p < .05; ∗∗p < .01.

functions involving frontal, left, and right hemisphere systems are necessary for math performance
and that these functions differ in the prediction of math computation and reasoning skills, consistent
with the cognitive and neuropsychological literature on math competence and disability (e.g., Geary
& Hoard, 2001; Hale & Fiorello, 2004; Hale et al., 2002; Mazzocco, 2001; Proctor et al., 2005).
In addition, commonalities crossed over the traditional verbal-nonverbal dichotomy, attesting to the
value of exploring the underlying psychological processes associated with these measures instead
of focusing solely on the stimulus-input and response-output during psychological evaluation (Hale
& Fiorello, 2004).

MLD Group

Table 4 presents the zero-order correlations among the DAS-II and WIAT-II math scores for
children with MLD. Although math subtests were more related to Core than to diagnostic subtests,
several were nonsignificant, and NO correlations were particularly low. Unlike the Typical Group
correlations, which tended to be consistent across math subtests, some interesting differences were
found for the MLD Group. For instance, the Rapid Naming subtest correlation was considerably
stronger for NO than MR, but the opposite was true for Recall of Sequential Order. An examination
of DAS-II factor versus subtest correlations with math scores revealed an interesting phenomenon –
namely, that correlations tended to be lower for factors than for subtests, which is not uncommon in
disabled populations (see Hale et al., 2007). For instance, the PS/Gs factor correlation with the MR
was nonsignificant (r = .25), whereas the PS/Gs Speed of Information Processing subtest correlation
was significant (r = .33) because the other PS/Gs subtest, Rapid Naming, had a very low correlation
with MR (r = .11).

This apparently perplexing finding is further demonstrated in Table 5, where forced entry
multiple regression analyses revealed that the most variance is accounted for by the 11 subtests as
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Table 5
Total Math VarianceAaccounted for by Global, Composite, and Subtest Predictors

Numerical Operations Math Reasoning

Predictor Variance %Loss Variance %Loss

Typical Group
Subtests .493 — .620 —
6 Factors .458 −7% .579 −7%
GCA .428 −13% .541 −13%

Math Learning Disability Group
Subtests .387 — .541 —
6 Factors .326 −16% .499 −8%
GCA .171 −56% .431 −20%

Note. %Loss = Amount of math variance lost as compared to the most variance explained
by the Differential Ability Scales – Second Edition (DAS-II) predictor combinations. GCA:
General Cognitive Ability.

predictors, followed by the factor scores, and finally the GCA, with decrements especially evident for
the MLD Group. For instance, only 16% of the NO variance is lost when one interprets factors over
subtests in this group, but more than half (56%) of the variance is lost when one interprets the GCA
only. This dramatic loss of variance was also found in the Hale et al. (2007, 2008) WISC-IV SLD
study, suggesting that the predictive validity of intellectual and/or cognitive measures is significantly
reduced when one interprets global IQ over subcomponent scores. As a result, collapsing disparate
subtest scores into composites may obscure important individual differences that may have diagnostic
implications. Although subtest-level interpretation is questionable without corroborating evidence,
including data obtained through hypothesis-testing measures and environmental sources (e.g., CHT;
Hale & Fiorello, 2004), these data suggest that consideration of differential processing demands on
subtests may be informative for children with MLD if hypotheses derived from them are substantiated
and validated over time. It should be noted that the DAS-II subtests were developed to have high
reliability and specificity (even within their respective Clusters) (Elliott, 2007), so it is perhaps not
surprising that they should show effects such as those reported here.

For the MLD commonality analyses (see Table 6), higher order commonalities and R2
T otal

values were lower than those obtained for the Typical Group, perhaps due to the level (i.e., factor)
of interpretation noted in Table 5. For NO and MR, the unique predictor contributions totaled 16%
and 20%, respectively, higher than the results found for the Typical Group, but only 1% of math
variance was explained by the six-way commonality (g) for both NO and MR. Even the CVE/NR/SP,
which could be considered as an alternative measure of g, accounted for only 3% of the MR and
virtually none of the NO variance (CVE/NR/SP = .004).

Consistent with previous research on children with SLD (e.g., Hale et al., 2007, 2008), DAS-II
predictor relationships with math outcomes were different for children with MLD than for typical
children, suggesting that these children experience developmental deficits that require individualized
instruction, not similar strategies at greater intensities, as has been suggested by some RTI advocates
(e.g., Barnett, Daly, Jones, & Lentz, 2004; Reschly, 2005). For instance, whereas NR/Gf, SP/Gv, and
WM/Gsm processes, presumed to be related to right hemisphere and frontal lobe functioning (see
Hale & Fiorello, 2004) played an important role in Typical Group NO performance, they contributed
little to the prediction of MLD Group NO performance. From a neuropsychological perspective,
these findings are interpreted to indicate that, when solving math problems, typical children are
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Table 6
DAS-II Factor Predictors of WIAT-II Math Performance for Children with
Math Disabilities

DAS-II Factor/CHC Classification
Variance
Component VE/Gc NR/Gf SP/Gv WM/Gsm PS/Gs ROI/Glr

DAS-II/WIAT-II Numerical Operations (R2
Total = .326)

UVE .042
UNR .007
USP .000
UWM .005
UPS .096
UROI .008
CVE/PS/PS .014 .014
CPS/ROI .020 .020
CWM/PS/ROI .015 .015 .015
CALL(g) .011 .011 .011 .011 .011 .011

UNIQUE .042 .007 .000 .005 .096 .008
SHARED .083 .062 .095 .096 .132 .095
TOTAL .125 .069 .095 .101 .228 .103

DAS-II/WIAT-II Math Reasoning (R2
Total = .499)

UVE .042
UNR .005
USP .132
UWM .017
UPS .001
UROI .001
CVE/SP .060 .060
CNR/SP .031 .031
CSP/WM .023 .023
CVE/NR/SP .031 .031 .031
CNR/SP/WM .034 .034 .034
CSP/WM/ROI .010 .010 .010
CVE/NR/SP/WM .018 .018 .018 .018
CALL(g) .011 .011 .011 .011 .011 .011

UNIQUE .042 .005 .132 .017 .001 .001
SHARED .166 .170 .293 .163 .060 .067
TOTAL .208 .175 .425 .180 .061 .068

Note. Commonalities < .01 omitted. DAS-II: Differential Ability Scales – Sec-
ond Edition; WIAT-II: Wechsler Individual Achievement Test; VE: Verbal Ability;
Gc: Crystallized Ability; NR: Nonverbal Reasoning Ability; Gf: Fluid Reason-
ing; SP: Spatial Ability; Gv: Visualization; WM: Working Memory Ability; Gsm:
Short-term Memory; PS: Processing Speed; Gs: Speediness; ROI: Recall of Objects-
Immediate; Glr: Long-term Memory Encoding/Retrieval.

much more likely to use multiple brain areas simultaneously than are children with MLD. During
math performance, children with MLD might rely on specific cognitive functions or strategies (e.g.,
finger counting instead of retrieving math facts) (Geary et al., 1999). They might also have difficulty
integrating different brain functions via the corpus callosum (Smith & Rourke, 1995) and/or have
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general white matter dysfunction commonly reported in children with MLD (Rourke, 1995), which
would be consistent with their poor performance on NR/Gf and SP/Gv clusters.

For math computation skills, the children with MLD primarily used VE/Gc and PS/Gs skills,
but only the former factor was in the average range relative to normative data. Certainly, the VE/Gc
relationship is expected, as prior quantitative knowledge and overall left hemisphere functions are
related to acquisition of math facts and algorithms (e.g., Flanagan et al., 2002; Floyd et al., 2003;
Hale & Fiorello, 2004; Hale et al., 2001, 2002, 2007), but the PS/Gs findings are at first somewhat
perplexing given the relative lack of importance in Typical Group math performance. Similar PS
findings for children with SLD have been reported using the Wechsler scales (Calhoun & Mayes,
2005; Hale et al. 2001, 2007), so this interesting finding appears to be consistent across instruments
and samples.

Perhaps these VE/Gc and PS/Gs findings combined suggest that children with MLD are mostly
reliant on what they know, and do not attempt to solve (or are unsuccessful at solving) more complex
problems (e.g., Gf) beyond their very low level of math competency. Given their lower mean PS/Gs
scores, this could suggest that children with MLD have difficulty quickly and efficiently accessing
math facts and algorithms, and this interferes with their success on multistep tasks. As speeded
performance is related to automaticity, this finding would also be consistent with the frequent
observation that these children use more immature calculation strategies (Geary & Hoard, 2001).
This finding combined with the absence of Gf and Gsm-WM variance in the MLD group may
indicate that children with MLD have difficulty carrying out sequential computation steps in math
algorithms, and doing so quickly and efficiently. In fact, PS measures may have more to do with
processing and decision speed than speeded motor performance (e.g., Kennedy, Clement, & Curtiss,
2003), which would be related to cingulate and cerebellar functions (see Ivry, 1997; Lichter &
Cummings, 2001), not motor ones. Another possibility is that PS tasks in general are a sign of the
overall integrity of brain functioning (e.g., Calhoun & Mayes, 2005; van der Heijden & Donders,
2003). These hypotheses fit nicely with the assumption that children with MLD have difficulty
integrating different brain systems and functions described earlier, and attest to the importance
of teaching multistep computation skills, math fact and algorithm knowledge to automaticity, and
problem-solving skills (e.g., Gf, inductive and deductive reasoning) to children with MLD.

The SP/Gv unique and shared variance components are noticeably absent for visual-motor
NO performance in children with MLD, but were important for predicting auditory-verbal MR
performance, again suggesting that psychological processes are more important than observable
input or output demands (Hale & Fiorello, 2004; Hale et al., 2006, 2007, 2008). This might indicate
that some children with MLD attempt to solve math word problems by visualizing the content, but
have difficulty using perceptual analysis and synthesis skills successfully to translate verbal content
to written algorithms for subsequent problem solving, which would be consistent with the Hale
et al. (2001) findings where Block Design predicted word problem performance. As SP/Gv shared
variance with Gf for the MLD group, both of which were below average, the combined deficit results
in poor math problem-solving skills (Gv for analysis and synthesis, Gf for problem solving). As
a result, working memory demands would be high as students attempt to retrieve linguistic, math
fact, and math algorithm information from long-term memory, which would be consistent with the
CSP/WM/POI and CVE/NR/SP/WM MR findings.

IMPLICATIONS

A growing body of evidence supports a multifactorial representation of (neuro)psychological
processes, not a unitary global score representative of a child’s intellectual potential (Fiorello
et al., 2007; Hale et al., 2007, 2008). This evidence, combined with widespread criticism of ability-
achievement discrepancy (e.g., Hale et al., 2006), has led many evaluators to abandon the discrepancy
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approach for determining SLD. Although some authors have advocated using an RTI approach to
determine SLD (Reschly, 2005), nonresponsiveness can be the result of many possible causes,
only one of them being SLD (Hale, 2006; Mather & Gregg, 2006). In addition, this approach
does not address the IDEA SLD definition, one that requires identification of a child’s specific
(neuro)psychological processing deficits that, in the presence of other processing integrities, resulted
in the SLD (Fiorello et al., 2006; Hale et al., 2006).

This study was an attempt to explore these processing integrities and deficits in children with
MLD and compare their findings to those of typical children. Given the complexity of findings,
and differences between groups, this study demonstrates that children with MLD may need spe-
cific instruction in math problem solving (e.g., fluid reasoning), carrying out computational steps
(e.g., sequential processing and working memory), analysis and synthesis of math word problems
(e.g., spatial-holistic processes), learning and accessing math facts and algorithms (e.g., long-term
memory encoding, storage, and retrieval), efficiency in problem solving (e.g., fluency and automatic-
ity), or some combination of these processes, depending on the child. This focus on remediating
(neuro)psychological processes associated with math competency, or using compensatory techniques
to overcome processing deficits, could lead to better math performance for children with MLD (Hale
& Fiorello, 2004).

It is the pattern of performance that can guide idiographic interpretation and lead to individ-
ualized intervention efforts for children with MLD, and this information is avoided or minimized
if practitioners focus solely on the child’s overall level of performance or GCA. Given the findings
reported here, including the substantial loss of predictive validity when global scores are interpreted
(e.g., Hale et al., 2007, 2008), it is clearly time to move beyond global score interpretation for
children with high incidence disabilities (Fiorello et al., 2007), as this merely reifies a construct
that is of little use in clinical practice (Fiorello et al., 2001). Practitioners should “just say no”
to the “one size fits all” approach to cognitive, neuropsychological, and academic assessment and
intervention suggested by some RTI proponents (e.g., Barnett et al., 2004), as sufficient data exist
to warrant the valid use of empirical profile analysis, especially if one ensures that results have
sufficient concurrent, ecological, and treatment validity using the CHT model (Hale & Fiorello,
2004). Although systematic RTI efforts should be undertaken for any child with learning difficulties,
nonresponders should be provided with a comprehensive evaluation using well-standardized tools
such as the DAS-II in an attempt to delineate the child’s (neuro)psychological processing assets and
deficits. Not only will this ensure that IDEA statutory and regulatory requirements are met before
SLD identification (e.g., Hale et al., 2006), but it will also provide a foundation from which to
develop individualized interventions designed to meet the needs of children with MLD.
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