The WJ III Battery is comprised of both cognitive (intelligence) and achievement components. As reported in the technical manual, the Cattell-Horn-Carroll (CHC) theory of cognitive abilities organizational structure of the WJ III has been validated. The current investigation analyzed the cognitive and achievement tests for all WJ III norm subjects from ages 6-18 years of age. Multidimensional scaling (MDS—Guttman Radex model) of the 50 WJ III tests suggested new facets from which to interpret the WJ III. The results suggested three to four higher-order intermediate CHC model stratum abilities that varied along the dimensions of (a) controlled vs automatic cognitive processing and (b) product- vs process-dominant abilities. The results, together with recent similar analysis of the WAIS-IV, support Woodcock’s Cognitive Performance Model (CPM). Implications for possible minor changes in the CPM model are suggested. More importantly, the WJ III and WAIS-IV results collectively suggest hypothesized refinements and extensions of the CHC intelligence framework. Research focused on exploring the compatibility of a combined CHC and Berlin Model of Intelligence Structure (BIS) theory is recommended.

Kevin S. McGrew, Ph.D.
Educational Psychologist
Director
Institute for Applied Psychometrics (IAP)
MDS Analysis of the CHC-based WJ III Battery: Implications for possible refinements and extensions of the CHC model of human intelligence

Kevin S. McGrew, PhD.

Educational & School Psychologist

Director
Institute for Applied Psychometrics (IAP)
Author information and conflict of interest disclosure

Dr. Kevin S. McGrew, Ph.D., is an Educational Psychologist with expertise and interests in applied psychometrics, intelligence theories and testing, human cognition, cognitive and non-cognitive individual difference variables impacting school learning, models of personal competence, conceptualization and measurement of adaptive behavior, measurement issues surrounding the assessment of individuals with disabilities, brain rhythm and mental timing research, and improving the use and understanding of psychological measurement and statistical information by professionals and the public. Prior to establishing IAP, Dr. McGrew was a practicing school psychologist for 12 years. McGrew received his Ph.D. in Educational Psychology (Special Education) from the University of Minnesota in 1989.

Dr. McGrew is currently Director of the Institute for Applied Psychometrics (IAP), a privately owned applied research organization established by McGrew. He is also the Research Director for the Woodcock-Munoz Foundation (WMF), Associate Director for Measurement Learning Consultants (MLC), and a Visiting Professor in Educational Psychology (School Psychology) at the University of Minnesota.

Dr. McGrew authored the current document in his role as the Director of IAP. The opinions and statements included in this report do not reflect or represent the opinions of WMF, MLC, or the University of Minnesota. More complete professional information, including his professional resume, can be found at www.iapsych.com.

Conflict of Interest Disclosure: Dr. McGrew is a co-author (with a financial interest) in the Woodcock-Johnson Battery—Third Edition (WJ III; 2001) as well as the Bateria III Woodcock-Muñoz (BAT III, 2005), published by Riverside Publishing. He was a paid consultant, but was not a co-author, for the Woodcock-Johnson Psychoeducational Battery—Revised (WJ-R; 1989).
Continuum of Progress: Intelligence Theories and Test Batteries

General Ability (g)

Dichotomous Abilities

Multiple Cognitive Abilities (Incomplete; not implicitly or explicitly CHC-organized)

Multiple Cognitive Abilities (Incomplete; implicitly or explicitly CHC-organized)

Multiple Cognitive Abilities ("Complete"; implicitly or explicitly CHC-organized)

Primary Theories

- Spearman
 - Original Gf-Gc
 - Simultaneous-Successive

- Thurstone PMAs
 - PASS (Planning, Attention, Simultaneous, Successive)

- Cattell-Horn Carroll (CHC) Theory of Cognitive Abilities

Applied IQ Batteries

- Stanford-Binet LM (1937; 1960; 1972)
 - WPPSI-R (1989)
 - WISC-R (1974)
 - W-B (1939; 1946)
 - WAIS-R (1981)

- WAIS-IV (2008)

- K-ABC (1983)
 - KAIT (1993)

- WISC-III (1991)
 - WAIS-III (1997)

- WPPSI-III (2002)

- WAIS-R (1974)

- W-B (1939; 1946)

- WAIS-R (1981)

- CAS (1997)

- DAS (1990)

- DAS-II (2007)

- SB-IV (1986)

- WJ (1977)

- WJ III (2001)

- WJ III NU (2005)

Note: This is an adaptation (9-29-09) by Kevin McGrew of Figure 2.1 in Flanagan, McGrew & Ortiz (2000).

Bold font designates most current version of battery.

Bold Italic font designates batteries with adult norms.

Placement of WISC-IV/WAIS-IV recognizes that although only providing four broad composite scores, the revisions implicitly incorporated aspects of CHC theory.

WJ III NU reflects a Normative Update to the WJ III norms without changes to the tests.
Contemporary psychometric research has converged on the Cattell-Horn-Carroll (CHC) theory of cognitive abilities as the consensus working taxonomy of human intelligence.

A. Carroll Three-Stratum Model

B. Cattell-Horn Extended Gf-Gc Model

C. Cattell-Horn-Carroll (CHC) Integrated Model

D. Tentatively identified Stratum II (broad) domains

Stratum III (general)

Stratum II (broad)

80+ Stratum I (narrow) abilities have been identified under the Stratum II broad abilities. They are not listed here due to space limitations (see Table 1)

CHC Broad (Stratum II) Ability Domains

- Gf: Fluid reasoning
- Gc: Comprehension-knowledge
- Gsm: Short-term memory
- Gv: Visual processing
- Ga: Auditory processing
- Glr: Long-term storage and retrieval
- Gs: Cognitive processing speed
- Gt: Decision and reaction speed
- Grw: Reading and writing
- Gq: Quantitative knowledge
- Gkn: General (domain-specific) knowledge
- Gh: Tactile abilities
- Gk: Kinesthetic abilities
- Go: Olfactory abilities
- Gp: Psychomotor abilities
- Gps: Psychomotor speed

Complete CHC model and description of abilities can be found in:

CFA studies provide solid empirical support for CHC internal (structural) validity of WJ III battery.
Structural Evidence (primarily psychometric factor analysis studies) Led to...

Cattell-Horn Gf-Gc Model

Supports...

Carroll Tri-Stratum Model

Supports...

Cattell-Horn-Carroll Theory of Cognitive Abilities (Theoretical domain)

Blueprint for...

WJ-R 1989

Provides validity Evidence for...

1993

Blueprint for...

WJ III 2001

(Measurement domain)
Guttman’s Radex Theory

Ability tests can be classified by:

- Degree of cognitive complexity
- Differences in kind of content
- Differences in type of processes

Uses MDS (multidimensional scaling)
Figure 6.2 The interrelationships between various types of IQ test represented as distances between points in a two-dimensional space. Tests at the centre of the space are more closely related to all other tests than are those nearer the periphery. Solid lines are drawn round groups of tests defining some of Cattell’s major factors, Gf, Gc, Gv, Gs. Tests labelled W are sub-tests of the WAIS. (Adapted from Snow et al., 1984).
WJ III test abbreviations used figures

VCL = Visual Closure
PR = Picture Recognition
SPR = Spatial Relations
BR = Block Rotation
PLN = Planning
MN = Memory for Names
DRM = DR: Memory for Names
VAL = Visual-Auditory Learning
DRV = DR: Visual-Auditory Learning
AS = Analysis-Synthesis
CF = Concept Formation
AP = Applied Problems
NS = Number Series
NM = Number Matrices
AWM = Auditory Working Memory
NR = Numbers Reversed
MW = Memory for Words
MS = Memory for Sentences
VC = Verbal Comprehension
AK = Academic Knowledge
GI = General Information
OC = Oral Comprehension
STR = Story Recall
DRS = DR: Story Recall

CO = Cross Out
PC = Pair Cancellation
VM = Visual Matching
RDF = Reading Fluency
REF = Retrieval Fluency
MF = Math Fluency
WF = Writing Fluency
DS = Decision Speed
RPN = Rapid Picture Naming
AA = Auditory Attention
SB = Sound Blending
SA = Sound Awareness
SNP = Sound Patterns-Voice
IW = Incomplete Words
AP = Applied Problems
QC = Quantitative Concepts
CAL = Calculation
RV = Reading Vocabulary
PSC = Passage
Comprehension
WA = Word Attach
LW = Letter-Word Identification
ED = Editing
SOS = Spelling of Sounds
SPL = Spelling
WS = Writing Samples

Test descriptions and CHC classifications can be found at:

Copy is included at the end of the PDF version of this PPT-based report
2-D MDS (Guttman’s Radex Model) results for WJ III test (NU norms)

[Note - Sample is all WJ III norm subjects from ages 6-18]

Tests closest to the center of the circles cross-hairs are more “cognitively complex”

Broad CHC factor ability font key legend (based on CFA studies)

- **AS** = Gf
- **MW** = Gsm
- **mn** = Glr
- **IW** = Ga
- **SPR** = Gv
- **VM** = Gs
- **VC** = Gc
- **PSC** = Grw
- **CAL** = Gq
What about the WJ III CHC factor cluster tests? Do they group together in the MDS analysis?.........see next slide.
Broad CHC factor ability font key legend (based on CFA studies)

- **Gf**
- **Gsm**
- **glr**
- **Ga**
- **Gv**
- **Gs**
- **Gw**
- **Gq**

DIM(1) vs. DIM(2) graph with various abbreviations and symbols representing different factors and abilities.
Are there any other process (operations) or content characteristic dimensions by which the WJ III MDS results might be viewed?see next slide.
What common characteristic/dimension do the tests below the blue dividing line have in common?

Broad CHC factor ability font key legend (based on CFA studies)

Gf Gsm glr Ga Gv Gs Gp Grw Gq
The Planning (PLN) and Auditory Attention (AA) tests (although not classified as per CHC theory as Gs or Gsm) location in this MDS quadrant are very consistent with the cognitive efficiency hypothesis.
Given the Cognitive Efficiency (CE) broad quadrant, let's draw an orthogonal (perpendicular) line to the CE dimension line and see what we find.
Cognitive efficiency (speeded-Gs) rate/fluency abilities
- Automatic cognitive processing

Cognitive efficiency (unspeeded-Gsm) level abilities
- Automatic cognitive processing
Lets examine the upper left-hand corner quadrant. Any common features among most of the tests in this quadrant?
The Sound Patterns-Voice (SNP) test is consistent with this hypothesis as the stimuli sounds are generated by a voice synthesizer—not meaningful language.
Let's examine the final right upper corner quadrant. Any common features among most of the tests in this quadrant?
• Acquired knowledge abilities
• Product-dominant “level” abilities
• Language (aud-linguistic) and symbolic stimuli (Ga, Gc, Grw, Gq)
• Controlled cognitive processing

Broad CHC factor ability font key legend (based on CFA studies)
Thinking abilities
- Process-dominant “level” abilities
- Visual-spatial/figural (low linguistic) stimuli (Gv,Gf,Gl)
- Controlled cognitive processing

Acquired knowledge abilities
- Product-dominant “level” abilities
- Language (aud-linguistic) and symbolic stimuli (Ga,Gc,Gr,Gq)
- Controlled cognitive processing

Cognitive efficiency (speeded-Gs) rate/fluency abilities
- Automatic cognitive processing

Cognitive efficiency (unspeeded-Gsm) abilities
- Automatic cognitive processing

The grand “big picture model” --- probably requires a subsequent 3-D MDS analysis to see clearly…more to come
There is considerable agreement on the characteristics that distinguish the two types of cognitive processes, which Stanovich and West (2000) labeled System 1 and System 2. ……The operations of System 1 are typically fast, automatic, effortless, associative, implicit (not available to introspection), and often emotionally charged; they are also governed by habit and are therefore difficult to control or modify. The operations of System 2 are slower, serial, effortful, more likely to be consciously monitored and deliberately controlled; they are also relatively flexible and potentially rule governed. The effect of concurrent cognitive tasks provides the most useful indication of whether a given mental process belongs to System 1 or System 2. Because the overall capacity for mental effort is limited, effortful processes tend to disrupt each other, whereas effortless processes) neither cause nor suffer much interference when combined with other tasks (Kahneman, 1973; Pashler, 1998). P. 698
The WJ III MDS findings suggest a hypothesized modified Cattell-Horn-Carroll (CHC) theory of cognitive abilities framework [with proposed intermediate factors/dimensions between broad (stratum II) and general (stratum III) levels]

(Kevin McGrew 11-11-09)

Diagram:
- **g**
 - **System II cognitive processing:** More cognitively controlled & deliberate
 - Acquired knowledge (product-dominant) lang/symbolic abilities
 - Grw
 - Gq
 - Gc
 - Ga
 - Thinking abilities (process-dominant) figural-spatial, lower-linguistic abilities
 - Gf
 - Glr
 - Gv
 - System I cognitive processing (cognitive efficiency): More automatic
 - Unspeeded (level)
 - Gsm
 - Speeded (rate)
 - Gs
What does the WAIS-IV measure?
CHC analysis and beyond

Kevin S. McGrew, PhD.
Educational & School Psychologist
Director
Institute for Applied Psychometrics (IAP)
It is a common practice in MDS analysis to visually partition the MDS spatial configuration into broader dimensions and consider interpretation at a higher-order level.

The current WAIS-IV MDS revealed the following hypothesized higher-order structure.

Note – similar to hand rotation of factors in early days of EFA, K. McGrew took the cross-hair lines and hand rotated them (simultaneously) until a meaningful pattern emerged. The four-broad dimensions are interpreted as being very similar to the four cognitive domains of Woodcock's Cognitive Performance Model (CPM) – see next two slides.
Acquired Knowledge
- Oral Language (Gc)
- Information (Gc)
- Reading & Writing (Grw)
- Mathematics (Gq)

Thinking Abilities
- Visual-Spatial Thinking (Gv)
- Auditory Processing (Ga)
- Long-term Retrieval (Glr)
- Fluid Reasoning (Gf)

Cognitive Efficiency
- Working Memory (Gsm)
- Processing Speed (Gs)

Facilitator-Inhibitors
- Internal
- External

* All performance, automatic or new learning, is constrained by the relevant stores of knowledge.

* New learning is constrained by the relevant thinking abilities.

* Automatic performance is constrained by short-term memory and processing speed.

The CHC Information Processing Model

The WAIS-IV MDS findings * suggest the possibility of a modified hypothesized Cattell-Horn-Carroll (CHC) theory of cognitive abilities [with proposed intermediate factors/dimensions between broad (stratum II) and general (stratum III) levels] (Kevin McGrew 11-4-09)

70+ narrow (stratum I) abilities have been identified but are not included in figure for readability purposes

Note. Analysis of the WJ III battery via similar MDS (both 2D and 3D model analyses) and CA methods, as well as a Carroll Schmeid-Leimen EFA/CFA analysis, has suggested similar higher-order intermediate dimensions. Results can be found at IQs Corner blog (www.iqscorner.com)

* The current WAIS-IV conclusions, when combined with those for the WJ III, suggest the possibility that the unspeeded/speeded cognitive efficiency intermediate dimensions might best be conceptualized as merging into a single cognitive efficiency dimension.

More information re: these hypotheses in future presentations/reports

CHC Broad (Stratum II) ability domains included across cognitive and achievement test batteries

- Gf Fluid reasoning
- Gc Comprehension-knowledge
- Gsm Short-term memory
- Gv Visual processing
- Ga Auditory processing
- Glr Long-term storage and retrieval
- Gs Cognitive processing speed
- Grw Reading and writing
- Gq Quantitative knowledge
Primary new variation or question raised by WJ III analysis is the placement of Ga. As currently measured, primarily by phonemic awareness tasks, should Ga be included under acquired knowledge, under both acquired knowledge and thinking abilities, or do Ga tasks split between the two broad domains as a function of task demands (e.g., Snd Blnd and Inc Wrds – acquired knowledge; Snd Patterns—thinking ability?)
Food for thought: Are the MDS quadrants or partitions reflecting content “facets” or a combination of content “facets and “operations” as per the BIS model of intelligence….see next slide
The next steps in this research (with WJ III tests) is to run (a) 3-D MDS models, (b) CFA models that specify the hypothesized modified CHC model in prior slides, and (c) CFA models that specify both “content” and CHC “operation” (e.g., Gf, Gs, etc.) dimensions (a mixed CHC BIS model).
Revised/Updated Cattell-Horn-Carroll (CHC) Theory of Cognitive Ability
Classifications of the WJ III Cognitive and Achievement Tests

Kevin S. McGrew, Ph.D.
Institute for Applied Psychometrics (IAP)

(www.iapsych.com & www.intelligencetesting.blogspot.com)

The revised/updated CHC classifications included in this document are based on the author’s review of a variety of published and unpublished WJ III research (since the publication of the WJ III in 2001). A large portion of the reviewed analyses are unpublished multivariate exploratory analyses (exploratory/confirmatory factor analyses; cluster analyses; multidimensional scaling) of the WJ III norm data (by this author), some results which have been posted at www.iapsych.com or www.intelligencetesting.blogspot.com. These test classifications do not necessarily represent the position of other WJ III co-authors or the publisher of the WJ III (Riverside Publishing).

As outlined in previous writings (McGrew, 1997, 2005), most all of the broad CHC classifications are based on empirical research. Most all narrow ability classifications are based on expert consensus task analysis.

The current CHC test classifications should be considered more “relaxed” or “liberal” than prior published classifications. That is, all probable hypotheses, regardless of the number of times suggested in the research reviewed, if supported by theoretical and logical task analysis considerations, are included. The author has “erred” on the side of being more inclusive (liberal) in the range of narrow abilities measured by tests. This philosophy was embraced in the spirit of stimulating additional research and to guard against the “premature hardening of WJ III CHC test categories.” Furthermore, these classifications do not reflect additional test interpretations that have been offered by this author (in presentations or via the internet) in the context of contemporary cognitive information processing/neuropsychological research and theory.

The reader is strongly encouraged to read McGrew (2005) for important background information that was used in the development of this document. A critical table and figure from McGrew (2005) are included at the end of this document.

For on-line version of McGrew (2005) see http://www.iapsych.com/CHCPP/CHCPP.html
<table>
<thead>
<tr>
<th>Broad CHC Domain/WJ III Cognitive (COG) & Achievement (ACH) tests</th>
<th>Hypothesized CHC Narrow Ability Classifications</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term Memory ((Gsm))</td>
<td>Working Memory (MW)</td>
<td>Measures the ability to repeat a series of random numbers backward. The number sequences are presented by audio tape.</td>
</tr>
<tr>
<td>Numbers Reversed (COG)</td>
<td>Memory Span (MS)</td>
<td>Measures the ability to repeat lists of unrelated words in the correct sequence. The words are presented by audio tape.</td>
</tr>
<tr>
<td>Memory for Words (COG)</td>
<td>Memory Span (MS)</td>
<td>Measures the ability to retain two types of orally presented information and then repeat them in a specified order. The subject is presented a mixed series of words and digits and is asked to rearrange them by first saying the words in order and then the numbers. The task requires divided attention as the subject must perform two different mental operations simultaneously.</td>
</tr>
<tr>
<td>Auditory Working Memory (COG)</td>
<td>Working Memory (MW)</td>
<td>Measures the ability to remember and repeat simple words, phrases, and sentences presented auditorily by a tape player.</td>
</tr>
<tr>
<td>Memory for Sentences (COG)</td>
<td>Memory Span (MS)</td>
<td>Measures the ability to rapidly scan a row of pictures and decide which of the two drawings are the most related. The decisions become slightly more abstract as the test progresses. The subject is instructed to complete as many rows of drawings as possible within a three-minute time limit.</td>
</tr>
<tr>
<td>Processing Speed ((Gs))</td>
<td>Speed of Reasoning (RE)</td>
<td>Measures the ability to scan and compare visual information. The subject must mark the five drawings in a row of 20 drawings that are identical to the first drawing in the row. The subject is given a 3-minute time limit to complete as many rows of items as possible.</td>
</tr>
<tr>
<td>Visual Matching (COG)</td>
<td>Speed of Reasoning (RE)</td>
<td>Measures the ability to rapidly scan a row of pictures and decide which of the two drawings are the most related. The decisions become slightly more abstract as the test progresses. The subject is instructed to complete as many rows of drawings as possible within a three-minute time limit.</td>
</tr>
<tr>
<td>Decision Speed (COG)</td>
<td>Semantic Processing Speed ((Gs-R4))</td>
<td>Measures the ability to scan and compare visual information. The subject must mark the five drawings in a row of 20 drawings that are identical to the first drawing in the row. The subject is given a 3-minute time limit to complete as many rows of items as possible.</td>
</tr>
<tr>
<td>Rapid Picture Naming (COG)</td>
<td>Naming Facility (NA)</td>
<td>Measures the ability to scan and compare visual information. The subject must mark the five drawings in a row of 20 drawings that are identical to the first drawing in the row. The subject is given a 3-minute time limit to complete as many rows of items as possible.</td>
</tr>
<tr>
<td>Pair Cancellation (COG)</td>
<td>Perceptual Speed:Complex (Ps)</td>
<td>Measures the ability to scan and compare visual information. The subject must mark the five drawings in a row of 20 drawings that are identical to the first drawing in the row. The subject is given a 3-minute time limit to complete as many rows of items as possible.</td>
</tr>
<tr>
<td>Cross Out (COG)</td>
<td>Perceptual Speed:Scanning (Ps)</td>
<td>Measures the ability to scan and compare visual information. The subject must mark the five drawings in a row of 20 drawings that are identical to the first drawing in the row. The subject is given a 3-minute time limit to complete as many rows of items as possible.</td>
</tr>
</tbody>
</table>
Comprehension-Knowledge (Gc)

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Subtest Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal Comprehension (COG)</td>
<td>Language Development (LD) Lexical Knowledge (VL)</td>
<td>Measures knowledge of word meanings and general language development. Test is comprised of four subtests. In Picture Vocabulary, the subject must name familiar and unfamiliar pictured objects. In Oral Vocabulary: Synonyms, the subject must say a word similar in meaning to the word presented. In Oral Vocabulary: Antonyms, the subject must say a word that is opposite in meaning to the word presented. In Verbal Analogies the subject must complete phrases with words that indicate appropriate analogies.</td>
</tr>
<tr>
<td>General Information (COG)</td>
<td>General (verbal) Information (K0)</td>
<td>Measures knowledge of the common or typical characteristics of certain objects. The test has two subtest components: "what" and "where" questions. The questions are presented orally and the subject must state the answer to "where you would find..." and "what you would do with..." questions.</td>
</tr>
<tr>
<td>Story Recall (ACH)</td>
<td>Listening Ability (LS) Meaning. Memory (Glr-MM) Working Memory (Gsm-MW)</td>
<td>Measures the ability to recall increasingly complex stories presented orally to the subject. The subject is asked to tell back as much of the story as they can. The score is based on the number of correctly recalled story elements.</td>
</tr>
<tr>
<td>Story Recall-Delayed Recall (ACH)</td>
<td>Meaningful Memory (Glr-MM)</td>
<td>Measures the ability to recall (after 1 to 8 days) the stories presented in Oral Recall.</td>
</tr>
<tr>
<td>Understanding Directions (ACH)</td>
<td>Listening Ability (LS) Working Memory (Gsm-MW) Induction (Gf-RG)</td>
<td>Measures comprehension of linguistic concepts (receptive language). The subject is asked to follow oral directions by pointing to different items in a picture.</td>
</tr>
<tr>
<td>Picture Vocabulary (ACH)</td>
<td>Lexical Knowledge (VL)</td>
<td>Measures knowledge of word meanings. The subject must name familiar and unfamiliar pictured objects.</td>
</tr>
<tr>
<td>Oral Comprehension (ACH)</td>
<td>Listening Ability (LS)</td>
<td>Measures the ability to listen to a short tape-recorded passage and to verbally supply the single word missing at the end of the passage.</td>
</tr>
<tr>
<td>Academic Knowledge (ACH)</td>
<td>General (verbal) Information (K0) Information about Culture (K2) General Science Info (Gkn-K1) Geography Achievement (Gkn-A5)</td>
<td>Test is comprised of three subtests that collectively measure knowledge in various areas of the biological and physical sciences, history, geography, government, economics, art, music, and literature.</td>
</tr>
</tbody>
</table>

Long-term Retrieval (Glr)

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Subtest Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual-Auditory Learning (COG)</td>
<td>Associative Memory (MA) Meaningful Memory (MM)</td>
<td>Measures the ability to associate new visual symbols (rebuses) with familiar words in oral language and to translate a series of symbols presented as a reading passage (a visual-auditory association task). This is a "learning" test where corrective feedback is provided to the subject.</td>
</tr>
<tr>
<td>Visual-Auditory Learning-Delayed Recall (COG)</td>
<td>Associative Memory (MA)</td>
<td>Measures the ability to recall and relearn (after 1 to 8 days) the symbols (rebuses) presented in Visual-Auditory Learning. This is a "relearning" task as the subject relearns forgotten associations. Corrective feedback is provided to the subject during the task.</td>
</tr>
<tr>
<td>Retrieval Fluency (COG)</td>
<td>Ideational Fluency (FI) Naming Facility (NA)</td>
<td>Measures fluency in retrieving the names of objects. The subject is asked to state as many items as they can of three different types, "things to eat or drink", "names of people", and "animals.</td>
</tr>
<tr>
<td>Memory for Names (COG)</td>
<td>Associative Memory (MA)</td>
<td>Measures the ability to learn associations between unfamiliar auditory and visual stimuli (an auditory—visual association task). The task requires learning the names of a series of space creatures. This is a "learning" test where corrective feedback is provided to the subject.</td>
</tr>
</tbody>
</table>
Memory for Names-Delayed Recall (COG)

Associative Memory (MA)

Measures the ability to recall (after 1 to 8 days) the space creatures presented in Memory for Names.

Visual-Spatial Processing (Gv)

<table>
<thead>
<tr>
<th>Subtest</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Relations (COG)</td>
<td>Measures the ability to visually match and combine shapes. The subject must select from a series of shapes, the component parts composing a given whole shape.</td>
</tr>
<tr>
<td>Visualization (Vz)</td>
<td></td>
</tr>
<tr>
<td>Spatial Relations (SR)</td>
<td></td>
</tr>
</tbody>
</table>

Picture Recognition (COG)	
Visual Memory (MV)	
Associative Memory (Glr-MA)	

| **Planning (COG)** | |
| **Spatial Scanning (SS)** | |

| **Visual Closure (COG)** | |
| **Closure Speed (CS)** | |

Block Rotation (COG)	
Visualization (Vz)	
Spatial Relations (SR)	

Auditory Processing (Ga)

<table>
<thead>
<tr>
<th>Subtest</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Blending (COG)</td>
<td></td>
</tr>
<tr>
<td>Phonetic Coding (PC)</td>
<td></td>
</tr>
</tbody>
</table>

| **Incomplete Words (COG)** | |
| **Phonetic Coding (PC)** | |

Auditory Attention (COG)	
Speech Sound Discrimination (US)	
Attention/Concentration (AC)	

| **Sound Patterns-Voice (COG)** | |
| **General Sound Discrimination (U3)** | |

| **Sound Patterns-Music (COG)** | |
| **Musical Discrimination & Judgement (U1,U9)** | |

Sound Awareness (ACH)	
Phonetic Coding (PC)	
Working Memory (Gsm-MW)	
Fluid Reasoning (Gf)

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Formation (COG)</td>
<td>Induction (I)</td>
<td>Measures the ability to identify and state the rule for a concept about a set of colored geometric figures when shown instances and non-instances of the concept. This is a "learning" test with corrective feedback and reinforcement of correct answers provided to the subject.</td>
</tr>
<tr>
<td>Analysis-Synthesis (COG)</td>
<td>General Sequential (deductive) Reasoning (RG), Quantitative Reasoning (RQ)</td>
<td>Measures the ability to analyze the components of an incomplete logic puzzle and to determine and name the missing components. This is a "learning" test with corrective feedback and reinforcement of correct answers provided to the subject.</td>
</tr>
<tr>
<td>Number Series (COG)</td>
<td>Quantitative Reasoning (RQ)</td>
<td>Measures the ability to identify the quantitative principle that underlies a sequence of numbers in a series of numbers and then apply the principle to supply a missing number in the series.</td>
</tr>
<tr>
<td>Number Matrices (COG)</td>
<td>Quantitative Reasoning (RQ)</td>
<td>Measures the ability to identify the quantitative principle that underlies a series of numbers in matrices and then apply the principle to supply a missing number in the matrix.</td>
</tr>
</tbody>
</table>

Quantitative Knowledge (Gq)

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation (ACH)</td>
<td>Math Achievement (A3)</td>
<td>Measures the ability to perform mathematical calculations ranging from simple addition to calculus. The subject is not required to make any decisions about what operations to use or what data to include.</td>
</tr>
<tr>
<td>Applied Problems (ACH)</td>
<td>Math Achievement (A3), Math Knowledge (KM), Quantitative Reasoning (Gf-RQ)</td>
<td>Measures the ability to analyze and solve problems in mathematics. The subject must decide not only the appropriate mathematical operations to use but also which of the data to include in the calculation.</td>
</tr>
<tr>
<td>Math Fluency (ACH)</td>
<td>Math Achievement (A3), Number Facility (Gs-N)</td>
<td>Measures the ability to quickly perform single-digit addition, subtraction, and multiplication facts. The subject is presented a series of simple arithmetic problems on a worksheet. The subject has two minutes to complete as many problems as possible.</td>
</tr>
<tr>
<td>Quantitative Concepts (ACH)</td>
<td>Math Knowledge (KM), Quantitative Reasoning (Gf-RQ), Lexical Knowledge (Gc-VL)</td>
<td>Measures the subject's mathematical vocabulary, concepts and quantitative reasoning. The test consists of two subtests that collectively represent a mixture of number series (Number Series items) and items requiring the subject to display mathematical knowledge (Concepts). The number series items require the subject to identify the underlying numerical relation in a series of numbers and then apply this principle by supplying a missing number in the series.</td>
</tr>
</tbody>
</table>

Reading and Writing (Grw)

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter-Word Identification (ACH)</td>
<td>Reading Decoding (RD), Lexical Knowledge (Gc-VL)</td>
<td>Measures the subject's reading skills in identifying isolated letters and words. It is not necessary that the subject knows the meaning of any words correctly identified.</td>
</tr>
<tr>
<td>Reading Fluency (ACH)</td>
<td>Reading Speed (RS), Semantic Processing Speed (Gt-R4)</td>
<td>Measures the ability to quickly comprehend the correctness of simple sentences. The subject is presented a series of simple sentences and must circle whether each sentence is true or false. The subject is required to complete as many items as possible within a 3-minute time limit.</td>
</tr>
<tr>
<td>Passage Comprehension (ACH)</td>
<td>Reading Comprehension (RC), Cloze Ability (CZ), Verbal (lang) Comprehension (V)</td>
<td>Measures the subject's skill in reading a short passage and identifying a missing keyword. In this modified cloze procedure, the subject must exercise a variety of comprehension and vocabulary skills.</td>
</tr>
</tbody>
</table>
| Word Attack (ACH) | Reading Decoding (RC), Phonetic Coding (PC) | Measures the ability to apply phonic and structural analysis skills to the pronunciation of unfamiliar printed words. The subject reads aloud letter combinations that are linguistically logical in English but that do not form actual words (nonsense word), or words that constitute low-frequency words in
the English language.
<table>
<thead>
<tr>
<th>Reading Vocabulary (ACH)</th>
<th>Reading Comprehension (RC)</th>
<th>Lexical Knowledge ($Gc\cdot VL$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measures subject’s skill in reading and understanding the meanings of words. The test consists of three subtests. In Part A: Synonyms, the subject must read a word and provide a word similar in meaning to the word presented. In Part B: Antonyms, the subject must read a word and provide a word that is opposite in meaning to the word presented. In Part C: Analogies, the subject must read an analogy and provide the missing word.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spelling (ACH)</th>
<th>Spelling Ability (SG)</th>
<th>Measures the ability to write correct spellings of orally presented words.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing Fluency (ACH)</td>
<td>Writing Ability (WA)</td>
<td>Measures the ability to formulate and write simple sentences quickly. This subtest has a 7-minute time limit.</td>
</tr>
<tr>
<td>Writing Samples (ACH)</td>
<td>Writing Ability (WA)</td>
<td>Measures the ability to write responses to a variety of demands. The subject must phrase and present written sentences that are evaluated with respect to the quality of expression. The subject is not penalized for errors in the basic mechanics of writing (spelling; punctuation).</td>
</tr>
<tr>
<td>Editing (ACH)</td>
<td>English Usage Knowledge (EU)</td>
<td>Measures the ability to identify, and indicate how to correct, mistakes in typewritten passages. The error in the passage may be incorrect punctuation or capitalization, inappropriate word usage, or a misspelling.</td>
</tr>
<tr>
<td>Spelling of Sounds (ACH)</td>
<td>Spelling Ability (SG)</td>
<td>Measures the ability to listen to a nonsense word and produce a written response representing the likely spelling of that word if it were a real English word. It is a measure of the subject’s comprehension of the “alphabetic principle.” The subject is presented the nonsense word from an audio tape and is asked to write it.</td>
</tr>
<tr>
<td>Punctuation and Capitalization (ACH)</td>
<td>English Usage Knowledge (EU)</td>
<td>Measures knowledge of punctuation and capitalization.</td>
</tr>
</tbody>
</table>