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Counting models of temporal discrimination
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A three-categorytask was employed to test counting models for temporal discrimination. Unlike for-
mer approaches, the present one is not based on Weber functions. Specifically, the proposed test does
not require the implicit but, nevertheless, debatable assumption that the pulse rate of the internal clock
is constant for different durations of the standard interval. Furthermore, the present approach does not
necessitate specific distributional assumptions about the interpulse times. An experiment was con-
ducted to evaluate the predictions of this generalized counting model. The results are consistent with
predictions of the generalized counting model. A further analysis suggeststhat the pulse rate decreases

as the duration of the standard interval increases.

Internal clock models based on neural counting provide
a useful heuristic for explaining human performance on
the temporal discrimination of brief intervals. It is not
surprising, therefore, that the notion of a pacemaker-
counter system represents a fundamental feature of most
psychophysical models of temporal discrimination in-
troduced over the last 4 decades (e.g., Allan, Kristoffer-
son, & Wiens, 1971; Creelman, 1962; Gibbon, 1977; Kil-
leen & Fetterman, 1988; Penton-Voak, Edwards, Percival,
& Wearden, 1996; Treisman, 1963; Treisman, Faulkner,
Naish, & Brogan, 1990).

Probably, the first quantitative model for temporal dis-
crimination based on neural counting was developed by
Creelman (1962). According to his model, the internal
clock mechanism is basically characterized by an accu-
mulator that counts neural pulses occurring during the
duration to be judged. The source of the neural pulses is
considered to be a large number of independentelements,
whose time of firing is randomly distributed. Thus, the
number of pulses counted during a given time interval is
the internal representation of this interval. Creelman as-
sumed that the number N(?) of pulses accumulated during
a given time interval ¢ follows a Poisson process with rate
A. This process implies that the interpulse times are in-
dependent and exponentially distributed random vari-
ables with a mean and standard deviation equal to 1/A.

Numerous studies on duration discrimination have been
conducted to test the validity of the conceptually highly
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attractive pacemaker-counter models (e.g. Abel, 1972a,
1972b; Allan et al., 1971; Divenyi & Danner, 1977; Getty,
1975, 1976; Killeen & Weiss, 1987; Kinchla, 1972). In
these studies, the subject typically receives two successive
tones of different durations, a standard interval 7, followed
by a comparison interval 7,. The standard interval is usu-
ally presented first and kept constant within a single ses-
sion (e.g., Getty, 1975). Within a session, the comparison
interval varies randomly from trial to trial over a range of
preselected values.

The most common test of counting models for tempo-
ral discrimination compares the observed Weber function
with the predicted one. The observed Weber function is
obtained by plotting the Weber fraction (difference thresh-
old divided by ¢,) againstz,. Usually, the observed Weber
function decreases initially as 7, increases from zero and
attains an asymptotic value for longer standard intervals
in accordance with Weber’s law, or scalar timing (Getty,
1975; Gibbon, 1977; Killeen & Weiss, 1987; Treisman,
1963). In particular, Getty (1975) has shown that the ob-
served Weber function decreases more sharply than the
predicted Weber fraction of the simple counting model,
which predicts a strictly decreasing function, a finding that
has been obtained by several studies (e.g. Abel, 1972b; Fet-
terman & Killeen, 1992; Grondin, 1993; Henry, 1948;
Treisman,1963). Thus, counting models are at variance
with the classical data from temporal discrimination tasks.

The test of the Poisson counting model just described
appears inadequate, because it is based on the implicit,
yet questionable, assumption that the rate of pulse gen-
eration does not vary with 7, (e.g., Getty, 1975). It might
be the case that an internal timing mechanism can only
operate optimally over a restricted range of durations, ow-
ing to neuronal limitations (Ivry & Hazeltine, 1992)—that
is, the rate of the pulse stream might vary with the dura-
tion of the standard interval. More specifically, it seems
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quite plausible that the timing of brief durations neces-
sitates the generation of especially short interpulse du-
rations (Killeen, 1992; Killeen & Fetterman, 1988). A
higher pulse rate would avoid potential truncation effects
and, consequently, could improve the temporal resolution
of the timing mechanism (Killeen & Weiss, 1987). Indeed,
Killeen and Weiss have proposed that an optimal timing
system should be flexible and, therefore, the rate at which
the internal timing mechanism operates must also vary.

Another problem in testing counting models concerns
the auxiliary assumption that the distribution of N() rep-
resents a Poisson process. Such a process implies that the
interpulse time is exponentially distributed (see Ross,
1983). The mode of an exponential distributionis equal to
zero. This property of the exponential distribution is in-
compatible with the well-known fact that, in most neurons,
the action potential is followed by a refractory period,
during which no action potential can be generated. Thus,
it seems desirable to exclude this restrictive distributional
assumption from a more general test of counting models.

The present paper introduces an alternative psycho-
physical test for counting models that requires neither the
questionable assumption of a constant pulse rate that is
independent of the duration to be timed nor a specific
distributional assumption about the interpulse distribu-
tion. If, under these relaxed assumptions, the predictions
of this more general test are met, this would provide sub-
stantial evidence for the validity of counting models. In
particular, it would support the notion of a flexible pulse
rate, as suggested by Killeen and colleagues (e.g. Killeen
& Fetterman, 1988). If this test fails, however, this would
challenge a large class of counting models, including those
that assume that the pulse rate varies with the duration of
the standard interval.

One way to test counting models without needing to
vary the duration of the standard interval is the ternary-
response task (Ulrich, 1987; Woodworth & Schlosberg,
1954). This task has been successfully applied to test
models of temporal order judgments and has yielded
powerful data to invalidate false models (Allan, 1975;
Sternberg, Knoll, & Mallows, 1975; Ulrich, 1987). More
specifically, the psychometric functions generated by this
task revealed theoretically relevant features that were
nonexistent in the psychometric functions of the stan-
dard approach. For example, the psychometric functions
of the ternary task were nonmonotonic, and this feature
provided strong evidence for almost all existing models
of temporal order judgments. Such theoretically impor-
tant information, however, is usually obscured in the stan-
dard task by the randomness of guesses on trials on which
the subject is not sure what the correct response should
be (Jaskowski, 1991a). Thus, the data from the ternary-
response task led to more detailed models on the mech-
anisms underlying temporal order judgment (Ja§kowski,
1991b; Stelmach & Herdman, 1991; Sternberg et al.,
1975). Therefore, it is tempting to apply the ternary-
response task to duration discrimination to provide an al-
ternative for testing counting models.
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As in the traditional discrimination task, the subject is
presented with two intervals, a standard interval S of du-
ration £, followed by a variable comparison interval C of
duration f.. The duration 7, of S is again kept constant
across a block of trials, whereas 7, varies randomly from
trial to trial. The comparison interval is shorter than, equal
to, or longer than f,. In contrast to the classical task, how-
ever, the subject is required to judge whether S was shorter
than, longer than, or equal to C. These three response al-
ternatives will be denoted by “C > S,” “S > C,” and “S =
C,” respectively. Thus, the ternary-response task allows
the estimation of probabilities Pr{“S > C”|t, t.},
Pr{*C>S"|¢, 1.}, and Pr{“S = C”|¢,, 1.} as a function
of (7, t.). In the present paper, these estimates will be
compared with the predicted probabilities of the gener-
alized counting model. A separate test will be performed
at each level of #,. Unlike former approaches, this test does
not require specific distributional assumptions about the
interpulse time distribution (see Appendix A for mathe-
matical details).

The present experiment employed two standard inter-
vals of 50 and 1,000 msec. For each standard interval there
were nine comparison intervals, and subjects were asked
to indicate in each trial whether the standard appeared to
be shorter than, equal to, or longer than the comparison.
Thus, for each standard, a family of psychometric func-
tions was generated and compared with the predicted
functions of counting models. A computer routine esti-
mated the two parameters u* = u/d and 6* = ¢2/u by
minimizing the root-mean squared (RMS) error between
predicted and observed response probabilities. Note that
ptand odenote the mean and the standard deviation of the
interpulse interval, respectively, and d denotes a criterion
count that separates contiguous response categories. Al-
though, u* and o* can be identified only, these two esti-
mates nevertheless permit crucial inferences about the un-
derlying interpulse distribution, as we will explain later.

In sum, then, we assess the predictions of a counting
model that does not make any distributional assumptions
about interpulse intervals. These predictions, which are
derived in Appendix A, will be employed to estimate cer-
tain parameters of the interpulse distribution from the
data collected by means of a ternary-response paradigm.
These parameters will be estimated for two different stan-
dard intervals, 7, = 50 msec and ¢, = 1,000 msec. Besides
assessing the goodness of model fit, this allows us to test
whether the parameter estimates of the interpulse distribu-
tion will vary with the duration of the standard interval.

METHOD

Subjects
One male and 3 female students, ranging from 21 to 34 years of
age (M = 26.7 years), participated in this experiment.

Stimuli

Auditory stimuli were white-noise bursts with zero rise and fall
times. All the stimuli were presented binaurally through headphones
at an intensity of 67 dB (SPL).
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Procedure

There were two experimental conditions; in the first experimental
condition the standard interval was f; = 50 msec, and in the second
condition it was £, = 1,000 msec. Each daily testing session con-
sisted of two blocks of 150 trials each, with a 1-min pause between
blocks. The standard interval was constant during a single session
but varied between sessions.

The first time interval presented was the standard interval (7).
After an interstimulus interval of 900 msec, a second interval, the
comparison interval (z,), was presented. The duration of the variable
comparison interval was 7, = f, + A, where the difference interval A
is experimentally varied according to the method of constant stim-
uli. More specifically, let U be an individually determined step size;
then, the difference interval A, can be defined as A, = (i — 5) - U
@(i=1,...,9), resulting in four comparison intervals shorter and
four comparison intervals longer than the standard interval. Within
each experimental condition, there were 100 trials with each possi-
ble duration of the comparison interval, except for A; = 0(i.e., , =
t.). In this case, there were 400 trials, resulting in a total number of
1,200 trials for each experimental condition. Comparison intervals
were presented in random order. In order to avoid ceiling and floor
effects, an individual step size U was determined for each subject
and each experimental condition in a preceding training session. For
t,=50 msec (t, = 1,000 msec), these step sizes were 2, 4, 5, and 6 msec
(50, 45, 60, and 70 msec) for subjects J.M., B.O., A.M., and C.M.,
respectively.

Each subject was seated at a table with a keyboard and a computer
monitor in a sound-attenuated room. To initiate a trial, the subject
pressed the space bar; the auditory presentation began 900 msec later.
The two intervals were presented with an interstimulus interval of
900 msec. The subject’s task was to indicate one of three possible de-
cisions regarding the duration of the two intervals presented within
each trial by pressing one of three designated keys on the keyboard.
The response keys were labeled “first interval longer,” “second in-
terval longer,” and “same duration.” After each response, visual feed-
back (“+” [i.e., correct] or “—" [i.e., false] ) was displayed for 1 sec.
One second after the feedback, the next trial started.

RESULTS

Observed psychometric functions and those predicted
by counting models are shown in Figure 1. As can be seen,
counting models provide an excellentfit for the observed
data. As one would expect, the spread of the psychome-
tric functions is larger for 7, = 1,000 msec than for 7, =

Table 1
Estimated Model Parameters (L*, 0*) and Root-Mean Square
(RMS) for Each Subject and Standard Duration

Subject s o* RMS PSE DL
Part 1: Standard Duration = 50 msec
B.O. 4.4 0.1 .02 50.1+0.3 2.6+0.1
C.M. 8.5 0.4 .03 50.2+0.4 43+0.5
AM. 5.7 0.4 .04 49.2+0.5 4.5+0.3
JM. 2.3 0.1 .05 50.5+0.1 1.4+0.1
Part 2: Standard Duration = 1,000 msec
B.O. 56.3 1.1 .04 995.6+4.3 34.6+2.2
C.M. 924 5.8 .04 985.5+9.1 75.7+4.7
A.M. 71.7 3.7 .04 982.9+5.5 59.0+4.7
JM. 459 2.0 .06 979.4+ 3.1 39.8+3.7

The table also provides the point of subjective equality (PSE; +SE) and
the difference limen (DL; £SE) in columns 5 and 6, respectively. The
unit of measurement for u*, o*, PSE, and DL is the millisecond. Stan-
dard errors (SEs) were determined by the method of bootstrapping
(Mooney & Duval, 1993).

50 msec, because temporal discriminationis known to de-
teriorate as the standard interval increases. Table 1 gives
the mean RMS for each subject and standard interval and
also contains the estimated parameters u* and o*.!

The parameter u* establishes an upper bound for the
mean interpulse time p according to u = p*/d. Because
02 1 must hold, u cannot be larger than u*. Appendix B
contains further bounds for i, 0, and S under the reason-
able assumption that the coefficient of variation of the
interpulse distribution is less than or equal to one. Spe-
cifically, it is shown that the upper bound of the criterion
d should be equal to the ratio u*/o*. Furthermore, the
mean u, as well as the standard deviation 0, of the inter-
pulse distribution should be larger than o*.

For the present data, the mean estimate of u* increased
significantly from 5.6 msec for z, = 50 msec to 66.6 msec
for ¢, = 1,000 msec (r = 6.95, df = 3, p = .003).2 This
large increase in u* could reflect an increase in the mean
interpulse time y, the criterion &, or both parameters. Be-
cause u is inversely related to the pulse rate, a decrease
in u would mean that the pulse rate decreases as #, be-
comes longer.

Theoretically more important, the average estimate of
o* = 02/u was significantly larger for z, = 1,000 msec
than for 7, = 50 msec; the estimates were 3.2 and 0.25,
respectively, (¢t = 3.03, df = 3, p = .028). This result
clearly shows that some aspects of the interpulse distribu-
tion change with 7. Such a finding is incompatible with
the implicitcommon notion, according to which the inter-
pulse distributiondoes not vary with 7, (e.g., Getty, 1975).

A further analysis shows that the upper bound of d1is
about 21 pulses; surprisingly, this conclusion applies to
both standard intervals. For the short standard, u lies some-
where between 0.3 and 5.6 msec, whereas for the long
standard, ¢ ranges from 3.2 to 66.6 msec. The smallest
possible value of 0is 0.3 and 3.2 msec for the short and
the long standard intervals, respectively.

DISCUSSION

As was reviewed in the introduction, previous psycho-
physical studies on temporal discrimination suggest that
the predicted Weber functions of Poisson counting mod-
els are at variance with the empirically determined func-
tions. Specifically, the observed Weber fractions decrease
more sharply than would be predicted by the Poisson
counting model. Furthermore, the observed Weber func-
tion usually approaches a lower asymptote larger then
zero, whereas the predicted Weber function decreases
strictly toward zero. The reasons for these discrepancies
may be at least threefold.

First, an implicitassumption of counting models holds
that the pulse generation process is independent of the
duration of the standard interval (e.g., Abel, 1972a, 1972b;
Allan etal., 1971; Divenyi & Danner, 1977; Getty, 1975,
1976; Grondin, 1993; Killeen & Weiss, 1987; Kinchla,
1972; Treisman, 1963). It seems plausible, however, that
the rate of the pulse stream changes with the duration of
the standard interval (Killeen, 1992; Killeen & Fetterman,
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Figure 1. Observed and predicted psychometric functions for each subject and each standard dura-
tion. Left panels: standard duration#;, = 50 msec. Right panels: ¢, = 1,000 msec. Top row: subject B.O.
Second row from top: subject C.M. Third row from top: subject A.M. Bottom row: subject J.M.

1988). For example, shorter durations may necessitate a
higher pulse rate to improve the precision of timing.
Second, counting models for duration discrimination
assume that the pulse generation stream follows a Poisson
process. Such a process implies an exponentialinterpulse
distribution having a modal value of zero. In a more re-
alistic counting process, however, one has to proceed from
some refractory period of both the generation and the
counting of pulses, which would render this distribution

rather unrealistic. In addition, errors in counting would
imply that the interpulse time distribution of the internal
counting mechanism represents a probabilistic mixture
of several interpulse distributions. Such an imperfect
counting process arises when the internal clock fails to
register each pulse (Killeen & Weiss, 1987). With imper-
fect counting, the interpulse distribution of two success-
ively registered pulses depends not only on the interpulse
time of the pulse generation process, but also on the num-
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ber of pulses not registered. The more pulses that fail to
register, the longer will be the interpulse time between
two registered pulses. More specifically, if the counting
process fails to register n successive pulses, this interpulse
time would follow a (n + 1)-step gamma distribution—
instead of an exponential distribution, as the standard
Possion model implies. Because such an imperfect count-
ing process is probabilistic (sometimes only one pulse is
lost, sometimes two, etc.), the interpulse time would fol-
low a probabilistic mixture of gamma distributions.

Finally, the traditional psychophysical approach for
testing counting models forces the subject to choose be-
tween only two response categories (standard longer than
comparisonvs. standard shorter than comparison). The
problem with this approach is that subjects cannot indi-
cate that both intervals appear equally long, a state that
will occur when an equal number of counts is accumu-
lated during each interval. This restriction may bias the
evaluation of the counting process, since the occurrence
of this state has not been taken into account in the deri-
vation of the predicted Weber function (see Getty, 1975).
Since the ternary-response approach includes an addi-
tional response category for same judgments, subjects
were no longer required to select an inappropriate cate-
gory when the two intervals were perceived as equally
long (see Jaskowski, 1991a).

The results of the present experiment are clearly con-
sistent with the predictions of counting models. The pre-
dicted and observed psychometric functions agreed sur-
prisingly well, despite the fact that only two parameters
(o*, u*) had to be estimated for each data set. It is impor-
tant to note that a good fit might not be persuasive, es-
pecially when the results would not be a surprise to any-
one (Roberts & Pashler, 2000). Given the background of
previous studies on temporal order judgments also em-
ploying this ternary-response task (JaSkowski, 1991b;
Ulrich, 1987), the good fit observed in the present study
was quite unexpected. The psychometric functions as-
sessed in these former studies were often nonmonotonic.
In fact, many more parameters than two were necessary
to provide an acceptable model fit (Jaskowski, 1991b).

Even more important, however, was another outcome
of the present study. Although, the model parameters ,
0, and the criterion 0 were not identifiable, the estimates
of 0* = 02/u mean clearly argue against the implicit as-
sumption that the process of pulse generation operates
identically for short and long intervals. This conclusion
holds for any pulse generation process, including the usu-
ally assumed Possion process.

Furthermore, these estimates of o* indicate that the
mean interpulse time increases with the duration of the
standard interval if one proceeds from the additional, yet
reasonable, assumption that the mean and the standard de-
viation are positively correlated. This assumption is highly
plausible, since in almost all neural latency mechanisms,
both measures are positively associated (e.g., Luce, 1986,
p. 65). In addition, in most theoretical latency distribu-

tions, both parameters cannot vary orthogonally but are
positively related to each other (e.g. Cox, 1967; McGill,
1963). Specifically, let us assume that the standard devi-
ationis approximately linearly related to its mean—that is,
o = c * u, ¢ > 0. Under this condition, we have o* =
02/u = ¢% - u. Then, by inference, the pulse rate is re-
duced when subjects are required to discriminate between
longer intervals. This converging evidence from human
subjects supports the notion deduced from animal timing
that the mean interpulse time varies proportionately with
the interval being timed (Killeen & Fetterman, 1988).

The idea of a duration-dependent pulse rate might be
unexpected from a psychophysical point of view. How-
ever, from a pragmatic perspective, such a change of the
pulse rate may represent an optimization of the timing
process. It is conceivable that the production of each pulse
consumes a certain amount of limited resources and, thus,
the pulse production process requires a tradeoff between
precision and demand for resources. For example, al-
though for the discrimination of very brief intervals, a
relatively high pulse rate would be needed to avoid trun-
cation, as compared with the discrimination of longerin-
tervals, a much lower pulse rate will suffice for the accu-
rate timing of longer intervals. Adaptation of pulse rate
to the duration of the standard interval could be achieved
either by a large pool of different oscillating systems or
pacemakers, from which the most appropriate one can
be selected (Miall, 1996), or from a mechanism to adjust
the period of the pulse generation process to the base du-
ration of the intervals to be timed (Torras, 1985; Treis-
man & Brogan, 1992; Treisman et al., 1990).

As was mentioned earlier, extant data showed that the
observed Weber fractions decrease more sharply than
would be predicted by the fixed-rate Poisson model. More-
over, the observed Weber function usually approaches a
lower asymptote larger than zero, whereas the predicted
Weber function derived from the Poisson model decreases
continuously toward zero. The variable-rate counting
model introduced in this paper accounts for the observed
constancy of the Weber function if one assumes that the
mean interpulse time increases linearly with #,. Or in
other words, this constancy is achieved only if the num-
ber of average counts does not vary with .

In summary, the present study clearly demonstrates
the general validity of counting models for the temporal
discrimination of brief intervals. The failure of previous
psychophysical studies to validate counting models ap-
pears to be basically due to the implicit assumption of a
duration-independentpulse rate. Further restrictions (e.g.,
the assumption of exponentially distributed interpulse
times and the requirement to choose between only two
response categories) could also have contributed to this
failure. The present analysis suggests that the pulse rate
changes with the duration of the standard interval. Further
research in temporal discriminationis needed to strengthen
this conclusion and to elucidate the mechanisms that are
involved in the control of the pulse rate.
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NOTES

1. We also performed a conventional psychophysical data analysis for
three-category experiments (see Woodworth & Schlosberg, 1954). This
analysis provides the point of subjective equality (PSE) and the differ-
ence limen (DL) for each subject and each standard interval (see Table 1).
The PSE was virtually identical to the corresponding standard interval
for t, = 50 msec. However, the PSE undershot slightly the standard in-
terval for ¢, = 1,000 msec. As would be predicted by Weber’s law, the ab-
solute discrimination performance deteriorated clearly from DL = 3.2
to 52.3 msec as £, increased from 50 to 1,000 msec (t = 5.56,df = 3,p =
.006). The mean Weber fractions were .064 and .052 for , = 50 msec and
t, = 1,000 msec, respectively, and did not differ significantly (p = .145).

2. We employed the so-called bootstrapping procedure (Mooney &
Duval, 1993) to compute standard errors for the estimates of u* and o*.
In essence, this procedure takes the observed response probabilities as
estimates for the true response probabilities. These estimates are used
to simulate the experiment again, yielding a bootstrap sample. For each
bootstrap sample, the parameters u* and o*, referred to as bootstrap
replications, are estimated. These replications generate the sampling
distribution for each parameter. The standard deviation of this distribu-
tion provides the standard error of the corresponding parameter. For ex-
ample, we generated 500 bootstrap samples for the data of subject B.O.
under the , = 50 msec condition and estimated for each sample the pa-
rameters y* and 0*. Thus, we obtained a standard error of 0.3 for u* and
0.02 for o*. This example shows that the estimates obtained are quite
reliable. In all other cases, the reliability of the estimates was virtually
identical. We thank Peter R. Killeen for suggesting this procedure.

(Continued on next page)
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APPENDIX A
Predicted Response Probabilities of the Generalized Counting Model

According to a standard theorem of renewal theory, the num-
ber of pulses N(f) counted during the time interval ¢ is approxi-
mately normally distributed with a mean of #/u and a variance
of t02/u3, where u and 0 denote the mean and standard devia-
tion of the interpulse duration, assumed to be finite (see, e.g.,
Ross, 1983, p. 62). No assumptions about the interpulse distri-
bution are required, although as in the Poisson counting pro-
cess, successive pulses are assumed to be independent.

As a simple demonstration, suppose that the interpulse dis-
tribution follows an exponentialdistribution with a mean of u =
5 msec. For an exponentialrandom variable, the standard devi-
ation is equal to its mean—that is, 0 = 5 msec. Assume that we
are interestedin computing the probability Pr{N(40)<3}. In this
particularcase, N(¢) follows a Poisson distribution, and thus the
exact value of this probability is

3
Pr{N(40) <3} = Y exp(-40/5
i=0

=.038. (2

L (1)

In contrast, the approximated value is
3-8
@ (3)
[ 8 }

~.038. 4)

N

Pr{N(40) < 3}

which is sufficiently close to the exact value for our purposes.
(The approximation improves for longer durations—that is,
when ? increases.) The computation of exact probabilities for a
nonexponentialinterpulsedistributionis possible but would gen-
erally be tedious (see, e.g., Ross, 1983, pp. 56-57).

The above standard theorem allows the calculations of the re-
sponse probabilities Pr{“S > C”|¢, 1.}, Pr{“C > S|, ¢}, and
Pr{“S = C”|t,, t.}. Since N(t,) and N(t.) are (approximately)
normally distributed, the difference D(t, 1) = N(t,) — N(t,)
also follows a normal distribution.In particular, the mean of this
differenceis

E[D(z,1,)] =E[N(1,) = N(1,)]
= E[N(tc) - N(ts )]

=ﬁm—@, )

with the variance

Var[D(z,,1,)] = Var[N(z,)]+ Var[N(z))]
107 . 10’

P

i
02
(1, +1,). ©6)
u

With Equations 5 and 6, the probability Pr{*“S > C” | ¢, ¢_} is com-
puted as
Pr{“S>C”|(t,1,)} =Pr{N(t,)— N(t,) > 6}
=Pr{N(t,)—- N(t,) <-05}
=Pr{D(z,,1,) < -6} @)

=®_—5—EHX@%H}

SD[D(#.1.)]

~6 (1.~ 1),

’0-2
F(tc +ts)

_5+%(ts _tc)a

o2 '
,JF(IC +ts)

(3)

The parameters y, 0, and 6 cannot be identified by fitting this
equationto empirical data. This is most easily seen by multiply-
ing the numerator and denominator of the term within the brack-
ets of Equation 8 by u. This yields

—Uo+, 1t
% R (9)
1/T(tc+ts)

which shows that only the two parameters u* = u - and 0* =
02/u can be identified for a single data set. An analogous proof
applies to Pr{“C > S” |, t.} and Pr{“S = C” |1, t.}; Pr{“S =
C”|t, t.} is computed from

Pr{“S=C"|t,t.} =1 —Pr{“S>C"|¢,, t.}

— Pr{“C>S"|1. 1.}.

Pr{“S>C"|(t

S’tC

)=

10
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APPENDIX B
Bounds for |1, 0, and O

Under the reasonableassumption that the coefficient of vari-
ation—thatis, k = o/u, of the interpulse time distributionis less
than one, as most renewal processes suggest (Cox, 1967), it is
possible to establish bounds for 8, u, and ¢ and also derive a
testable prediction. Thus, we can write 0 = k - u and assume that
k <1 holds. (For a Possion process, k is equal to one.)

First, consider the ratio u*/o*, which under the assumption
o =k - ureducesto

IJ* _ - u o o #2 K]

= ==>1.
o* oYu o2 k2

an

Hence, this ratio should be larger than one, and in fact, our re-
sults clearly validate this prediction.

Second, from the above result one obtains an upper bound for
. Rearranging Equation 11 yields

%
o= o k2, (12)
G*
and since k2 < 1, this establishes the upper bound
%
§< (13)
G*

Hence, the ratio u*/0* defines the maximum that d may attain.

Third, from the preceding result, we can establish a lower
bound for u. Rearranging the equationu* = & - u and noting that
6 must be smaller than u*/c* yields

_u
H=75 (14)
ES
>= #*‘;G* (15)
> = o*. (16)

Therefore, under the above assumption, u should be larger
than o*.
Finally, the assumption k < 1 provides a lower bound for ©.
Note that 0* can be rewritten as
o2

o* = =k- o

T amn

From the rightmostexpressionand the above assumption, it fol-
lows that 0= 0* should hold—that is, 0 must be larger than 0.

(Manuscript received June 4, 1998;
revision accepted for publication August 9, 2000.)



