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APPLIED PSYCHOMETRICS 101:   

#10:  “Just say no” to averaging IQ subtest scores 

 

The publishers and authors of intelligence test batteries provide norm-based 

composite scores based on two or more individual subtests.  In practice, 

clinicians frequently form hypotheses based on combinations of tests for which 

norm-based composite scores are not available.  In addition, with the 

emergence of Cattell-Horn-Carroll (CHC) theory as the consensus 

psychometric theory of intelligence, clinicians are now more frequently 

“crossing batteries” to form composites intended to represent broad or narrow 

CHC abilities.  Beyond simple “eye-balling” of groups of subtests, clinicians at 

times compute the arithmetic average of subtest scaled or standard scores 

(pseudo-composites).  This practice suffers from serious psychometric flaws 

and can lead to incorrect diagnoses and decisions.  The problems with pseudo-

composite scores are explained and recommendations made for the proper 

calculation of special composite scores. 
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Psychologists typically use more than one type of test to measure a specific cognitive ability (e.g., 

working memory capacity, general knowledge, or visualization). Relying on a single test is dangerous 

because it is hard to determine whether a person’s performance is due to the ability that the test is 

theoretically intended to measure or if the performance was influenced by some highly specific aspect of 

the test, such as the test format. Measuring the targeted ability with multiple tests of differing formats 

allows clinicians to distinguish between performance that is consistent across tests measuring the same 

ability and performance that differs significantly depending on the type of test format. 

A composite score is formed by the sum (or weighted sum) of two or more tests, typically called subtests.
1
 

This sum is then transformed into a readily interpretable standard score (e.g., scaled scores, index 

scores, and T-scores). Not only is a composite score generally more reliable than the subtest scores it 

comprises, it is typically more strongly correlated with the theoretical construct it operationalizes than any 

of the individual subtests in the composite. In other words, composite scores are usually more reliable 

and more valid that the individual subtests used to calculate the composite. 

Most of the composite test scores used by psychologists are suggested by the test’s publisher. For 

example, the Wechsler batteries include composite scores such as the Full Scale IQ or the Verbal 

Comprehension Index. In contemporary intelligence test batteries (e.g., WISC-IV, WAIS-IV, SB5, DAS-II, 

KABC-II, and WJ-III) composite interpretative indices are most often based on evidence from factor 

analytic research. That is, subtests which correlate more highly with each other than with other subtests 

in the test battery are assumed to measure a common construct. This construct is operationalized by a 

composite score formed from the highly correlated subtests.  

Test publishers do not provide means to calculate composite scores for all possible combinations of 

subtests. Most combinations of subtests are not particularly useful but some combinations of subtest 

scores omitted by test publishers are of great interest to clinicians. For example, The WAIS-IV Working 

Memory Index is formed from Digit Span and Arithmetic. Many clinicians are reluctant to use the 

Arithmetic subtest as a measure of working memory capacity since it also measures quantitative 

reasoning (Phelps, McGrew, Knopik, & Ford, 2005). Replacing the Arithmetic subtest with the Letter-

Number Sequencing subtest provides a composite score with less conceptual ambiguity. That is, a 

composite of Digit Span and Letter-Number Sequencing is a more direct measure of working memory 

capacity. Unfortunately, this composite is not among the composite scores included in the official WAIS-IV 

                                                      
1
 Most test batteries refer to individual tests as subtests, although this is not uniform.  The WJ III battery 
refers to individual tests as tests, and includes some tests that are comprised of two to three subtests, 
which are smaller measures for which derived scores are not provided. 
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scoring procedures.  Clinicians must go to extra efforts to calculate this new WAIS-IV working memory 

composite properly. 

Informal composites (composite scores without official sanction from test publishers) have an important 

place in the development of clinical procedures for test interpretation. A major feature of Alan Kaufman's 

(1979) "intelligent testing" philosophy is the process of clinicians generating hypotheses about an 

individual’s pattern of strengths and weaknesses, often based on combinations of two or more tests for 

which the published cognitive test battery does not provide norm-based scores.  Although the clinical 

intelligence test interpretation literature sometimes provides statistical equations for generating an 

approximate standard score for a clinical grouping of individual tests, this typically has been the 

exception. 

Although the practice is widely recognized as suboptimal, clinicians often create composites by simply 

averaging the subtests included in the informal composite. Sometimes the “averaging” is done with the 

just the eyes (e.g., “These three scores are in the low average range so the ability they all measure in 

common is also in the low average range.”). Such practices may suffice for the early stages of the 

interpretation process when the clinician is simultaneously mentally juggling alternative explanations.  At 

this formative stage in interpretation it would be burdensome to laboriously calculate each composite 

score considered. However, when the final interpretation is presented, the scores should be as accurate 

as possible. Unfortunately, many clinicians mistakenly believe that their averaging procedures are 

sufficiently accurate to spare them the effort of calculating true composite scores. Clinicians are often 

unaware of the counterintuitive features of composite scores, such as the fact that a composite score can 

be higher (or lower) than any of the subtests that comprise it, sometimes by a wide enough margin to 

alter the interpretation substantially. 

Problems with Pseudo-Composite Standard Scores 

 

One of the benefits of the adoption of the CHC theory of intelligence as the consensus psychometric 

framework by which contemporary cognitive ability test batteries are designed and interpreted (Keith & 

Reynolds, 2010; McGrew, 2009; Netwon & McGrew, 2010; Schneider & McGrew, 2011) is that clinicians 

are now able to combine information within and between test batteries to form theoretically informed 

composite scores. For example, the WISC-IV has only one subtest (Block Design) that is a strong and 

unambiguous measure of the CHC construct Gv (General Visual-Spatial Processing). Clinicians using the 

WISC-IV are able to select other strong and unambiguous measures of Gv in other batteries (e.g., KABC-

II Triangles, DAS-II Pattern Construction, SB5 Nonverbal Visual-Spatial Processing, or WJ III Spatial 

Relations) to form a more reliable and valid composite score measuring Gv. Similarly, even within the 

same battery, users often find it necessary to create informal cluster composites.  An example would be 

combining the WJ III NU Retrieval Fluency and Rapid Picture Naming tests into a composite score to 

estimate the speed at which semantic information stored in long-term memory can be accessed. Another 

reason to use informal composites within the same battery is to take advantage of relevant information 

from routinely administered supplemental subtests. For example, the WISC-IV Verbal Comprehension 

Index consists of the Similarities, Vocabulary, and Comprehension subtests. However, the WISC-IV 

includes two additional subtests, Information and Word Reasoning, that also measure crystallized 

intelligence (Gc). There is no good reason to use a three-subtest composite when a more reliable and 

valid five-subtest composite is available. 

 

Although combining two or more individual tests within or across batteries is a defensible practice within 

the context of the clinical "intelligent" hypothesis formation, creating composites by averaging scores 

introduces unnecessary measurement error. For most individuals tested the measurement error is small 
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and does not result in serious distortion of the interpretation process. Unfortunately, most people referred 

for evaluations are not like the majority of the people in the population. They are typically referred for 

testing due to discrepant cognitive or achievement abilities.  Worse, the procedure of averaging subtest 

scores creates the most measurement error in the cases in which accuracy matters most: when the 

scores are extreme and there is a high-stakes decision to be made based on strict "bright line" eligibility 

or diagnostic classification criteria. 

 

The core problem with averaged pseudo-composites is that the average of individual subtest SS’s does 

not have the same standard deviation as the scores being averaged.  The standard deviation is different 

because averaged pseudo-composites fail to account for the intercorrelations of the subtests being 

averaged. Scores with different standard deviations are not on the same scale and are not directly 

comparable. The problem is particularly insidious because the two types of scores seem to fit together 

naturally and thus, the interpretive errors caused by averaged pseudo-composites are easily overlooked. 

 

The mathematics of composite scores was worked out over a century ago by a number of statisticians, 

including Spearman (1904). The problem inherent in averaged pseudo-composite scores was vividly 

illustrated in an influential article in the Journal of Consulting Psychology by Tellegen and Briggs (1967). 

The lasting influence of this article may have something to do with its memorable title "Old wine in new 

skins:  Grouping Wechsler subtests into new scales."  Tellegen and Briggs presented formulas for 

calculating psychometrically correct informal composite scores (see the Appendix for a more user-friendly 

formula).  These equations properly account for the subtest correlations (and thus, indirectly the reliability 

of subtest scores) so that the composite score is converted into a readily interpretable standard score. 

 

Problems with Averaged Pseudo-Composites:  Real-Word Demonstration 

 

Rather than first presenting mathematical explanations and equations that demonstrate the problems with 

averaged pseudo-composites, the problem is demonstrated here with plots of “real” norm-based 

composites and averaged pseudo-composites derived from the WJ III NU standardization sample 

(McGrew & Woodcock, 2001; Woodcock, McGrew, Schrank, & Mather, 2001, 2007). 

 

The following steps were implemented for each specific composite score comparison.  These steps were 

completed with the subjects from the WJ III NU standardization sample. Although these steps refer to the 

Gv composite, analogous procedures were implemented with other composites. 

 

1. All members of the WJ III NU standardization sample were identified for whom age-based 

Visual Processing (Gv) cluster scores were available.  

 

2. A pseudo-composite for the Gv was calculated from the arithmetic average of each norm 

subject’s Spatial Relations and Picture Recognition SS's. That is, 

 

 

Pseudo-Gv= 
Spatial Relations SS + Picture Recognition SS

2
 

 

3. All WJ III NU norm subjects were sorted from lowest to highest based on their real norm-

based Gv SS.  Subjects were then grouped into successive blocks of 50 subjects each.  For 

each block of 50 subjects, the mean real Gv scores and pseudo-Gv scores were calculated. 

This reduction of the number of data points was completed to make the graphs easier to 

interpret.  



 
 

 

4. Each subject’s pseudo-

These real-pseudo-Gv difference scores were plotted as a histogram

 

5. The real and pseudo-Gv

with the real Gv values on the 

weighted smoother was then applied to the data points.  A linear (1

superimposed on the plot. 

 

 

Because both the real and pseudo-Gv scores are approximately normally distributed, the difference 

between them is also approximately normally distributed (See Figure 1). 
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Figure 1:  Histogram of WJ III 
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-Gv score was subtracted from the subjects’ respecti

difference scores were plotted as a histogram (See Figure 1).

Gv scores (for each block of 50 sorted subjects) values were plotted 

values on the x-axis and the pseudo-Gv values on the y-axis.  The distance

weighted smoother was then applied to the data points.  A linear (1-1) function line was then 

superimposed on the plot.  

Gv scores are approximately normally distributed, the difference 

between them is also approximately normally distributed (See Figure 1). The mean difference score 

) and the SD of the difference score distribution is 3.2 points.  This means that 

68% of the WJ III NU norm sample subjects displayed differences between their real/pseudo

3.2 to +3.2 (a range of 6.4 SS difference points).  About 95 % of the WJ III NU 

sample subjects displayed real/pseudo-Gv SS differences from approximately -6.4 to +6.4

SS difference points).  The real/pseudo-Gv difference scores ranged from 

14.2) to +15 points—a range of 29 points! 

 

Figure 1:  Histogram of WJ III the SS Differences between Real and Pseudo-Gv

The fact that the mean difference between the real and pseudo-Gv scores is approximately zero may, at 

Gv is an unbiased estimate of real Glr. Not so! The differences between 

SS differences vary systematically as a function of ability level o

Figure 2 presents the information described in # 5 above.  If the simple arithmeti

Picture Recognition SS's were an accurate score, as represented by their real 

scores, one would expect the plotted values to fall on the perfect linear regression line 
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The results presented in Figures 1 and 2 leads to the obvious conclusion that
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Why? 

 

The fact that real composites are more extreme (i.e. further from the population mean) than averaged 

pseudo composites is difficult to gra
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superimposed on the plot.  Instead, one observes a near linear smoothed function that rotates at the real 

SS (y-axis) pivot point (where both equal 100).  Values to the left

the desirable linear target line.  This means that the differences between real 

SS's systematically (become higher than the real score) the lower a subject scores on the 

.  Conversely, the opposite trend is observed to the right of the pivot point.  
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Figure 2:  Plot of Real and Pseudo-Gv Composite Scores 
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accurate estimates of an individual’s real norm-based composite scores

The fact that real composites are more extreme (i.e. further from the population mean) than averaged 

pseudo composites is difficult to grasp. Broadly speaking, it occurs because it is more unusual to be 

extreme on multiple dimensions than it is to be extreme on only one dimension. For example, there are 

few extremely tall people. There are few people with extremely good hand-eye coordination
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even fewer people who are extremely tall AND have extremely good hand-eye coordination. If the two 

variables were combined into a composite score (perhaps as a predictor of basketball talent), a person 

who is three standard deviations above the mean on both variables would be higher than three standard 

deviations of the mean on the composite score because the combination of two rare traits is very rare 

indeed. Consider what it would mean in this case if the composite score equaled the averaged pseudo-

composite score. It would mean that all of the people in the top percentile of height are also in the top 

percentile of hand-eye coordination, something that is plainly not in accordance with reality. 

 

There are three factors that influence the discrepancy between real and pseudo-composites. The first, 

mentioned previously, is that the more extreme an individual’s subtest scores are (i.e., the more distant 

from the population mean), the more inaccurate the averaged pseudo-composite score becomes.  

 

The second factor that influences the inaccuracy of averaged pseudo-composites was noted by McGrew 

and Flanagan (1998): 

 

 

The failure of a normed cluster score to equal the arithmetic average of the individual tests that 

make up the cluster is related directly to the magnitude of the intercorrelations and the number of 

tests in the cluster (Paik & Nebenzahl, 1987).  The lower the intercorrelations between the tests 

that contribute to a cluster score, the more extreme will be the difference between a cluster score 

that is 'normed' and a cluster that is based on the arithmetic average of tests.  The only time that 

a cluster standard score will equal the average of the individual tests that make up the cluster is 

when all the subtests of the cluster are correlated perfectly (see Paik & Nebenzahl, 1987, for 

details) (p. 413). 

 

 

Figure 3, which is the comparable figures for the WJ III NU Gf (Fluid Reasoning) composite score, 

demonstrates the importance of incorporating information regarding the known correlation between 

measures in the appropriate calculation of a valid averaged pseudo-composite score.   

  



 
 

Figure 3:  Histogram of WJ III 

 

 

The range of the differences between 

over- and under-estimation (as a function of a person’s real Gf score, see Figure 4) is considerably

smaller than for the Gv composite (see Fig
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:  Histogram of WJ III the SS Differences between Real and Pseudo-Gf 

 

the differences between real and pseudo-composite scores (Figure 3) and the amount of 

estimation (as a function of a person’s real Gf score, see Figure 4) is considerably

than for the Gv composite (see Figure 4).  Why?   
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Figure 4:  Comparison Plots of Real and P
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Figure 4:  Comparison Plots of Real and Pseudo-Gf (bottom graph) and Pseudo

Composite Scores 
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The correlation across the complete WJ III NU norm sample between the two tests included in the WJ III 

NU Gf cluster (Concept Formation and Analysis-Synthesis) is .56, while the correlation between the two 

tests included in the WJ III NU Gv cluster is .17.  The weaker the correlation between tests that comprise 

a composite the greater will be the range of real/pseudo-composite differences and the greater the 

degree of over- (below average) and under-estimation (above average) that will be present in the 

averaged pseudo-composite.   

 

The third factor that influences the inaccuracy of averaged pseudo-composites is the number of subtests 

in the composite. The more subtests in the composite, the more inaccurate the averaged pseudo-

composite.
2
 For example, as seen in Figures 5 and 6, the 7-subtest averaged pseudo-composite 

analogous to the WJ III NU General Intellectual Ability (GIA) cluster, is even more inaccurate than the 2-

subtest averaged pseudo-composites in Figure 4.   

 
Figure 5:  Histogram of WJ III the SS Differences between Real and Pseudo-GIA-Std Composites 

 

                                                      
2
 This is a very bad reason to avoid composites with many subtests! They are typically more reliable and 
valid than composites with fewer subtests. 
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Figure 6:  Plot of Real and Pseudo-GIA Composite Scores 

 

 

 

 

 

In summary, if � is an individual’s composite score and �� is the corresponding averaged pseudo-
composite score, the difference between them  �� � ��� is influenced by three factors. 
 

1. ��� � �� = The extremity of the pseudo-composite score (i.e., its distance from the population 

mean �) 
2. 	� = The average intercorrelation between the subtests in the composite.  

3. 
 = The number of subtests in the composite 

 

As shown in the Appendix, these three factors influence the inaccuracy of an averaged pseudo-

composite, as can be seen in this formula: 

 

� � �� � ��� � �� � 
1 � 	��
 � 1� � 1� 
 

Figure 7 shows which combinations of k and r will make an averaged pseudo-composite inaccurate by 5 

index score points or more. 
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Figure 7:  Combinations of Average Subtest Intercorrelations and Number of Subtests in the 

Composite that Produce Inaccurate Averaged Pseudo-Composite Scores 

 

 

Figure 8 shows the factor by which the averaged pseudo-composite score is discrepant from the real 

composite score. For example, the figure shows that for an 8-subtest composite score in which the 

subtests have an average correlation of 0.3, the composite score is 1.6 times more extreme than the 

averaged pseudo-composite score (in terms of both scores deviations from the population mean). 

Suppose that the averaged pseudo-composite is 80. Its deviation from the population mean is 80 – 100 = 

-20. The composite score’s deviation is 1.6 times -20, which equals -32. Adding the population average 

(mean) back again yields a composite score of 68. Thus, the averaged pseudo-composite score is 

inaccurate by 80 – 68 = 12 points. 
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Figure 8:   The Factor by Which Averaged Pseudo-Composite Deviations Differ from Real 

Composite Deviations as a Function of the Average Intersubtest Correlation and the Number of 

Subtests in the Composite Score 
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A Complimentary Explanation of “Why?” 

 

It is sometimes helpful to understand a phenomenon in two different modalities, especially when the 

phenomenon resists accurate conceptualization (as is the case here). It is not intuitive that a composite 

score will be more extreme than its accompanying averaged pseudo-composite score. It is also not 

immediately apparent that the degree of difference between the two scores decreases with subtests that 

are more correlated. To help guide the intuition to grasp the nature of the phenomenon more accurately, 

a geometric representation of composite scores is presented here.  

 

Imagine that Subtest X and Subtest Y form a composite score. Subtest X’s score is plotted on the X-axis 

and Subtest Y’s score is plotted on the Y-axis. In Figure 9, Subtest X and Subtest Y both equal 130. The 

lengths of the red and blue vectors represent the deviations from the population mean of 100. If subtests 

X and Y are uncorrelated, the X- and Y-axes are orthogonal, meaning that they meet at a right angle. 

However, if subtests X and Y are correlated, we must rotate the Y-axis so that the angle (θ) between the 

axes is equal to the arccosine of the correlation. That is, cos(θ) = rXY. This may seem like an odd thing to 

do but it is often done by statisticians dealing with correlated variables (e.g., in factor analysis, oblique 

rotations are quite common). 

 

The length of the purple vector is equal to how far the real composite score is from the population mean 

of 100. Because subtests X and Y are equal in this case, their scores also equal the averaged pseudo-

composite. Thus, it is can be seen that as the correlation between X and Y increases from 0 to 0.9, the 

length of the purple vector becomes more like the deviation of the averaged pseudo-composite from the 

population mean of 100. Specifically, when the subtest scores are 130, the composite score is 142 when 

the correlation is 0 and 131 when the correlation is 0.9. 

 

Essentially what is happening is that the sum of X and Y is being rescaled to the same metric as the X- 

and Y-axes. This is precisely what a composite score is: a transformed sum that is interpreted on the 

same scale as its parts.  

 

There are a number of other very interesting phenomena that are elucidated by a geometric approach to 

composite scores—where difference scores are located in the graph, the analogy to oblique rotations in 

factor analysis, and the generalization of the two-dimensional plots depicted here to multidimensional 

space. However, we will not explore these issues here. 
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Figure 9:  A Geometric Representation of How the Correlation between Subtests Alters the 

Relationship between Subtest Scores and Composite Scores 
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Comments on the “Only-When-Less-Than-1-SD” rule-of-thumb solution 

 

Finally, some have suggested an informal rule to limit the potential error in the calculation of averaged 

pseudo-composites: only create pseudo-composites when the tests to be averaged are relatively 

consistent.  The rule-of-thumb heard from the field is that it is appropriate to average test SS’s if the SS’s 

for the respective tests are within 15 SS (< 1 SD) points of each other. 

   

The proof that this rule-of-thumb is not appropriate or supported is evident when one inspects the formula 

of the difference between the real composite and the pseudo-composite (see bottom of page 10). The 

magnitude of the difference depends on (a) the average of the subtests, (b) the number of subtests, and 

(c) the average correlation between the subtests. Differences or discrepancies among the subtests are 

nowhere to be seen in the formula and thus, are irrelevant to the issue at hand. 

 

Even though the rule-of-thumb provides no protection from the measurement error introduced by 

averaged pseudo-composites, it might seem that the rule is still useful if it prevents clinicians from 

misinterpreting test data. It has been argued that, when there is within-composite scatter in the subtest 

scores, the composite is “not interpretable" or less valid, which presumably means that it is less 

correlated with the theoretical construct the composite is intended to measure. Although this idea has 

intuitive appeal, it is not true. Although the mathematical basis of this conclusion is beyond the scope of 

this paper, composite scores are just as valid when subtests are discrepant as when they are consistent. 

It will suffice to say that construct irrelevant influences are just as likely to produce consistent subtest 

scores (when their influence moves the subtest scores in the same direction) as they are to produce 

discrepant subtest scores (when their influence moves the subtest scores in opposite directions). Thus, 

when subtests are consistent, there is no increased assurance that the composite score is more accurate 

or more valid. Likewise, a large subtest discrepancy, in and of itself, does not signal that the composite 

score is less accurate or less valid. Indeed, the whole point of making composite scores is the hope that 

construct-irrelevant influences cancel each other out. 

 

Recommendations and Solutions 

 

• Averaged pseudo-composite scores should not be used when making critical decisions about 

individuals (e.g., program eligibility; diagnosis or classification) particularly in contexts where 

specific scores are compared to "bright line" specific cut-score eligibility/diagnostic criteria.  Only 

real norm-based scores possess the necessary psychometric accuracy for this purpose.  Under 

no circumstances should averaged pseudo-composite scores be entered into equations, 

formulas, or procedures that involve high-stakes and important decisions regarding individuals. 

 

• Fortunately, more-and-more contemporary IQ batteries are now explicitly or implicitly designed as 

per CHC theory, or have been found to best be interpreted from this psychometric framework 

(Keith & Reynolds, 2010).  Thus, practitioners are now provided with more norm-based composite 

scores based on valid psychometric theory.  It is strongly recommended that assessment 

professionals use the norm-based composite scores provided within each respective IQ battery.  

If supplementary testing is required (crossing batteries) to obtain at least a two-test composite of 

an ability, it is recommended that a supplementary battery be selected that provides 2 or more 

test normed-based composite SS.  That is, instead of taking one test from a core battery and 

combining it with the score from a single test from a different cognitive battery, it is preferable to 

select two or more tests from a supplementary battery that will produce a norm-based composite 

ability score—mitigating the need to engage in psychometrically risky cross-battery composite 

score generation. 
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• If informal composite scores are calculated, users should use the available equations (see the 

Appendix and the references in this manuscript) to generate psychometrically sound scores.  If a 

composite is derived from within a single IQ battery, the respective technical manual should 

include the necessary psychometric information (e.g., correlations between tests to comprise a 

composite) to insert into the proper formula’s.  If such information is not available (e.g., a 

composite is created from Test 1 from Battery A and Test 2 from Battery B), then users should 

attempt to locate published research that would provide the best estimate of the correlation 

between Test 1 and 2.  The reliability information for each test should be available in each 

batteries respective technical manual.  Given the ease with which individuals can craft 

spreadsheets (e.g., Excel) and spreadsheet templates that include the required equations, it is 

not unreasonable to expect those who engage in this practice to create or locate such a tool (e.g., 

the first author’s Composite Score Calculator 
3
).  Even better yet is for test publishers or other 

agencies to provide software (that incorporates the technical characteristics of tests in a battery—

reliabilities; correlations) to allow for the calculation of psychometrically defensible informal 

composite scores within the battery.  One example is the first author’s Compositator (Schneider, 

2010 
4
) that works with the WJ III NU battery. 

 

  

                                                      
3
 http://my.ilstu.edu/~wjschne/CompositeScores.xlsx 
 
4
 http://www.woodcock-munoz-foundation.org/press/compositator.html 
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Appendix 

 

Assume that there are k subtest scores, S1, S2, S3,…,Sk. Each subtest has the same population mean µ 

and standard deviation σ. The average of all the intercorrelations between the subtest scores is 	�.  
An averaged pseudo-composite score �� is formed by averaging all the subtest scores. 

�� � ∑ ������
  

A real composite score � is formed when the sum of these subtests is transformed to have the same 

mean and standard deviation.  

 � � 
��� � ���
 � 	�
�
 � 1� � � 
Note that 
 � 	�
�
 � 1� is equal to the sum of all elements (including the 1’s in the diagonal) in the 

correction matrix of the subtests. That is, 


 � 	�
�
 � 1� � � � 	��
�

���
�

���  

Where 	�� is the correlation between subtest i and j and 	�� = 1 when i = j.   
 

Also note that 
��� � �� is equal to the sum of the deviations of each subtest from the population mean. 

That is, 


��� � �� � ���� � ���
���  

 

The difference between the real and the averaged pseudo-composite is  � � �� � 
��� � ���
 � 	�
�
 � 1� � � � �� 
 

Simplifying and reorganizing yields � � �� � 
��� � ���
 � 	�
�
 � 1� � ��� � �� 
� � �� � ��� � �� � 
�
 � 	�
�
 � 1� � 1� 

� � �� � ��� � �� � √
√
√
�1 � 	��
 � 1� � 1� 
� � �� � ��� � �� � √
�1 � 	��
 � 1� � 1� 
� � �� � ��� � �� � 
1 � 	��
 � 1� � 1� 

� � �� � ��� � �� � 
1 � 	�
 � 	� � 1� 
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 When 	� � 0, 
� � �� � ��� � �� � 
1 � 0
 � 0 � 1� 

� � �� � ��� � ��$√
 � 1% 
 When 	� � 1, 

� � �� � ��� � �� � 
1 � 1
 � 1 � 1� 
� � �� � ��� � �� �

 � 1� 
� � �� � ��� � ��$√1 � 1% 

 � � �� � ��� � ���1 � 1� � � �� � ��� � ��0 � � �� � 0 
 

When the number of subtests (k) increases, the difference between � and �� approaches 
lim�)*�� � ��� � lim�)* +��� � �� � 
1 � 	�
 � 	� � 1�, 

lim�)*�� � ��� � ��� � �� �1	� � 1� 
 

The geometric representation of the 2-subtest composite consisting of subtests X and Y suggests the 

following alternate formula for a real 2-subtest composite: 

 � � -� � .2 � �0 csc �cos4� 	562 � � � 
 

When there are k subtests, the composite score is the distance from the intersection of all k subtest 

scores in k-dimensional oblique space (such that the k axes intersect at angles equal to the cosines of the 

correlations of the respective subtests) to the subspace (having k-1 dimensions) that is perpendicular to 

the centroid of k unit vectors, each of which is parallel to one of the k axes and starting at the origin. 
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