Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time

Melissa J. Allman,1 Sundeep Teki,2 Timothy D. Griffiths,2,3 and Warren H. Meck4

1Department of Psychology, Michigan State University, East Lansing, Michigan 48823; email: mjallman@msu.edu
2Wellcome Trust Center for Neuroimaging, University College London, London, WC1N 3BG United Kingdom; email: s.teki@fil.ion.ucl.ac.uk
3Institute of Neuroscience, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE2 4HH United Kingdom; email: tim.griffiths@newcastle.ac.uk
4Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27701; email: meck@psych.duke.edu

Keywords
timing, time perception, clock speed, thought speed, memory translation constant, attentional time-sharing, cerebral cortex, basal ganglia, cerebellum

Abstract
Humans share with other animals an ability to measure the passage of physical time and subjectively experience a sense of time passing. Subjective time has hallmark qualities, akin to other senses, which can be accounted for by formal, psychological, and neurobiological models of the internal clock. These include first-order principles, such as changes in clock speed and how temporal memories are stored, and second-order principles, including timescale invariance, multisensory integration, rhythmical structure, and attentional time-sharing. Within these principles there are both typical individual differences—influences of emotionality, thought speed, and psychoactive drugs—and atypical differences in individuals affected with certain clinical disorders (e.g., autism, Parkinson’s disease, and schizophrenia). This review summarizes recent behavioral and neurobiological findings and provides a theoretical framework for considering how changes in the properties of the internal clock impact time perception and other psychological domains.
INTRODUCTION

Time shapes many aspects of our daily lives (Allan 1979, Buhusi & Meck 2005): The reader may have set aside a certain amount of objective (clock) time to read this article before moving onto other activities, which may themselves need to be performed at or for specific times. We rely heavily on external timekeepers and temporal organizers (clocks, calendars) to keep track of the temporal properties of events (i.e., when and for how long an event will occur), but we are also quite adept at keeping track of time on our own given the appropriate circumstances (Nobre & Coull 2010). The challenge, therefore, is to identify the clock inside our heads, something referred to as the “internal clock” (Church 1984). As in other animals, our ability to time external events in the seconds to minutes range (interval timing) allows us to subjectively experience the passage of physical time and allows us to integrate action sequences, thoughts, and behavior and to detect emerging trends and anticipate future outcomes (Bechara et al. 1996, Kotz et al. 2009, Nussbaum et al. 2006). This temporal yardstick (internal clock) can also be both typically and atypically distorted by a variety of sensory, psychological, and physiological factors (e.g., arousal, modality, and pharmacological treatments; see Allman & Meck 2012, Paule et al. 1999, Vatakis & Allman 2013). Perhaps parsimoniously related to the internal clock is our ability to temporally structure our use of language and other cognitive processes such that past events serve as agents for current events (e.g., episodic memory) and for planning and sequencing our intended behaviors toward events in the future (e.g., executive function and prospective memory), which although perhaps uniquely human may not necessarily be so (Allman et al. 2013, Diedrichsen et al. 2003, Nyberg et al. 2010, Schirmer 2004, Siegel et al. 2012, Suddendorf et al. 2009, Ullman 2004, Ullman & Pierpont 2005).

Most researchers agree that there is no single neurological locus that serves as the core (master) clock in the brain, although the primordial circadian clock in the suprachiasmatic nucleus can regularly and persistently modulate a variety of species’ sleep-wake to day-night cycles (even in conditions devoid of light-dark cues). However, to account for interval timing ability, which has been unequivocally demonstrated, some sort of general-purpose, cognitively controlled internal clock is required (Agostino et al. 2011a; Allman & Meck 2012; Guilhardi & Church 2009; Hinton & Meck 1997a,b; Lewis & Meck 2012; Lewis & Miall 2003; Matell & Meck 2000; Meck 1984;
Figure 1
The information-processing model of interval timing as specified by scalar timing theory and other internal clock theories of psychological time. Adapted from Church (1984), Gibbon et al. (1984), Meck (1984), and Treisman (1963, 1984).

Treisman 1963, 1984, 2013). The primary goal of this review is to specify the forms this internal clock may take, i.e., psychological, biological, and formal.

As originally proposed, the internal clock (Church 1984, Gibbon et al. 1984, Treisman 1963) is composed of a three-process model (see Figure 1). At the onset of a to-be-timed event (stimulus), a pacemaker emits pulses that are gated into an accumulator by attention. The current pulse tally (in working memory) is compared with a previously stored value (in reference memory) for that particular event duration. When the two values match closely enough, a decision rule operates to produce an estimate of time, which can be influenced by feedback. Much like a stopwatch, this system can be started (run mode), paused (stop mode), and reset (repeat mode) to time specific events or multiple events occurring at the same time (Buhusi & Meck 2009b, Meck & Church 1983).

As revealed by psychophysical methods used to quantify sensory responses to physical stimuli (see Gescheider 1997), timing and time perception have a variety of features (indices derived from psychophysical functions) that must be accounted for by all plausible models of the internal clock, regardless of the differences in their proposed mechanisms (Buhusi et al. 2002, 2005; Matell & Meck 2000; Penney et al. 2008; Wencil et al. 2010). For not only is the intensity of the internal perception linearly related to the magnitude of external stimulation (subjective time increases with physical time), but also increases in the magnitude of a physical stimulus produce proportional increases in the variance of the perception (it is more difficult to time precisely for longer durations)—referred to as scalar variance or Weber’s law (see Allan 1998). Thus interval timing ability shares many characteristic hallmarks with sensory perception (like vision and hearing; see Fraisse 1984). Considerable progress has been made in specifying the basic operating principles (Wearden 2005) and identifying the behavioral mechanisms and neural substrates involved in interval timing. Indeed models of interval timing have been called “the most successful [models] in the whole of psychology” (Wearden 2001, 2003).

Although neural–network states may be utilized to time subsecond durations without the need for a dedicated clock (Karmarkar & Buonomano 2007, Laje & Buonomano 2013), the timing of suprasecond durations on the order of seconds to minutes appears to involve a number of...
first- and second-order principles that can be used to classify (within- and between-) individual differences in interval timing ability (for details, see Buhusi & Meck 2005, Gibbon et al. 1984, Meck 2003). These principles define how the internal clock works and how it can be manipulated by sensory, psychological, and physiological factors. First-order principles are those that can be applied to individual event durations and typically involve the accuracy and precision with which the criterion duration is timed. These include differences in (a) how fast the subjective clock is ticking—clock speed (ν), the rate of pulse accumulation; see Figure 1; and (b) how the breadth of durations is subjectively stored and compared with ongoing (present) durations—associated memory translation parameter (k^*, comparing the current pulse count to the stored pulse count). Second-order principles compare multiple durations with each other in terms of (c) timescale invariance, that is, explaining why it is easier to detect one additional increment in stimulus value (i.e., brightness, duration) between high-intensity events compared with those of low intensity—the scalar property. The influence of nontemporal factors on interval timing also needs to be considered, such as (d) why auditory events of a given physical duration are judged subjectively as being longer than visual events—modality effects and memory mixing; (e) how our interval timing ability appears intimately related to our sensitivity to organizing rhythms—beat-based versus duration-based timing; and (f) how our subjective sense of time can be influenced by how much we are thinking about the temporal quality of events (e.g., the notion that a watched pot never boils)—attentional time-sharing. Of course, perhaps the most compelling challenge, and evidence, for the existence of the internal clock is in its neurobiological instantiation as described in the sections below (Allman & Meck 2012, Coull et al. 2011, Merchant et al. 2013, Salvioni et al. 2013, Teki et al. 2012).

William James (1890) first asked, “To what cerebral process is the sense of time due?” Experimental findings heavily implicate the cerebral cortex (Buonomano & Laje 2010; Durstewitz & Deco 2008; Harrington et al. 1998, 2004, 2010, 2011b; Ivy & Spencer 2004; Ivy & Schlerf 2008; Karmarkar & Buonomano 2007; Koch et al. 2009; Kotz & Schwartz 2010, 2011; Livesey et al. 2007; Matell et al. 2003, 2011; Meck et al. 2008; Van Rijn et al. 2013; Wiener et al. 2008a,b), along with the basal ganglia and cerebellum (motor and cognitive sequencing centers). The oscillatory properties of cortical neurons appear to produce the internal clock ticks and, hence, provide a distinct pattern of activity (ticks) to represent a given duration (cf. accumulator in Figure 1), which appear to be detected by striatal medium spiny neurons tuned to trigger an action potential to a target duration by detecting coincident oscillatory patterns (cf. memory processes; see Brody et al. 2003; Doya et al. 2005; Lutg et al. 2005; Treisman et al. 1990, 1994). There also appears to be a general form of ordinal (e.g., how much?) analog representation of magnitude (time, space, and number) within the parietal cortex (Buetti & Walsh 2009; Cordes et al. 2007; Meck & Church 1983; Walsh 2003a,b). These various contributions of the cerebral cortex to the properties of the internal clock are outlined in Table 1.

The overall strategy of this review is to discuss first- and second-order principles of the internal clock with emphasis on their neurobiological bases (Allman & Meck 2012, Claassen et al. 2013, Jones et al. 2011, Meck 2005, Merchant et al. 2013, Tregellas et al. 2006, Teki et al. 2012, van Rijn et al. 2011). We examine animal models; typical and atypical individual differences in human timing behavior, such as those affected by certain clinical disorders (e.g., autism, Parkinson’s disease, and schizophrenia); drug and lesion effects; and candidate neural substrates for the internal clock (i.e., corticostratial and cortico-cerebellar circuits). The goal is to provide the basis for a unified model of interval timing based on our current understanding of its underlying psychological and neural mechanisms (Allman & Meck 2012, Claassen et al. 2013, Cope et al. 2013, Jones & Jahanshahi 2013, Jones et al. 2011, Meck 2005, Merchant et al. 2013, Tregellas et al. 2006, Teki et al. 2012).
Table 1 Summary of cortical contributions to interval timing

<table>
<thead>
<tr>
<th>Cortical area(s)</th>
<th>Technique(s)</th>
<th>Species</th>
<th>Findings</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neocortex</td>
<td>Decortication by pial stripping</td>
<td>Rat</td>
<td>Rightward shift of timing functions consistent with a change in (k^*)</td>
<td>Jaldow et al. (1989, 1990)</td>
</tr>
<tr>
<td>Lateral AFC/primary motor cortex</td>
<td>Single-unit recording</td>
<td>Rat</td>
<td>Units demonstrate peaks of activity centered around the appropriate signal durations</td>
<td>Matell et al. (2003)</td>
</tr>
<tr>
<td>Medial AFC</td>
<td>Single-unit recording</td>
<td>Rat</td>
<td>Units demonstrate a heterogeneous population code of ramps, peaks, and troughs as a function of signal duration</td>
<td>Matell et al. (2011)</td>
</tr>
<tr>
<td>Lateral AFC</td>
<td>Aspiration lesion</td>
<td>Rat</td>
<td>Rightward shift of timing functions consistent with a change in (k^*)</td>
<td>Meck et al. (1987)</td>
</tr>
<tr>
<td>Lateral AFC</td>
<td>Aspiration lesion</td>
<td>Rat</td>
<td>Reduced clock speed effect of DA agonists and antagonists</td>
<td>Meck (2005)</td>
</tr>
<tr>
<td>Lateral AFC</td>
<td>Aspiration lesion</td>
<td>Rat</td>
<td>Impairments in STP</td>
<td>Olton et al. (1988)</td>
</tr>
<tr>
<td>Lateral AFC/primary motor cortex</td>
<td>Single-unit recording</td>
<td>Rat</td>
<td>Units respond to compound stimuli in an STP task</td>
<td>Pang et al. (2001)</td>
</tr>
<tr>
<td>PFC, presupplementary, and SMA</td>
<td>Single-unit recording</td>
<td>Monkey</td>
<td>Units code specific target durations by temporal filtering</td>
<td>Mita et al. (2009), Oshio et al. (2008)</td>
</tr>
<tr>
<td>PFC, Area 9</td>
<td>Single-unit recording</td>
<td>Monkey</td>
<td>Units respond in perceptual recognition and during the internal generation of a target duration</td>
<td>Yumoto et al. (2011)</td>
</tr>
<tr>
<td>Dorsolateral PFC, posterior inferior parietal cortex, basal ganglia, and posterior cingulate cortex</td>
<td>PET</td>
<td>Monkey</td>
<td>Local application of bicuculline resulted in selective impairments in timekeeping within the identified neural networks</td>
<td>Onoe et al. (2001)</td>
</tr>
<tr>
<td>Medial temporal lobe</td>
<td>Left or right temporal lobe resection</td>
<td>Human</td>
<td>Left temporal lobe resection leads to a leftward shift of timing functions consistent with a change in (k^*). Right resection leads to increased variability</td>
<td>Melgire et al. (2005), Vidalaki et al. (1999)</td>
</tr>
<tr>
<td>Left inferior parietal cortex</td>
<td>fMRI</td>
<td>Human</td>
<td>Left-hemispheric bias for implicit timing</td>
<td>Coull & Nobre (2008), Wiener et al. (2010a)</td>
</tr>
<tr>
<td>Right dorsolateral PFC</td>
<td>fMRI and TMS in normal controls as well as in patients with right PFC lesions</td>
<td>Human</td>
<td>Right-hemispheric bias for explicit timing with underestimation of duration following TMS and timing deficits in PFC patients</td>
<td>Coull & Nobre (2008), Harrington et al. (1998), Koch et al. (2002), Meck & Malapani (2004), Wiener et al. (2010b)</td>
</tr>
<tr>
<td>Left posterior parietal, striatal, and bilateral inferior frontal regions</td>
<td>fMRI</td>
<td>Human</td>
<td>Attending to time</td>
<td>Coull & Nobre (2008), Coull et al. (2008, 2011), Wencil et al. (2010)</td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Cortical area(s)</th>
<th>Technique(s)</th>
<th>Species</th>
<th>Findings</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left inferior frontal, superior temporal, and</td>
<td>fMRI</td>
<td>Human</td>
<td>Accumulator component of timing</td>
<td>Wencil et al. (2010)</td>
</tr>
<tr>
<td>SMA regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior frontal cortices bilaterally</td>
<td>fMRI</td>
<td>Human</td>
<td>Comparator component of timing</td>
<td>Coull et al. (2008), Teki et al. (2011), Wencil et al. (2010)</td>
</tr>
<tr>
<td>Frontostriatal circuits:</td>
<td>fMRI</td>
<td>Human</td>
<td>Three areas of a timing network that survive a task-difficulty manipulation have been identified: inferior gyrus, anterior insula, left supramarginal gyrus, and putamen</td>
<td>Coull et al. (2003, 2008, 2011), Harrington et al. (2010), Hinton & Meck (2004), Livesey et al. (2007), Meck et al. (2008), Rao et al. 2001</td>
</tr>
<tr>
<td>includes presupplementary motor area and right frontal operculum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right parietal cortex</td>
<td>fMRI in normal controls and brain-damaged patients with spatial neglect</td>
<td>Human</td>
<td>Cortical involvement of sensorimotor transformations with regard to space, time, and other magnitudes</td>
<td>Bueti & Walsh (2009) Danckert et al. (2007)</td>
</tr>
<tr>
<td>SMA, left premotor cortex, and left insula</td>
<td>fMRI</td>
<td>Human</td>
<td>Beat-based perceivers showed greater activation in comparison with duration-based perceivers</td>
<td>Grahn & McAuley (2009); see also Teki et al. (2011)</td>
</tr>
<tr>
<td>Left posterior superior, middle temporal gyri, and right premotor cortex</td>
<td>fMRI</td>
<td>Human</td>
<td>Duration-based perceivers showed greater activation in comparison with beat-based perceivers</td>
<td>Grahn & McAuley (2009); see also Teki et al. (2011)</td>
</tr>
<tr>
<td>Right superior temporal gyrus</td>
<td>TMS</td>
<td>Human</td>
<td>Impaired auditory temporal processing</td>
<td>Bueti et al. (2008a,b)</td>
</tr>
<tr>
<td>Auditory cortex</td>
<td>TMS</td>
<td>Human</td>
<td>Impaired auditory and visual temporal processing</td>
<td>Kanai et al. (2011)</td>
</tr>
<tr>
<td>Visual cortex</td>
<td>TMS</td>
<td>Human</td>
<td>Impaired visual temporal processing only</td>
<td>Kanai et al. (2011)</td>
</tr>
</tbody>
</table>

Abbreviations: AFC, agranular frontal cortex; DA, dopamine; fMRI, functional magnetic resonance imaging; k*, memory translation constant; PET, positron emission tomography; PFC, prefrontal cortex; SMA, supplementary motor area; STP, simultaneous temporal processing; TMS, transcranial magnetic stimulation.

FIRST-ORDER PRINCIPLES OF SUBJECTIVE TIME

Clock Speed/Thought Speed

The rate at which subjective time grows as a function of elapsing physical time is thought to be influenced by clock speed, which is reflected by the number of clock ticks or oscillations per unit time (Church 1984, Maricq et al. 1981, Meck 1983, Treisman 2013). This concept of clock speed and the subjective experience of time can be shown to be logically related to formulations of thought speed, which is independent of thought content but dependent on the level of arousal, mood, and the frequency of environmental events (Pronin 2013, Pronin et al. 2008, Pronin & Jacobs 2008, Pronin & Wegner 2006). Thus, the first-order principle of clock speed can accommodate the second-order principle of the influence of nontemporal features (i.e., modality, arousal, affect) on interval timing. Changes in clock speed (e.g., via arousal, emotion)
lead to proportional changes in the representation of event durations, through the rate at which
the criterion number of pacemaker pulses (clock ticks) is accumulated. Various pharmacological
and psychiatric conditions appear to modify clock speed, and changes in mean clock speed can
be modeled either as a within- or between-trials phenomenon, although the convention is to rely
on between-trial variation (Gibbon & Church 1984, 1990, 1992; Matell & Meck 2004; Meck
1983). Changes in clock speed are typically measured relative to a baseline condition, and absolute
measures (of pulse accumulation) are difficult to obtain (Williamson et al. 2008).

How might we attempt to measure the absolute speed of an internal clock? One strategy would
be to attempt to synchronize the time base with a repetitive signal (e.g., visual flicker or auditory
click trains) presented at a known frequency (Treisman et al. 1990; Wearden et al. 1999, 2009).
This process is referred to as entrainment, and assumptions must be made about the underlying
frequencies of these putative oscillatory processes (see Lustig et al. 2005, Matell & Meck 2004,
Treisman et al. 1994). Once participants have been entrained to this external metronome, they
could then be released into a free-run condition and allowed to return to their normal (clock
speed) state. Differences in the horizontal placement of their psychophysical timing functions
under these two conditions (entrainment versus free run) would allow investigators to determine
their natural oscillation frequency or clock speed (Treisman 2013).

Conventionally, when compared relative to a nondrug baseline (assigned a nominal value of
1.0 in the model), administration of indirect dopamine agonists—including drugs of abuse such
as cocaine, methamphetamine, and nicotine—increases clock speed as indexed by a leftward shift
in the position of timing functions (i.e., 20% faster; a value of 1.2 in the model; Cheng et al.
receptor antagonists such as haloperidol and raclopride produce proportional rightward shifts in
functions that are interpreted as reflecting a decrease in clock speed (and assigned multiplicative
constants <1.0 in the model; Buhusi & Meck 2002; MacDonald & Meck 2004, 2005, 2006; Mariq
& Church 1983; Meck 1983, 1986, 1996). In the internal-clock model, increases and decreases in
clock speed produce a multiplicative change in the stored clock reading associated with a particular
event duration.

Such pharmacological challenges (e.g., methamphetamine and haloperidol) have been coupled
with excitotoxic lesions of cholinergic cell bodies in the medial septal area and the nucleus basalis
magnocellularis, as well as with radiofrequency lesions of the fimbria-fornix and aspiration lesions
of the frontal cortex, to investigate control of the internal clock (Meck 1996, 2006a; Meck et al.
1986, 1987). Lesions of the nucleus basalis magnocellularis (which contains cholinergic cell bodies
that project to the frontal cortex), as well as lesions of the frontal cortex itself, selectively reduce
the pharmacological modification of clock speed. This ability suggests that clock speed is likely medi-
ated by dopamine receptors located on corticostriatal neurons in the nigrostriatal pathway (recall
that cortical oscillations likely serve as the time base of the internal clock coincidence detected by
medium spiny neurons in the striatum). Such combined lesion/genomic/pharmacological studies
provide a crucial foundation for understanding how the oscillatory properties of corticostriatal
circuits subserve clock ticks and the memory processes used in duration discrimination (Agostino
& Buhusi 2011). The selectivity of this cortical control of clock speed is supported by recent find-
ings showing that dopamine in the nucleus accumbens (mesolimbic pathway) plays a crucial role
in motivation/incentive salience but not in the regulation of clock speed (Kurti & Matell 2011).

The fact that time can subjectively pass by faster or slower under various conditions (i.e.,
low/high arousal and/or drug effects) may also account for the pace of behavioral and social inter-
populations, considered to have impairments in internal clock–related abilities, have the potential
to provide absolute measures of clock speed, including individuals with abnormal and normal aging, attention-deficit/hyperactivity disorder (ADHD), autism, schizophrenia, Parkinson’s disease, and drug abuse (Allman 2011; Allman & Meck 2012; Cheng et al. 2011; Kotz et al. 2009; Lustig & Meck 2001, 2005; Grahn & Brett 2009; Malapani et al. 1998; Meck 2006a,b,c; Meck & Benson 2002; Penney et al. 2005; Smith et al. 2007; Wittmann et al. 2007).

Memory Translation Constant

Researchers assume that the accumulation (current tally) of pacemaker pulses grows in a linear fashion as physical duration increases but may not necessarily be stored (remembered) veridically. The difference between the current duration (clock reading) and the encoded duration stored in reference memory is reflected by a memory translation constant (see Church 1984; Gibbon et al. 1984; MacDonald et al. 2007; Meck 2002a,b). That is, the number of pacemaker pulses is transferred from the accumulator to reference memory at some modifiable baud rate that ultimately influences the quantitative aspects of the represented signal duration (e.g., Meck 1983, 1996).

In a modified version of the original timing model, known as scalar timing theory (e.g., Gibbon et al. 1984; Gibbon & Church 1984, 1990, 1992), memory translation has formally been referred to as the K^* parameter, which is a multiplicative constant (Church 2003, Meck 1983). An individual would consistently expect the end of an event to occur later than the programmed time (i.e., if its memory storage constant was greater than 1.0) or earlier (i.e., if its memory storage constant was less than 1.0). The remembered duration of an event is based on the amount of time required to transfer the clock reading (e.g., oscillation vector or number of pulses in the accumulator) into reference memory. Transfer time would be directly proportional to the size of the oscillation vector or the number of pulses in the accumulator and the speed of transfer (i.e., baud rate).

Pulse accumulation essentially functions as an up counter and memory transfer functions as a down counter, with the additional assumption that neural networks can function as look-up or conversion tables (Dali & Zemin 1993, Kimura & Hayakawa 2008).

If the speed of this memory storage process were to deviate from normal values, then it would be possible for proportionally shorter or longer values to be represented in memory. Unlike changes in clock speed, changes in memory storage speed would not self-correct, even in the case where individuals were surprised by the mismatch between their clock readings and a value sampled from reference memory. This lack of flexibility is because any updating of memory in this case would lead to the continued distortion of stored values for as long as the modification in memory storage speed remained in effect, i.e., as long as k^* was greater than or less than 1.0 (e.g., Meck 1983, 1996, 2002a).

Derived k^* parameters have been obtained from various typical and atypical populations. For example, principled computer modeling (Wearden 2001) of time-perception (temporal generalization) data in children reveals that the k^* parameter (and hence, memory distortion) quantifiably improves across childhood (Droit-Volet et al. 2001, Lustig & Meck 2011), and this typical trend in k^* is not observed in a broader age range of individuals with autism (Allman 2011, Allman et al. 2011). Damage to hippocampal and cortical circuits produces distortions in temporal memory that are proportional to the physical durations of the events being timed; hippocampal-related damage produces underproductions and cortical-related damage produces overproductions of target durations (Coull et al. 2011; Harrington et al. 1998; Jaldow et al. 1989, 1990; Koch et al. 2003; Meck 1988; Meck et al. 1984, 1987, 2013; Olton et al. 1988; Vidalaki et al. 1999; Yin & Meck 2013; Yin & Troger 2011; Yin et al. 2010). Moreover, the relationship between the magnitude of the error in the content of temporal memory and activity in the frontal cortex and hippocampus has been examined in mature (10- to 16-month-old) and aged (24- to 30-month-old) rats (Meck 2002a,b, 2006c). Regression analyses indicated that neural activity in the frontal cortex of both mature and
aged rats, and in the hippocampus only for aged rats, is proportional to the absolute error in the content of temporal memory. The observed changes in neural activity were dependent on the predictability of the programmed time of feedback and age-related changes in memory encoding and retrieval.

SECOND-ORDER PRINCIPLES OF SUBJECTIVE TIME

Scalar Property

The scalar property of interval timing is a form of Weber’s law that is shared with the other senses (Gescheider 1997, Gibbon 1977). It is characterized by proportionality between the standard deviation of a response distribution and the target duration being timed, reflected in the linearity of the relationship between timing variability and duration magnitude (Church 1984, 1989; Church et al. 1994; Gibbon 1977, 1991; Gibbon et al. 1984; Malapani & Fairhurst 2002; Piras & Coull 2011). This notion suggests that the coefficient of variation (CV; ratio between the standard deviation and the mean of the sample) should be constant across a range of durations; multiple timescales may also be identified that reflect timing mechanisms with different levels of precision, such as subsecond and suprasecond timing (Cordes & Meck 2013, Gibbon et al. 1997; but see Lewis & Miall 2009 for an alternative view of violations of the scalar property). Moreover, a strong form of Weber’s law applied to interval timing can be evaluated by plotting the entire response function obtained from the timing task, e.g., peak-interval or temporal bisection procedures, on a relative timescale, i.e., normalized by the obtained peak time or the point of subjective equality as illustrated in Figures 2, 3, 4, and 5. The superimposition of the entire psychometric function for

![Figure 2](image)

Figure 2

Human peak-interval timing functions for 8-, 12-, and 21-s target durations. Mean keyboard responses per 0.5 s plotted as a function of duration (seconds) for a visual (blue square) signal. Data are replotted from Rakitin et al. (1998) with permission.
a relatively wide range of durations provides strong evidence for timescale invariance and for the scalar property of interval timing (Cheng & Meck 2007, Church & Deluty 1977, Church et al. 1991). In general, excellent superimposition has been observed in human temporal perception using the bisection procedure with durations ranging from 50 to 8,000 ms (Melgire et al. 2005), from 750 to 2,100 ms (Allan & Gibbon 1991), and from 2,000 to 12,000 ms (Penney et al. 2000).

Figure 4
Modality difference/memory mixing. Group probability of mean long response, p ("long"), functions averaged across participants for the auditory and visual signals presented during the same session in the 2-s versus 8-s temporal bisection procedure. Data are from control participants and patients with either left or right temporal lobe resection. The broken lines indicate the signal duration typically associated with the point of subjective equality for auditory or visual signal presented alone, which is at the geometric mean (GM) of the short- and long-anchor durations (GM of 2 s and 8 s = 4 s). Data for auditory and visual signal durations are replotted from Melgire et al. (2005) with permission.
Figure 5
Scalar property. Superimposition plot of temporal bisection functions in control participants and patients with either left or right temporal lobe resection. These rescaled response functions from the data in Figure 3 were created in three steps. First, for each participant and condition, the probe durations were divided by the corresponding point of subjective equality in order to normalize the data. Second, the resulting proportion \(T_{1/2} \) values were rank-ordered across participants by condition and grouped in bins of 0.25 unit width. Third, the probability long response, \(p \) ("long"), values corresponding to the \(T_{1/2} \) values in a given relative time bin, were averaged for that bin. Note that for these plots the values in the end time bins are less reliable than those in the central bins because fewer \(p \) ("long") values are likely to contribute to the end bin averages because not all participants will show the same range of proportion \(T_{1/2} \) scores. Data for auditory and visual signal durations are replotted from Melgire et al. (2005) with permission. See Allan & Gibbon (1991) for additional details on this method for evaluating superimposition in the temporal bisection procedure.

Superimposition has been equally consistent for human temporal production and reproduction using the peak-interval procedure with durations ranging from 8 to 21 s (Rakitin et al. 1998) and from 8 to 24 s (Hinton & Rao 2004). Moreover, identification of brain regions showing the scalar property in the hemodynamic response associated with the timing of 11- and 17-s durations in an fMRI experiment is a powerful technique for studying corticostratial circuits and isolating the perceptron component of the neural representation of time in the putamen and other areas of the dorsal striatum (Coul et al. 2008, 2011; Forstmann et al. 2010; Hinton & Meck 2004; Jin et al. 2009; MacDonald et al. 2012; Matell & Meck 2004; Meck & Malapani 2004). The scalar property (i.e., Weber’s law) as applied to the mismatch negativity in event-related potentials (ERPs) associated with temporal deviants has also been used as a marker to study the development and preattentive aspects of interval timing in preverbal infants and in healthy adults (Brannon et al. 2004, 2008).

Violations of the scalar property frequently result from procedural issues (Buhusi et al. 2009, Wearden & Lejeune 2008) or data analysis considerations, i.e., whether the CV should be calculated for peak-interval data based on the distribution of peak times from single-trial analysis or from the mode and spread of the mean response function (e.g., Church et al. 1994, Gibbon & Church 1990, Rakitin et al. 1998). When individual differences are observed in the scalar property, it is important to investigate whether some participants are employing a chronometric counting strategy to improve their accuracy and precision for longer durations (Hinton & Rao 2004). Altered variance patterns have also been observed following damage to the underlying timing mechanisms in the basal ganglia in both Huntington’s and Parkinson’s diseases (e.g., Aparicio et al. 2005, Artieda et al. 1992, Hinton et al. 2007, Malapani et al. 1998). Consequently, individual differences in the scalar property can be diagnosed and classified according to their variance properties. If participants are counting rather than timing, and count at similar rates for all durations, their count totals will be
proportional to the durations that they are instructed to time. In this case, the standard deviations of their counting distributions will be proportional to the square root of the duration rather than to the target duration itself as required for scalar timing. Explicit counting improves the precision of timing performance as reported by Rakitin et al. (1998) and modeled by Killeen (1991) and Killeen & Weiss (1987). Chronometric counting of this sort involves the participant subdividing a given duration into a series of smaller intervals that are counted. Nevertheless, the variability of these subintervals typically displays the scalar property over the range of 0.5–1.3 s (Hinton & Rao 2004).

Damage to and/or pharmacological blockade of corticostriatal circuits impairs the regulation of clock speed as a function of the target duration (MacDonald & Meck 2004, 2005, 2006; Meck 1986, 1996, 2006a,b). This limitation is important because timescale invariance is thought to result from the clock reading increasing monotonically within trials at a rate that depends on the duration of the interval (see Almeida & Ledberg 2010, Killeen & Fetterman 1988). As a consequence, diminished control over this systematic increase in clock speed would result in a violation of the scalar property such that longer intervals will be timed more precisely than shorter intervals owing to the loss of the scalar source of variability in clock speed (assuming that the default is Poisson variability; see Gibbon 1992). Weakened regulation of clock speed in Parkinson’s disease can also lead to the coupling or migration of multiple target durations such that the shorter duration is overproduced and the longer duration is underproduced (Jones et al. 2008, Koch et al. 2008, Malapani et al. 1998, Shea-Brown et al. 2006).

Furthermore, the scalar property is also demonstrated in the quality of parent-infant interactions (including gaze and vocalizations); specifically, their coordination alternates between scalar and absolute timing patterns in delicate arrangements (see Jaffe et al. 2001). As noted above, the scalar property is also evidenced in the ERPs of infant brains on a passive duration deviation task employing several different ratios of deviants (1:4; 2:3) to regular 375- to 1,500-ms interstimulus intervals, as the amplitude of the deviant-triggered ERP varied according to the stimulus ratio used (Brannon et al. 2008). These improvements in timing sensitivity correspond to critical periods for the development of other cognitive and behavioral abilities. The steepness of children’s temporal generalization functions generally increases across childhood (between 3 and 8 years of age; Droit-Volet et al. 2001, Droit-Volet & Wearden 2001). Characteristic differences in the Weber ratio and quality of superimposition have been observed in the temporal bisection performance of children with a developmental disability or autism (Allman et al. 2011) and in adults at high genetic risk for schizophrenia or major affective disorder (Penney et al. 2005).

Observed deviations in the scalar property of interval timing (e.g., the standard deviation of temporal estimates is proportional to the mean of the interval being timed) are often idiosyncratic, and no principled explanation has been offered for when or at what durations they should occur (except for a hypothesized boundary or transition from one type of timing mechanism to another around 1–3 s; see Gibbon et al. 1997, Grondin 2010). Moreover, most quantitative theories of timing incorporate the scalar property because without it they would fail to account for the vast majority of published data. A number of timing theories implicitly assume that the amount of training or experience with specific durations will reduce the variability in their detection/production, hence providing a basis for a lower coefficient of variation for those particular durations compared with durations that are less well trained (Matell & Meck 2004). These factors, of course, are likely to vary as a function of the task demands and other details specific to the individual participants. At present, it does not seem useful to make a laundry list of exceptions to the scalar property when it is clearly a dominant factor in both the perception and production of durations in the millisecond-to-minutes range. Also, scalar timing theory (Gibbon et al. 1984) is based on the assumption of a Poisson (nonscalar) pacemaker/accumulator that is dominated by scalar sources of variance from memory and/or decision mechanisms. Implicit in this quantitative model is the
idea that if the scalar sources of variability could be reduced by practice and/or other factors, then the nonscalar timing mechanism would be revealed. Hence, temporal discrimination is the result of a combination of different stages of information processing (e.g., clock, memory, and decision), each with a unique form of variance, the balance of which produces the scalar property of interval-timing behavior. Evaluation of the scalar property also depends on which response measures are used [e.g., measure of central tendency and variance of a distribution of temporal estimates versus the form of the entire distribution as determined by the degree of superimposition of different response functions (see Allan & Gibbon 1991, figures 10, 11)].

Modality Effects/Memory Mixing

The original internal clock model (Church 1984) has been used to investigate the phenomenon that sounds of a given duration are judged longer than lights of the same duration. This modality difference in the subjective experience of time highlights the roles of attention and memory mixing in duration judgments (see Allan 1998, Penney et al. 1998). It is typically easier (improved performance) to discriminate differences in time with auditory rather than visual events; transfer from visual to auditory events is greater than from auditory to visual events; and although the attribute of duration may be used independently of stimulus modality, modality-specific information is also encoded and available for use in temporal accumulator models of interval timing (Bartolo & Merchant 2009, Bueti & Macaluso 2011, Gibbon et al. 1984, Gilaie-Dotan et al. 2011, Hass et al. 2012, Meck & Church 1982).

If both modalities are presented within the same experimental session, and with the same criterion duration (in temporal bisection), individuals are more likely to give “long” judgments to auditory rather than to visual intermediate durations (Cheng et al. 2008; Meck 1991; Penney et al. 1998, 2000; Wearden et al. 1998). This difference in perceived duration may occur because auditory stimuli capture and hold attention relatively automatically, whereas attending to visual stimuli requires controlled attention (Meck 1984); for instance, older adults show an exaggerated modality effect compared with young adults, consistent with age-related reductions in attentional control (Cheng et al. 2008, 2011; Lustig & Meck 2001). Within the context of the model (Church 1984), pacemaker pulses (clocks ticks) for auditory stimuli are more efficiently accumulated, allowing larger pulse accumulations and less uncertainty in the stimulus duration (see Cicchini et al. 2012). If relatively small visual and relatively large auditory pulse tallies are intermixed and stored together as a reference memory for that criterion duration, then ongoing pulse tallies (in working memory) for auditory events have an increased probability of being judged long, relative to the reference memory randomly drawn from the sample (vice versa for visual events).

Large individual differences in memory mixing as explained by Bayesian models of optimization have been observed in time-perception experiments (temporal bisection, generalization, and reproduction) using children and young adults (e.g., Acerbi et al. 2012; Burr et al. 2013; Cicchini et al. 2012; Droit-Volet et al. 2007; Jazayeri & Shadlen 2010; Ogden et al. 2010; Penney et al. 2000; Shi et al. 2010, 2013a,b). The amount of memory mixing can be influenced by both positive and negative feedback (e.g., Gu & Meck 2011), by neurodegenerative conditions such as Parkinson’s disease (Gu et al. 2013, Smith et al. 2007), by psychiatric illnesses such as schizophrenia (e.g., Carroll et al. 2008, Penney et al. 2005), and by temporal lobe resection as a treatment for epilepsy (Melgire et al. 2005). Differences in the temporal bisection functions for auditory and visual signal durations for control participants and patients following left or right temporal lobe resection are illustrated in Figures 4 and 5.

Various cortical areas are involved in the timing of both auditory and visual stimuli (Bueti et al. 2008a, N’Diaye et al. 2004). Moreover, intrasensory timing can be distinguished from intersensory...
timing, in part by decreased striatal and increased superior parietal activation (Harrington et al.
2011a). Combined electroencephalography and magnetoencephalography studies have revealed
contributions from both auditory and visual cortices in terms of sustained sensory responses,
whereas prefrontal and parietal regions appear to integrate modalities in terms of representing
event durations (N’Diaye et al. 2004).

With respect to the neurological basis for the phenomenon that sounds are judged longer than
lights, there appears to be an interesting asymmetry in how events in different modalities are
timed: The right posterior parietal cortex is involved in the timing of both auditory and visual
stimuli, whereas visual areas MT/V5 are involved only in the timing of visual events (Bueti et al.
2008b). Disruption of the auditory cortex using transcranial magnetic stimulation (TMS) impaired
timing not only for auditory events, but also for visual events (Kanai et al. 2011). In contrast, TMS
administered over the primary visual cortex impaired timing performance only for visual events.
These results suggest a superiority of the auditory cortex in temporal precision; likewise, they
corroborate the proposal that the temporal dimensions of both auditory and visual events are
rapidly encoded in the auditory cortex, thereby contributing to the supramodal role for auditory
modalities in timing and time perception (see Bueti 2011, Bueti & Macaluso 2010). In contrast,
visual events are encoded in the visual cortex in a more selective and controlled (less automatic)
fashion (Kanai et al. 2011; see also Meck 1984, Penney et al. 1996). This asymmetry is consistent
with findings from cross-modal transfer of duration studies in which discrimination performance
is typically better for auditory than for visual events and transfer from visual to auditory events is
greater than from auditory to visual events, and although the attribute of duration may be used
independently of stimulus modality, modality-specific information is also encoded and available
for use in temporal accumulator models of interval timing (Bueti & Macaluso 2011, Gibbon et al.

Beat-Based Versus Duration-Based Timing
An intriguing principle of the internal clock, as it relates to its scope, is highlighted by the large
and striking individual differences in sensitivity to an implied beat (much like being able to dance
to a tune in a coordinated fashion). The question is whether beat perception and interval timing
are mediated by different neural circuits: In essence, are they component processes of a broader
internal clock, or are they two separate timing systems? Beat perception has been investigated
by presenting participants with ambiguous tone sequences; a periodic 600-ms beat is implied
but not explicitly emphasized, and participants are required to judge whether the sequences are
speeding up or slowing down at the end (Grahn & McAuley 2009, McAuley & Henry 2010).
Individuals who did not detect the implied beat perceived the sequences ending with intervals
between 300 and 600 ms to be slowing down, whereas individuals who did detect the implied beat
perceived the same sequences to be speeding up. Grahn & McAuley (2009) developed an index
of the nature of the decision process and its application to the ambiguous sequence paradigm
(termed a temporal contrast metric), which determines whether an individual tends toward or
against beat-based or duration-based timing and is based on the general theoretical framework
of previous dynamic systems models developed by McAuley and colleagues (e.g., McAuley &
Jones 2003, McAuley & Miller 2007). The required speeding up or slowing down judgments are assumed
to involve the simultaneous consideration of two temporal referents corresponding to different
interstimulus intervals or beats. Neuroimaging during this task revealed higher levels of activity
in the supplementary motor area, the left premotor cortex, the left insula, and the left inferior
frontal gyrus for the strong-beat group as compared with the weak-beat group. In contrast, the
weak-beat group showed higher levels of activity in the right premotor cortex and the left posterior
superior and middle temporal gyri. No regions of activation were associated with years of musical experience, and researchers found no evidence that duration-based timing was less accurate or precise than beat-based timing.

Various findings support the proposal that the cerebellum may subserve absolute timing of subsecond intervals (Diedrichsen et al. 2003; Grube et al. 2010a,b; Teki et al. 2011), whereas corticostriatal circuits are involved in the relative timing of longer intervals as well as rhythmic sequences with a regular beat (Coull et al. 2011; Grahn & Brett 2009; Grahn & McAuley 2009; Grahn & Rowe 2012; Meck 2005; Schwartze et al. 2011, 2012a,b; Teki et al. 2011). Other conceptions have stressed the importance of task difficulty; the cerebellum plays a critical role in basic timing and corticostriatal circuits are recruited in a load-dependent manner (Livesey et al. 2007, Tregellas et al. 2006). How stimulus factors, attention and task factors, and development and training factors mediate the strength of beat-based timing is currently under investigation. The assumption is that beat-based timing is engaged only within a limited range of durations, corresponding to an entrainment region that is influenced by the precision of oscillator synchronization and the resetting of coincidence-detection mechanisms at the beginning of a sequence (Coull et al. 2011, Matell & Meck 2004, McAuley et al. 2006).

Understanding the degree to which individuals engage in a beat-based versus duration-based timing mode is critically important for a better characterization of temporal-processing deficits implicated with various developmental disorders (e.g., autism spectrum disorder and ADHID) as well as neurological (e.g., Huntington’s and Parkinson’s diseases) and psychiatric disorders (e.g., ADHD, schizophrenia) as outlined by Allman & Meck (2012), Conners et al. (1996), Levin et al. (1996), Meck (2005), and Noreika et al. (2013). An underlying propensity to engage in beat-based timing may somehow be related to, or manifested in, the timing of other behavioral tendencies, such as the rhythmical nature of many certain repetitive behaviors performed by those with certain sensory processing disorders (e.g., autism, schizophrenia). Beat-based timing shares a similar neurological basis with stereotypic behavior (of the type also expressed by nonhuman animals), specifically the basal ganglia (and striatum) and action on the D2 receptor. The length and complexity of behavioral habits have been posited to correspond to the nature of fixed routines in autism and may function as forms of a compensatory behavioral clock (Allman & DeLeon 2009, Boucher 2001). It remains to be seen if clinical populations with severe repetitive behaviors are more or less susceptible to beat-based timing; this notion is currently being investigated in autism (Allman et al. 2012, Falter et al. 2012).

Attentional Time-Sharing

As noted above, in the internal clock model the accumulated number of pacemaker pulses depends on attentional resources allocated to interval timing (Meck 1984). When an individual attends to a second task, or when intruder/distraction events are presented, estimated durations are shorter, presumably owing to resources being diverted from timing (Champagne & Fortin 2008, Fortin et al. 2010, Grondin 2010, Macar et al. 1994, Macar & Vidal 2009). Investigators have recently extended this time-sharing hypothesis by proposing that resource reallocation is proportional to the perceived contrast, both in temporal and nontemporal features, between intruders and the timed events. Experimental findings support this extension by showing that the effect of an intruder/distraction is dependent on the relative duration of the intruder to the intertrial interval (Buhusi & Meck 2006, 2009a,b).

Individual differences in the probability of attending to separate events (e.g., multiple to-be-timed signals presented simultaneously, dual-task components, distractors, and contextual stimuli) can be monitored during an experimental session to evaluate factors governing fatigue and vigilance.
(e.g., Buhusi & Meck 2006; Meck 1987; Meck & Williams 1997a,b); an overview of the importance of simultaneous temporal processing to the general architecture of the internal clock is provided by Church (1984) and Meck & Church (1982, 1984). Differences in the ability to reproduce previously experienced auditory and visual target durations either in isolation (focused attention) or concurrently (divided attention) have been reported in young adults who typically produce trained criterion durations equally well in either condition and also in older adults who often exhibit an age-related increase in timing variability in divided attention conditions and simultaneous temporal processing (e.g., Bherer et al. 2007, Lustig & Meck 2001, McAuley et al. 2010, Pang et al. 2001). Age-related impairments are often associated with a decrease in working memory span, and the relationship between working memory and timing performance is usually largest for visual targets in divided attention conditions. Moreover, time-of-day effects are frequently observed such that younger adults show better timing performance in the evening, and older adults show better performance in the morning; performance at the optimal time of day for each age group was relatively similar, but the performance for aged adults at the nonoptimal time of day was the most impaired (Lustig & Meck 2001). How these time-of-day effects emerge as a function of normal aging is uncertain, but the circadian modulation of interval timing as well as the associated genetic and molecular bases of individual differences in timing are currently topics of considerable interest (Agostino et al. 2011a,b; Balci et al. 2009).

This second-order principle is also evidenced by behavioral and neurobiological data (e.g., Bherer et al. 2007; Buhusi & Meck 2000, 2006, 2009a,b; Fortin et al. 2009; Gooch et al. 2009; McAuley et al. 2010). Brain circuits engaged by timekeeping comprise not only those primarily involved in pulse accumulation, but also those involved in the maintenance of attentional and memory resources for timing as well as in the monitoring and reallocation of those resources among tasks (Buhusi & Meck 2009a, Van Rijn et al. 2011). This view is consistent with dynamic attending theory, which proposes that attention can be modeled as a self-sustained oscillation capable of entrainment to the relevant temporal sequence of events (Large & Jones 1999).

Neuroimaging studies in humans suggest that timekeeping tasks engage brain circuits typically involved in attention and working memory (Coull et al. 2008, 2011; Coull & Nobre 2008; Livesey et al. 2007; Lustig et al. 2005; Meck & N’Diaye 2005). Studies with unilateral neglect patients have shown a dramatic underestimation of time for durations up to 60 s (Danckert et al. 2007, Merrifield et al. 2010). These findings have been extended to normal participants who indicate an increased sensitivity to the duration of events presented in left visual space as a result of the right parietal cortex being more dominant in the allocation of attentional resources required for temporal integration (Allman & Danckert 2005). Many behavioral, pharmacological, lesion, and electrophysiological studies in animals support this time-sharing hypothesis as well (Meck et al. 2008).

SUMMARY AND DESCRIPTION OF A UNIFIED MODEL OF TEMPORAL INTEGRATION

Although our sense of time is necessarily subjective and varies according to context (Agostino et al. 2008, Droit-Volet et al. 2013, Droit-Volet & Meck 2007, Wittmann 2013), fundamental properties of interval timing ability have been identified, some of which are common to the perception of other senses. These first- and second-order principles of the internal clock provide diagnostic criteria with which to assess typical and atypical individual differences in timing and time perception (see Gilaiie-Dotan et al. 2011, Lake & Meck 2013). Examining the nature of both individual and population-level differences in interval timing is an exciting prospect to better understand our awareness of subjective time and how time plays such a central role in our physical and mental lives (see Tulving 2002).
Our goal has been to provide the basis for a unified model of the internal clock. For instance, Teki et al. (2012) have recently proposed a timing system within core regions of the motor network such as the cerebellum, the inferior olive, the basal ganglia, the presupplementary and supplementary motor areas, and the premotor cortex, as well as higher-level areas such as the prefrontal cortex (as illustrated in Figure 6). In this manner, Teki et al. (2012) have built on previous proposals

![Diagram](image)

Figure 6
(a) Absolute and relative timing task. Irregular: A sequence of clicks with an average of 15% jitter was used to study absolute, duration-based timing. Participants were required to compare the duration of the final interval, T_n, to the penultimate interval, T_{n-1}, where T_n incorporates a difference (ΔT) of 30% of the interonset interval (range: 440–560 ms) from that of the preceding interval such that $T_n = T_{n-1} \pm \Delta T$ 30%. Regular: A sequence of clicks with no jitter is used to study relative, beat-based timing. Participants were required to compare the duration of the final interval, T_n, to the penultimate interval, T_{n-1}, where T_n incorporates a difference (ΔT) of 15% of the interonset interval from that of the preceding interval such that $T_n = T_{n-1} \pm \Delta T$ 15% (see Teki et al. 2011 for further details). (b) A unified model of time perception. The striatal network (blue) and the olivocerebellar network (green) are connected to each other via multiple loops, and with the thalamus, pre-SMA/SMA, and the cerebral cortex. Dopaminergic pathways are shown in orange, inhibitory projections in red, excitatory and known anatomical connections in solid and dashed black lines, respectively. Abbreviations: GPe, globus pallidus external; GPi, globus pallidus internal; IO, inferior olive; SMA, supplementary motor area; SNpc, substantia nigra pars compacta; SNpr, substantia nigra pars reticulate; STN, subthalamic nucleus; VTA, ventral tegmental area. (c) Timing mechanism underlying the unified model. To estimate an interval of duration T, both the striato-thalamo-cortical (SBF) networks and olivocerebellar (OC) networks act in parallel to produce timing signals T_{SBF} and T_{OC}, respectively, such that the combined output of the system approximates the length of the criterion time interval, T. Adapted from Meck (2005) and Teki et al. (2011).
by Allman & Meck (2012) and Meck (2005) to show how corticostriatal and cortico-cerebellar systems can subserve different aspects of a perceptual and motor timing system. Previous work by this research group established that olivocerebellar circuits support absolute, duration-based timing and that striato-thalamo-cortical circuits support relative, beat-based timing (Teki et al. 2011). Moreover, recent neuroimaging studies indicate that the timing functions of these circuits are codependent (Jahanshahi et al. 2010). Hence, we have proposed an integrative view of time perception based on coordinated activity in the core striatal and olivocerebellar networks, which are interconnected with each other and with the cerebral cortex through multiple synaptic pathways. Timing in this unified model may involve serial beat-based striatal activation followed by absolute olivocerebellar timing mechanisms (Allman & Meck 2012, Cope et al. 2013, Teki et al. 2012; see also Merchant et al. 2013).

FUTURE DIRECTIONS

The properties and nature of the internal clock can be investigated in many ways, and the strengths of the psychophysical approach coupled with well-specified psychological models and neurobiological mechanisms provide a fertile ground for timing research. In the context first posed by William James, future studies will need to address the degree to which the prefrontal cortex can self-generate multisec time intervals in the absence of an external to-be-timed event (Lustig et al. 2005, Matell et al. 2011, Mita et al. 2009, Yumoto et al. 2011). Evidence of this type of temporal representation would demonstrate the successful disengagement of cortical circuits from the striatal mechanisms initially required for beat detection and entrainment to external stimuli (see Grahn & Brett 2009, Grahn & McAuley 2009, Grahn & Rowe 2012, Gu et al. 2011). Moreover, the involvement of the prefrontal and parietal cortices may need to be reconsidered in terms of understanding how the basal ganglia can train multiple cortical areas to recognize and/or produce specific sequences of durations in the manner of actor-critic models (e.g., Hampshire et al. 2011, Joel et al. 2002, O’Reilly & Frank 2006). The quest for the internal clock (translating objective time into subjective time) and its neurological basis, which is modifiable by nontemporal stimuli and pharmacological states and which reveals typical and atypical differences in various populations (individuals with neurological, psychiatric, and psychological disorders), is perhaps the elusive key to understanding consciousness in the mind and brain (Smythies et al. 2012).

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Preparation of this review was supported, in part, by a Eunice Kennedy Shriver National Institute of Child Health and Human Development career development award (K99 HD058698) to M.J.A.

LITERATURE CITED

Buhusi CV, Oprisan SA. 2013. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons. *Behav. Process.* 95:60–70

www.annualreviews.org • *Properties of the Internal Clock* 21.25

Changes may still occur before final publication online and in print

Matell MS, King GR, Meck WH. 2004. Differential adjustment of interval timing by the chronic administration of intermittent or continuous cocaine. *Behav. Neurosci.* 118:150–56

Meck WH, Williams CL. 1997b. Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. *Neuroreport* 8:3045–51

Shi Z, Ganzenmüller S, Müller HJ. 2013b. Reducing bias in auditory duration reproduction by integrating the reproduced signal. *PLoS ONE* 8:e62065

Ullman MT, Pierpont EI. 2005. Specific language impairment is not specific to language: the procedural deficit hypothesis. *Cortex* 41:399–433

Vidalaki VN, Ho M-Y, Bradshaw CM, Szabadi E. 1999. Interval timing performance in temporal lobe epilepsy: differences between patients with left and right hemisphere foci. *Neuropsychologia* 37:1061–70

Yin B, Meck WH. 2013. Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ opioid receptor gene deletion. *Philos. Trans. R. Soc. B.* In press

RELATED RESOURCES

