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The Flynn effect (FE; i.e., increase in mean IQ scores over time) is commonly viewed as
reflecting population shifts in intelligence, despite the fact that most FE studies have not
investigated the assumption of score comparability. Consequently, the extent to which these
mean differences in IQ scores reflect population shifts in cognitive abilities versus changes
in the instruments used to measure these abilities is unclear. In this study, we used modern
psychometric tools to examine the FE. First, we equated raw scores for each common subtest
to be on the same scale across instruments. This enabled the combination of scores from all
three instruments into one of 13 age groups before converting raw scores into Z scores. Second,
using age-based standardized scores for standardization samples, we examined measurement
invariance across the second (revised), third, and fourth editions of the Wechsler Adult Intel-
ligence Scale. Results indicate that while scores were equivalent across the third and fourth
editions, they were not equivalent across the second and third editions. Results suggest that
there is some evidence for an increase in intelligence, but also call into question many pub-
lished FE findings as presuming the instruments’ scores are invariant when this assumption is
not warranted.

There are well-documented secular changes in mean IQ
scores in America (Flynn, 1984, 2012), as well as many
other countries (Kanaya, Ceci, & Scullin, 2005; Flynn &
Rossi-Casé, 2012). This phenomenon was observed as early
as the 1930s, although the Flynn effect (FE) moniker was
first coined by Herrnstein and Murray (1996) in recognition
of James Flynn’s scholarship in the area (Lynn, 2013). While
the typical FE is between 3 to 5 IQ points per decade, the
effect’s magnitude and direction have shown considerable
variation. As Williams (2013) pointed out, despite a pro-
liferation of research pertaining to the FE the phenomenon
remains enigmatic. Results from FE studies frequently con-
flict and few findings generalize across time and location.

Correspondence should be sent to Nicholas Benson, Delzell 205D, 414
East Clark Street, Vermillion, SD 57069 E-mail: Nicholas.Benson@usd.edu

Moreover, it is unclear if FE gains are concentrated at the left
tail of the bell curve (Colom, Lluis-Font, & Andres-Pueyo,
2005), concentrated at the right tail of the bell curve (Wai &
Putallaz, 2011), or occur across the distribution (Flynn 1996,
2009a).

Its enigmatic nature notwithstanding, the FE has important
implications for cognitive ability scholarship, the practice
of psychology, and society in general (Kaufman & Weiss,
2010). As psychologists routinely administer intelligence
tests, accurate norm-referenced comparisons are critical as
these test scores are used to inform high-stakes decisions
such as making or ruling out psychiatric diagnoses as well
as eligibility decisions for special education, the Social Se-
curity Administration, and the death penalty (Flynn, 2006;
Gresham & Reschly, 2011; Kanaya, Scullin, & Ceci, 2003).
The influence of FE research on the practice of psychology is
highlighted by the fact that test publishers note the FE as one
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FLYNN EFFECT IN THE WECHSLER ADULT INTELLIGENCE SCALE 399

reason they obtain new nationally representative normative
samples approximately every 10 years in an effort to control
for norm obsolescence (Weiss, 2010).

Although the existence of the FE is widely accepted by
professional psychologists, there is little agreement regarding
causal mechanisms. Some have argued that the FE reflects an
actual increase in cognitive abilities, due to either environ-
mental changes such as nutrition (Lynn, 1998) or education
(Blair, Gamson, Thorne, & Baker, 2005) or heterosis arising
from changes in the ratio of heterozygous to homozygous
genotypes (Mingroni, 2004). While at least some of the FE
appears to reflect an actual increase in abilities (Shiu, Beau-
jean, Must, te Nijenhuis, & Must, 2013), many researchers
have found that the FE is unrelated to general intelligence (g;
e.g., Kane & Oakland, 2000; Must, Must, & Raudik, 2003; te
Nijenhous & van der Flier, 2013; te Nijenhuis, van Vianen,
& van der Flier, 2007), although some have found a rise in g
(Shiu, Beaujean, & Wells, 2015).

At present, little research has examined relations between
the FE and biological markers of brain function (e.g., dif-
fusion coefficients, glucose metabolic rate, nerve conduc-
tion velocity; Williams, 2013), although head size reportedly
has increased over time (Lynn, 2009). As head size cor-
relates primarily with g rather than group factors (Jensen,
1998), and head size correlates highly with brain size, it
could be argued that the FE is unrelated to brain growth
given that previous research suggests its effects are not on
g. The FE is not associated with improvements in inspec-
tion time (Nettelbeck & Wilson, 2004) and appears to be
inversely related to changes in reaction times (Woodley, te
Nijenhuis, & Murphy, 2013). Thus, there is no evidence to
suggest that the FE can be accounted for by changes in brain
efficiency.

Jensen (1998) proposed that the practical significance
of the FE should be evaluated using tests of predictive
bias. By this standard, the meaningfulness of gains in ob-
served IQ scores is tenuous at best. As Jensen noted, if
the FE reflected meaningful differences in intelligence then
re-norming should change estimates of predictive validity.
There is no evidence indicating that renorming changes es-
timates of predictive validity, while observed IQ scores may
be increasing SAT scores are in fact declining (cf. Rodgers,
1998).

Evidence suggests that gains in observed IQ scores arise,
at least in part, from issues other than genuine changes in
the cognitive abilities that intelligence tests are purported to
measure. Such issues include methodological and psychome-
tric concerns (e.g., Beaujean & Osterlind, 2008) as well as
substantial changes in the tests themselves (Kaufman, 2010).
Any meaningful differences in intelligence that do exist are
likely to be confounded by artifactual issues that inflate IQ
scores (Williams, 2013). In fact, a recent meta-analysis sug-
gests that variability between FE studies can be explained in
aggregate by sampling error, unreliability, and restriction of
range (te Nijenhuis & van der Flier, 2013).

The Appropriateness of Comparing Mean IQ
Scores

Although the content of intelligence tests has changed over
time (Boake, 2002), most FE research has assumed the
standardized scores across instruments and editions are di-
rectly comparable (i.e., measurement invariance) and repre-
sent changes in cognitive ability. Then, without examining
whether these are assumptions are warranted, they interpret
any mean differences in IQ scores as representing mean dif-
ferences in cognitive ability. This is unfortunate, as there are
a variety of reasons for score differences across time.

Golembiewski, Billingsley, and Yeager (1976) delineated
three different categories of score changes: alpha, beta, and
gamma. Alpha change occurs when score differences corre-
spond to an actual change in the construct the scores mea-
sure. For example, IQ scores increase because it reflects the
increase in cognitive ability across time. Beta change occurs
when score differences reflect a recalibration of the instru-
ment’s metric or scale. For example, IQ score differences
are a result of anchoring the average score at different lev-
els of cognitive ability across editions, not an actual change
in cognitive ability itself. Gamma change represents a shift
in the meaning/conceptualization of the measured construct.
With gamma change, score differences are due to a differ-
ent construct being measured. For example, the subtests that
comprise a given IQ score may be so different between edi-
tions or instruments that they represent distinct, albeit related,
cognitive abilities.

While there is evidence that the g factors measured across
intelligence tests are highly correlated (Floyd, Reynolds,
Farmer, and Kranzler, 2013), IQ scores are not necessarily
exchangeable, especially the non-full-scale IQ (FSIQ) scores
(Floyd, Bergeron, McCormack, Anderson, & Hargrove-
Owens, 2005; Floyd, Clark, & Shadish, 2008). Thus, em-
pirical support for the FE is based on comparisons of scores
that assume alpha change, but the score differences could
be due to gamma or beta change—meaning the equivalence
of the scores is questionable and, subsequently, rendering
the meaning of these findings indeterminate. Beaujean and
Sheng (2014) liken the situation to comparing average tem-
peratures at two different geographic locations with ther-
mometers that use different scales. While mean differences
could be due to different temperatures, they could also be the
result of the scales having different origins (e.g., Fahrenheit
vs. Rankine), different units (e.g., Kelvin vs. Rankine), or
both (e.g., Fahrenheit vs. Kelvin).

In order to ensure between-instrument score comparisons
reflect differences in the level of the construct the instru-
ments’ scores intend to measure, it is first necessary to estab-
lish that the numerical values of the scores are comparable.
One way to accomplish this is to administer the same edi-
tion of an instrument across multiple time-separated samples
(e.g., Schaie, Willis, & Pennak, 2005). Another way to deter-
mine this comparability is to examine measurement invari-
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400 BENSON, BEAUJEAN, TAUB

ance (Millsap & Hartog, 1988). If measurement invariance
is present, then it is appropriate to compare the observed
scores across instruments because the probability of obtain-
ing a given observed score is independent of the instrument
used. Thus, individuals with the same level of the construct
will, on average, produce the same observed score no matter
what instrument is used (Meredith, 1993).

Previous FE research has examined measurement invari-
ance using both item and test scores (Beaujean & Osterlind,
2008; Beaujean & Sheng, 2010, in press; Must, te Nijen-
huis, Must, & van Vianen, 2009; Pietschnig, Tran, & Vo-
racek, 2013; Shiu et al., 2013; Wicherts et al., 2004). They
all converged in finding some level of non-invariance, which
indicates that construct-irrelevant sources of variance were,
at least partially, responsible for the FE. In other words,
they found some evidence for beta change. Thus, reasons
other than secular changes in intelligence appear to be partly
responsible for the increase in test scores. As the construct-
irrelevant sources’ effects have likely differed between stud-
ies, the level of influence they exert on the FE is not ex-
actly known. One way to better understand the influence of
these construct-irrelevant sources of variance is to examine
the changes in an instrument that has multiple editions pub-
lished at different time points, such as the Wechsler Adult
Intelligence Scale.

Changes in the Wechsler Adult Intelligence
Scale Across Editions

The Wechsler Adult Intelligence Scale (WAIS) was first pub-
lished in 1955 and has been revised three times (Wechsler,
1981, 1997, 2008). There has been some consistency be-
tween each edition as well as some noticeable changes. For
example, the scoring structure of the first three editions in-
cluded a Verbal IQ (VIQ), Performance IQ (PIQ), and FSIQ.
While the fourth edition retained the FSIQ score, the VIQ-
PIQ dichotomy was removed in favor of using four index
scores: Verbal Comprehension, Perceptual Reasoning, Work-
ing Memory, and Processing Speed. In addition to changing
the composite scores, there have been changes in some of
the retained subtests (Kaufman, 2010) as well as the addi-
tion and subtraction of subtests that comprise the composite
score (see Table 1). The third edition added three new sub-
tests: Matrix Reasoning, Symbol Search, and Letter-Number
Sequencing. The fourth edition removed two subtests (i.e.,
Object Assembly and Picture Arrangement) and added three
new subtests (i.e., Cancellation, Figure Weights, and Visual
Puzzles).

Another major change between WAIS editions is the de-
mographics of the norming samples (see Table 2 as well
as tables in Zhou, Zhu, & Weiss, 2010) so that the scores
would be generalizable to the US population at the time of
the norming. Nonetheless, a consequence of using nonequiv-
alent norming groups is that the ability required to obtain a
given standardized score on one WAIS edition is not neces-

sarily the same level of ability required to get the same score
on another WAIS edition.

What all the changes across WAIS editions indicate is that
comparing index score means across editions and inferring
that any changes are due to changes in cognitive ability is
tenuous. First, it is difficult to separate changes in scores
due to an increase in ability versus changes in scores due to
using norming groups with different demographic character-
istics. Second, the same composite scores across editions are
comprised of different subtests and some of the subtests that
remained across editions had substantial revisions. Conse-
quently, changes in mean scores across editions could be due
a variety of reasons, not just an increase in cognitive ability.

In response to the WAIS changes, some have advocated
comparing subtest scores across editions to measure the FE
(e.g., Flynn, 2009b). There are two major problems with this
approach. First, the problems of using subtests as the unit
of analysis are well known (Sinharay, Puhan, & Haberman,
2011), as typically they are more unreliable and have less
information than composite scores (Sinharay, 2010). Sec-
ond, such comparisons cannot differentiate alpha versus beta
change. An alternative way to examine changes in aggregate-
level scores that minimizes the influence of the different
norming samples is to create standard scores that reflect rel-
ative rank within a grand sample consisting of participants
from multiple WAIS normative samples. This requires com-
bining the raw scores for each subtest across WAIS editions
and then converting the combined raw scores into Z scores
as this allows for comparisons based on relative rank within
the grand sample. Moreover, these Z scores can then be com-
bined to create either composite scores or be used as indica-
tor variables for a latent variable model to test for invariance
across the WAIS editions. There are two problems with this
approach, however, but each problem has a solution.

The first problem is that the WAIS norming groups consist
of individuals from a wide range of ages. Thus, combining
the raw scores confounds ability differences with differences
due to age. This can be solved by grouping the respondents
into aged-based groups before converting the raw scores into
Z scores.

The second problem is that the raw scores for each edi-
tion’s subtests have unique metrics due to the items changing
across WAIS editions. To demonstrate this, the parenthetical
values in Table 1 show the maximum possible scores for the
common WAIS subtests. While the maximum score for some
subtests is relatively consistent across editions (e.g., Arith-
metic, Information), others show more variation (e.g., Digit
Span, Coding). Thus, in order to combine the raw subtest
scores across WAIS editions, they first need to be equated
(Linn, 1993).

Equating Subtest Scores

There are a variety of methods and procedures to link scores
from different tests (Linn, 1993; Mislevy, 1992). The most
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FLYNN EFFECT IN THE WECHSLER ADULT INTELLIGENCE SCALE 401

TABLE 1
Common Wechsler Subtests Across Editions

WAIS-R WAIS-III WAIS-IV

Block Design (51) Block Design (68) Block Design (66)
Coding (93) Coding (133) Coding (135)
Comprehension (32) Comprehension (33) Comprehension (36)
Digit Span (28) Digit Span (30) Digit Span (48)
Information (29) Information (28) Information (26)

Letter-Number Sequencing (21) Letter-Number Sequencing (30)
Matrix Reasoning (26) Matrix Reasoning (26)

Object Assembly (41) Object Assembly (52)
Picture Arrangement (20) Picture Arrangement (22)
Picture Completion (20) Picture Completion (25) Picture Completion (24)
Similarities (28) Similarities (33) Similarities (36)

Symbol Search (60) Symbol Search (60)
Vocabulary (70) Vocabulary (66) Vocabulary (57)

Note. WAIS: Wechsler Adult Intelligence Scale.
Numbers in parentheses denote the maximum possible score for that subtest. The Arithmetic subtest was included in all three editions, but we did not used

in the current study because it is likely a better measure of academic achievement than intelligence (Parkin & Beaujean, 2012).

stringent form of linking is equating. Here, the different tests
are thought to be interchangeable versions of the same test,
so the goal is to make the scores exchangeable (i.e., using the
same metric to measure the same construct). Consequently, to
be able to equate two tests’ scores, the tests must measure the
same construct and must do so with an approximately equal
degree of reliability (Kolen & Brennan, 2014). The number
of items as well as the mean and variance of the tests’ scores
do not need to be the same, however, as successful equating
adjusts for these differences. The resulting equated scores
have the same meaning regardless of who took the test, when
they took the test, or what version of the test they took.

When using observed scores (as opposed to items), there
are three common ways to equate scores (Kolen & Brennan,
2014). Mean equating adjusts the mean of one test to be
the same as the mean for another test, while linear equat-
ing adjusts both the mean and variability. A more general
method for equating test scores is equipercentile equating.
This method converts the scores from one test to those on
another test by finding the observed scores that have the
same percentile ranks on both tests. As test scores are tech-
nically discrete variables (as opposed to being continuous),

equipercentile equating can produce scores with irregular
distributions. This is especially problematic when the range
of possible scores is small. In such cases, it is useful to use
a smoothing function to eliminate any roughness and zero
frequencies in the scores’ distributions.

One way to incorporate smoothing into the equating pro-
cess is to smooth the raw score distributions, sometimes re-
ferred to as pre-smoothing. One supported method for pre-
smoothing is the polynomial log-linear method, which is
shown in Equation (1).

log [F (x)] = δ0+δ1x
1+δ2x

2+δ3x
3+ · · · +δMxC (1)

Equation (1) is the log of the cumulative score density,
F(x), expressed as a polynomial of degree C (Holland &
Thayer, 2000). The δ terms in Equation (1) are estimable
parameters (Holland & Thayer, 1987). Using the logarithm
allows Equation (1) to be additive instead of multiplicative.

Choosing C is the most important part of the polynomial
log-linear method. One method of choosing C is to use a
goodness-of-fit test. For a given score density, the estimation
of the δ terms via maximum likelihood produces a fit statistic

TABLE 2
Descriptive Statistics for Standardization Samples

Age Sex
n M (SD) Percentage Race/EthnicityPercentage

WAIS Edition Male W B A H O
Second 1,800 39.5 (18.80)a 50 88.5b NA NA NA NA
Third 2,450 48.1 (23.6) 53.2 78.6 11.4 NA 7.4 2.7
Fourth 2,200 44.9 (22.9) 52.2 70.0 11.8 3.2 13.1 1.8

Note. W: White; B: Black; A: Asian, H: Hispanic; O: other; NA: information not reported.
a Estimated from grouped frequency tables.
b The only race/ethnicity categories reported were White/non-White.
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402 BENSON, BEAUJEAN, TAUB

that follows a χ2 distribution with C-1 degrees of freedom.
A “statistically significant” value of the statistic suggests the
model does not fit. Consequently, C is chosen by first fitting
multiple models to the score data using increasing values for
C, then selecting the model with the smallest C value that also
adequately fits the distribution. Moses and Holland (2009)
suggested that using Akaike’s information criterion (AIC) to
select the value of C produces more accurate estimation than
using the χ2 values. Here, multiple models are still fit, but
selection is based on the model with the smallest AIC value.

A third way to select C is to use the value that produces the
smallest standard error of equating (SEE). Whenever samples
of examinees are used to estimate the equating relationship,
random equating error is present. Conceptually, this error is
the variance of equated scores over multiple replications of
the equating procedure. The square root of the random error
variance is the SEE (Lord, 1982).

Factor Models of Intelligence

In order to examine invariance of the WAIS scores, we first
have to form a latent variable model of the subtest scores.
There are competing views about the form of the latent
variable model that should be used when examining cog-
nitive ability data. Some advocate using a higher order factor
model, with first-order factors directly influencing the test
scores and the second-order factor only directly influencing
the first-order factors (Reynolds & Keith, 2013; Weiss, Keith,
Zhu, & Chen, 2013). In keeping with Carroll’s (1993) ter-
minology, we call the first-order factors Stratum II factors
and the second-order factor g. In the higher order model, g
only has an indirect relationship with the test scores. Others
advocate using a bi-factor model, which posits there are two
systematic and direct influences on the test scores (Gignac,
2008; Reise, 2012). The first influence is g. The second in-
fluence is the set of domain-specific Stratum II factors, each
of which influence only a portion of the tests. These Stratum
II factors, also known as group factors, represent variance
shared by subsets of tests with similar task demands. Unlike
the higher order model, the bi-factor model specifies that g
and the Stratum II factors are uncorrelated with each other.

We use a bi-factor model for the current study for multiple
reasons. First, Carroll’s (1993) three-stratum theory of cogni-
tive ability is generally considered the most empirically sup-
ported model of cognitive ability currently available (Jensen,
2004). Carroll (1997) argued that a bi-factor specification
was the best way to represent his three-stratum model: “[It]
would be desirable to show also that a general factor so iden-
tified constitutes a true ability, independent of lower order
factors, rather than being merely a measure of associations
among those lower order factors. . .” (p. 144). Moreover, pre-
vious research that has utilized the bi-factor model indicates
it fits data from different versions of the WAIS relatively
well, and often better than alternative models (e.g., Gignac,
2005, 2006; Gignac & Watkins, 2013).

Second, bi-factor models have an interpretive advantage
over higher order models. The bi-factor model specifies first-
order factors that are independent of g instead of being influ-
enced by both g and non-g abilities. Thus, Murray and John-
son (2013) concluded, “If ‘pure’ measures of specific abili-
ties are required then bi-factor model factor scores should be
preferred to those from a higher order model”(p. 420). More-
over, bi-factor models do not require that g be interpreted on
the basis of first-order factors, which has been likened to “in-
terpreting shadows of the shadows of mountains rather than
the mountains themselves” (McClain, 1996, p. 233).

Third, higher order models disallow g to have a direct rela-
tionship to the individual test scores. Instead, the g-test score
relationship is mediated by the Stratum II factors. Moreover,
these mediated relationships have proportionality constraints
(Brunner, 2008; Schmiedek & Li, 2004). That is, for a given
set of tests influenced by the same Stratum II factor, the ratio
of the test scores’ variance due to the Stratum II factor to the
variance attributable to g are constrained to be the same (for
a graphical explanation of these proportionality constraints,
see Beaujean, Parkin, & Parker, 2014). While these propor-
tionality constraints make the higher order model more par-
simonious than the bi-factor model, they also limit the higher
order model’s ability to represent the direct relation between
g and individual test scores.

Fourth, bi-factors models have an advantage over higher
order models when examining invariance (Chen, West, &
Sousa, 2006). Because the bi-factor model specifies the first-
order factors as being independent of g, lack of invariance
in a first-order factor does not influence invariance in g and
vice versa. In addition, the bi-factor model allows for a direct
comparison of latent mean differences between groups on
Stratum II factors over and above g. Thus, any differences in a
Stratum II factor across group are due to changes independent
of g. Consequently, if there is measurement invariance across
the WAIS editions, a bi-factor model allows for a more direct
examination of whether the FE involves g, Stratum II factors,
or both.

Current Study

The purpose of this study is to examine the FE in the revised
(second), third, and fourth editions of the WAIS using sound
psychometric analysis.1 The WAIS is one of the most pop-
ular instruments used to measure cognitive ability in adults
(Camara, Nathan, & Puente, 2000), and has been utilized in
much FE scholarship, especially Flynn’s (2012) own work
in the United States.

If scores derived from different WAIS editions are in-
variant, then any index score difference can be interpreted
as representing meaningful differences in intelligence. If the
scores lack a sufficient level of invariance, however, it would

1Scores from the original WAIS were not included because equating data
were not available.
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FLYNN EFFECT IN THE WECHSLER ADULT INTELLIGENCE SCALE 403

be wrong to conclude that observed mean differences in the
FSIQ, or any other index score, only reflect differences in
intelligence. Instead, non-invariance would suggest that the
secular changes in scores, at least in part, reflect a difference
in the tests themselves (i.e., beta change in addition to, or in
lieu of, alpha change). Based on previous invariance studies
of the FE, we expect to find some level of non-invariance
across all the editions, although we cannot hypothesize the
magnitude and influence of this invariance.

METHOD

Participants

This study used participants from the Wechsler Adult Intelli-
gence Scale’s revised (WAIS-R; n = 1,800), third (WAIS-III;
n = 2,450), and fourth (WAIS-IV; n = 2,200) editions’ stan-
dardization samples. The tests’ publisher provided all the
data. Information regarding the participants’ age, sex, and
race/ethnicity is presented in Table 2.

There were a few notable differences in the inclusion crite-
ria for the standardization samples. First, during the WAIS-
R norming process only two racial groups were sampled
(White, Non-White), while the WAIS-III sample consists
of four racial/ethnic groups (Black, White, Hispanic, Other)
and the WAIS-IV sample consists of five racial/ethnic groups
(Black, White, Hispanic, Other, Asian). Second, medical and
psychiatric exclusionary criteria were used when norming the
WAIS-III and WAIS-IV. Third, for the WAIS-R participants
up to age 75 years were sampled while subsequent editions
sampled up to age 90 years.

Wechsler Subtests

Wechsler subtests used in the current study are shown in
Table 1. Most of the subtests were used in all three edi-
tions of the WAIS, although there were some exceptions. The
WAIS-R did not include the Matrix Reasoning and Symbol
Search subtests, while the WAIS-IV did not include the Ob-
ject Assembly and Picture Arrangement subtests. Although
the Arithmetic subtest was included in all three editions, we
did not use it in the data analysis because it is likely a bet-
ter measure of academic achievement than intelligence (e.g.,
Parkin & Beaujean, 2012).

Data Analysis

There were two parts to this study’s data analysis. The first
part involved equating the WAIS subtest scores, while the
second part involved examining invariance of the equated
scores.

Subtest Score Equating

As the datasets contained raw scores, each WAIS-R and
WAIS-IV subtest was equated to the corresponding subtest

raw score on the WAIS-III. Participants in the equating stud-
ies were administered two editions of the WAIS, either the
WAIS-R and WAIS-III (n = 192) or the WAIS-III and WAIS-
IV (n = 284), and all participants were originally part of a
standardization sample. All samples were collected to rep-
resent the percentages of national demographics (i.e., age,
sex, ethnicity, and education level). The test administration
was counterbalanced, such that approximately half of the
sample was tested on the earlier edition first and the other
half was tested on the newer edition first. The testing interval
between the two administrations ranged from 5 days to 12
weeks.

One respondent, each, was missing data on the follow-
ing subtests: WAIS-III and WAIS-IV Arithmetic, WAIS-III
and WAIS-IV Symbol Search, and WAIS-R Picture Com-
pletion. Four respondents were missing data on the WAIS-
III Picture Arrangement subtest. Respondents missing data
for a given subtest were excluded from the equating of
that subtest, but were included in the equating of all other
subtests.

We equated each subtest’s raw scores using equipercentile
methods with pre-smoothing using a polynomial log-linear
model [(see Equation (1)] with degrees ranging from C =
1–7.2 For each model in each subtest, we examined the χ2,
AIC, and SEE values.3 We then selected the optimal value
of C for each subtest based on having relatively low SEE
values, fitting the data better than other models, and produc-
ing sensible equated scores (i.e., minimum and maximum
values of equated scores being close to the possible data
range).

After equating the subtests’ raw scores, we combined
the three samples. Because of the different age ranges in
the different editions’ norming samples, we created age-
based scores. Specifically, we placed all participants into
one of 13 age groups (16–17, 18–19, 20–24, 25–39, 30–34,
35–44, 45–54, 55–64, 65–69, 70–74, 75–79, 80–84, and
85–90 years) and converted the raw scores into Z scores
within each age group. We used these Z scores for all subse-
quent analyses.

Invariance

The second part of the study’s analysis involved examin-
ing invariance of the WAIS across editions. Before investigat-
ing invariance, however, we determined the factor structure
of each edition’s subtests. Subsequently, we examined in-
variance via multi-group latent variable models, using WAIS
edition as the grouping variable. For this part of the study, we
used all participants from the WAIS-R (n = 1,800), WAIS-
III (n = 2,450), and WAIS-IV (n = 2,200) standardization
samples.

2Details of the equating processes are provided as supplemental materials.
3The SEE were estimated using bootstrap methods with 1,000 replace-

ment samples. For details about this process, see Kolen and Brennan (2014).
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404 BENSON, BEAUJEAN, TAUB

TABLE 3
Levels of Measurement Invariance

Model Title Description

1 Configural The editions’ factor models are the same. No
parameter constraints imposed.

2 Weak 1 + constrain all factor loadings to be the same
between editions

3 Strong 2 + constrain all intercepts to be the same
between editions

4 Strict 3 + constrain error/residual variances to be the
same between editions

5 3 or 4 + constrain the latent variances to be the
same between editions

6 3, 4, or 5 + constrain the latent means to be the
same between editions

To assess invariance, we examined a series of increasingly
restrictive models (see Table 3). First, we examined configu-
ral invariance by determining if the different editions have the
same number of factors and factor loadings pattern. Next, we
examined weak invariance by constraining factor loadings to
be equal across editions. If such a model holds, it implies that
the latent variable’s units/scale is the same across editions. In
the third step, we examined strong invariance by constraining
the subtests’ intercepts to be equal across editions. Invariant
intercepts imply that any between-edition mean differences
in subtest scores are only due to between-edition differences
in the latent variables. Fourth, we examined strict invariance
by constraining the subtests’ residual/error variances to be
equal across editions. Although examining strict invariance
is not absolutely necessary (Little & Slegers, 2005), if there is
strict invariance as well as invariance in the latent variables’
variances, then this indicates the constructs were measured
with equal reliability across editions. If either the strict or

strong invariance model did fit the data as well as the less
restrictive models, then we considered the WAIS editions to
exhibit measurement invariance.

For a model exhibiting measurement invariance, we then
investigated invariance of the latent variables. As these steps
are not hierarchical, failure to find one type of invariance
does not preclude examining another. First, we constrained
the latent variances to be equal across editions. If the latent
and residual variances are both invariant across editions, then
the measured constructs’ reliabilities are equivalent. Second,
we constrained the latent means to be equal across editions,
which, if true, would indicate there was no change in the
constructs’ mean across editions.

Assessing model fit

Although the typical measure of model fit is the χ2 statis-
tic, it is very sensitive to sample size (West, Taylor, & Wu,
2012). Since our sample sizes were large, we used the fol-
lowing alternative fit measures and criteria to determine ac-
ceptable model fit: comparative fit index (CFI; > 0.95), Mc-
Donald’s noncentrality index (Mc; > 0.90), and root mean
square error of approximation (RMSEA; < 0.08). In addition,
we used the AIC, which is best used to compare competing
models, with lower values indicating better fit.

Traditionally, the difference in the χ2 values (i.e., likeli-
hood ratio test) between the increasingly restrictive invari-
ance models has been used to determine model fit because
these models are nested within each other. As with single
model assessment, the difference in the χ2 values is also
sensitive to sample size (Cheung & Rensvold, 2002). As an
alternative, Meade, Johnson, and Braddy (2008) suggest us-
ing differences in the CFI and Mc indexes, with differences

TABLE 4
Results from Equating Wechsler Adult Intelligence Scale Subtests

WAIS-R (n = 192) WAIS-IV (n = 284)

Non-Equated Equated WAIS-III Non-Equated Equated

Subtest C M (SD) Range M (SD) Range M (SD) Range C M (SD) Range M (SD) Range

BD 3 24.04 (12.84) 0–59 32.6 (15.13) 1.56–68.28 36.73 (13.14) 2–68 2 40.24 (13.57) 6–66 39.31 (13.41) 6.08–65.54
CD 2 45.93 (21.66) 1–93 58.75 (27.87) 0.8–118.17 66.78 (21.82) 2–133 3 65.08 (19.94) 4–135 69.32 (23.15) 3.39–135.49
CO 3 18.86 (6.58) 1–32 18.62 (6.5) 0.53–31.33 20.24 (5.66) 2–33 4 23.37 (6.06) 5–36 21 (5.85) 4.74–33.45
DS 4 14.07 (4.47) 0–28 16.04 (4.68) –0.45–30.42 16.67 (4.34) 1–30 3 27.38 (6.1) 9–48 17.31 (4.33) 6.52–30.49
IN 4 17.02 (6.32) 1–29 15.27 (5.94) 2.9–27.16 16.04 (5.53) 0–28 6 13.9 (5.25) 0–26 17.01 (5.39) 0.51–28.39
MR — — 13.73 (5.8) 0–26 4 16.25 (5.48) 1–26 15.51 (5.71) 0.59–25.66
OA 3 26.21 (8.56) 1–41 25.76 (11.38) 4.2–49.43 29.37 (10.57) 1–52 — — — — —
PA 4 9.73 (5.89) 0–20 10.85 (5.9) 0.47–21.61 12.3 (5.35) 0–22 — — — — —
PC 3 12.63 (5.02) 0–20 16.43 (6.66) 0.04–25.06 18.58 (4.23) 1–25 2 12.29 (4.41) 1–24 19.78 (4.41) 5.83–25.48
SI 4 15.68 (6.95) 0–28 18.62 (7.08) 1.94–31.81 21.61 (5.8) 0–33 4 24.38 (5.66) 1–36 23.26 (5.65) –0.5–33.49
SS — — 29.09 (10.79) 0–60 2 30.36 (9.67) 0–60 30.35 (11.32) –0.33–60.35
VC 4 41.5 (16.18) 3–70 36.43 (14.47) 0.8–64.87 41.14 (12.48) 3–66 4 35.84 (10.86) 6–57 44.45 (12.74) 3.67–65.92

Note. C: Degree of pre-smoothing polynomial; BD: Block Design; CD: Coding; CO: Comprehension; DS: Digit Span; IN: Information; MR: Matrix
Reasoning; OA: Object Assembly; PA: Picture Arrangement; PC: Picture Completion; SI: Similarities; SS: Symbol Search; VC: Vocabulary; —: subtest not
included in WAIS edition.

All values are in raw score units. All subtests equated to be on WAIS-III metric.
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FLYNN EFFECT IN THE WECHSLER ADULT INTELLIGENCE SCALE 405

TABLE 5
Descriptive Statistics for Wechsler Adult Intelligence Scale Subtests by Edition

WAIS-R (n = 1,800) WAIS-III (n = 2,450) WAIS-IV(n = 2,200)

Subtest M (SD) Range M (SD) Range M (SD) Range

BD 92.4 (14.5) 47.3–131.6 100.1 (13.7) 47.8–142.2 104.3 (14.3) 52.8–165.1
CD 95.5 (15.7) 46.0–124.8 99.7 (14.3) 49.1–131.6 104 (14.7) 50.7–154.5
CO 95.5 (15.7) 46.0–124.8 99.7 (14.3) 49.1–131.6 102.7 (14.7) 56.4–135.4
DS 95.8 (15.0) 43.2–141.7 99.8 (14.6) 47.1–161.2 102.7 (14.6) 62.3–155.7
IN 97.1 (15.3) 58.6–129.6 99.2 (15.0) 53.1–135.3 102.4 (14.6) 55.7–140.8
MR — — 96.7 (14.8) 49.3–156.7 102.6 (14.5) 53.9–142.0
OA 94.4 (13.9) 55.4–125.7 102.9 (14.4) 55.0–161.6 — —
PA 94.8 (14.5) 49.5–132.4 102.8 (14.2) 42.9–148 — —
PC 92.2 (17.8) 10.3–120.2 99.9 (12.6) 28.1–129.8 104.9 (13.2) 46.4–131.4
SI 92.3 (15.8) 41.2–128.8 100.1 (13.9) 44.3–130.9 104.6 (13.6) 43.0–132.4
SS — — 98.3 (14.1) 49.7–180.0 101.3 (15.5) 47.8–166.1
VC 94.6 (15.3) 47.4–125.8 99.5 (14.3) 51.6–139.7 103.9 (14.5) 51.7–133.0

Note. Z scores were transformed into IQ scale scores (M: 100, SD: 15) to aide interpretability.
BD: Block Design; CD: Coding; CO: Comprehension; DS: Digit Span; IN: Information; MR: Matrix Reasoning; OA: Object Assembly; PA: Picture

Arrangement; PC: Picture Completion; SI: Similarities; SS: Symbol Search; VC: Vocabulary; —: subtest not included in WAIS edition.

in CFI values of .002 and differences in Mc values between
0.008–.009 being useful cutoff points.

Data Analysis Software

All analyses were done using the R statistical program. We
used the equate (Albano, 2011) package to perform the equat-
ing and the lavaan (Rosseel, 2012) package to fit the latent
variable models (Beaujean, 2014).

RESULTS

Equating

The results from the equating are given in Table 4. The pre-
smoothing polynomial degree (C) was 4 or lower for all
subtests except Information on the WAIS-IV where the de-
gree was 6. Further inspection of this subtest showed multiple
peaks and troughs in the raw scores, indicating that the de-
gree is likely not too large. In addition, Table 4 contains the
raw score means and standard deviations for equated and
non-equated scores. In general, the moments for the equated
scores are closer to the WAIS-III values than the moments
for the non-equated scores, although this is better for the
WAIS-IV subtests than the WAIS-R subtests. Thus, it ap-
pears that the equating worked as expected. Interestingly, af-
ter equating the scores the values for the subsequent editions
are higher than the scores from the previous editions across
all subtests. This indicates that when the subtest scores are
aggregated there will be a FE, although without examining
invariance not much interpretive weight should be placed on
these scores. Table 5 contains descriptive statistics for each
WAIS edition’s equated scores after applying the within-age
group standardization.

Data Screening

Missing Data

Missing data were minimal, as 99.78% of the respon-
dents from the standardization samples had no missing data.
The others were missing responses on one to three sub-
tests. Instead of discarding these observations, we used full-
information maximum likelihood estimation (FIML; Enders
& Bandalos, 2001), which incorporates the information avail-
able from all the participants.

Normality Assumptions

Data screening revealed no atypical skew or kurto-
sis in the subtests. Multivariate normality, however, was
not supported based on multivariate kurtosis estimates and
quantile–quantile plots. Consequently, we used a robust esti-
mator (MLR; Asparouhov & Muthén, 2005) for the analyses,
which has been shown to work well with FIML estimation
(Enders, 2001).

TABLE 6
Fit of Baseline Models in Standardization Samples

Model Description CFI Mc RMSEA χ2 (df )

B1 WAIS-R Bi-factor .985 .964 .059 222.250(27)
B2 WAIS-III Bi-factor 1a .988 .967 .050 225.776(27)
B3 WAIS-III Bi-factor 2b .987 .963 .051 247.176(29)
B4 WAIS-IV Bi-factor .989 .970 .046 178.722(29)

Note. CFI: comparative fit index; Mc: McDonald’s noncentrality index;
RMSEA: root-mean square error of approximation.

a Used in invariance analysis with WAIS-R, so did not include the Matrix
Reasoning and Symbol Search subtests.

b Used in invariance analysis with WAIS-IV, so did not include the Object
Assembly and Picture Arrangement subtests.
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406 BENSON, BEAUJEAN, TAUB

FIGURE 1 Bi-Factor Model for the Wechsler Adult Intelligence Scale subtests across the revised and third editions of the Wechsler Adult Intelligence Scale.

Testing Invariance

Revised and Third Editions

First, we determined the factor model to use for the data.
Since the WAIS-R did not include the Matrix Reasoning and
Symbol Search subtests, we did not include them as indica-
tor variables for the WAIS-III either. We found the bi-factor
model fit the data relatively well in both editions (see Models
B1 and B2 in Table 6). For these two editions, the general
factor represents general intelligence (g; Spearman, 1904)
and the two group factors represent Verbal Comprehension
and Visual Spatial Processing (see Figure 1). To identify the
models, we initially constrained one loading for each factor

in each edition to be one. For g, Verbal Comprehension, and
Visual Spatial Processing, respectively, the loadings we con-
strained were for the Similarities, Information, and Block
Design subtests. All the other parameters were freely esti-
mated.

Next, we examined invariance between the two editions.
The results are given in Table 7. The configural invariance
model fit the data relatively well (Model 1), but constraining
factor loadings to be equal (Model 2) caused a noticeable
degradation in model fit. When we examined what factor
loadings were the most discrepant in Model 1, we found
the Picture Completion subtest’s loading on g had the largest
between-edition difference, so this equality constraint was re-

TABLE 7
Invariance Results for the WAIS-R and WAIS-III in Standardization Samples

Model CFI �CFI Mc �Mc χ2 (df) AIC RMSEA

Configural .987 — .961 — 448.346 (54) 109865 .054
Weak .980 .007c .942 .019c 663.253 (69) 110049 .059
Partial Weaka .984 .003c .954 .007c 536.622 (68) 109924 .053
Partial Strongb .977 .007d .935 .019d 745.097 (74) 110121 .06

Note. CFI: comparative fit index; Mc: McDonald’s noncentrality index; AIC: Akaike’s information criterion; RMSEA: root mean square error of approxi-
mation.

a The g-loading for Picture Completion was freed between groups.
b The g-loading and intercept for Picture Completion were freed between groups.
c Compared with Model 1.
d Compared with Model 3.
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FLYNN EFFECT IN THE WECHSLER ADULT INTELLIGENCE SCALE 407

TABLE 8
Standardized Parameter Estimates for WAIS-R and WAIS-III Subtests Under Partial Weak Invariance in Standardization Samples

Loading on WAIS-R WAIS-R SE of WAIS-III WAIS-III SE of WAIS-R Residual WAIS-III Residual
Subtest g Loading Group Factor Intercept Intercept Intercept Intercept Variance Variance

Block Design .70 .36 –.42 0.02 .06 .02 .33 .39
Coding .62 — –.46 .02 .11 .02 .60 .61
Comprehension .72 .43 –.25 .02 .02 .02 .31 .31
Digit Span .55 — –.23 .02 .01 .02 .64 .70
Information .67 .50 –.16 .02 –.02 .02 .25 .30
Object Assembly .58 .62 –.3 .02 .21 .02 .21 .28
Picture Arrangement .70 .11 –.28 .02 .20 .02 .47 .51
Picture Completion .78a,.69b .22 –.44 .03 .04 .02 .37 .47
Similarities .77 .36 –.45 .02 .05 .02 .32 .28
Vocabulary .73 .55 –.32 .02 .00 .02 .13 .16

Note. Subtests are all on Z score scale.
g: general intelligence; SE: Standard Error.
a Estimate for the WAIS-R.
b Estimate for the WAIS-III.

leased. This partial weak invariance model (Model 3) showed
minimal degradation in fit from Model 1. Estimates of factor
loadings for the partial weak invariance model are presented
in Table 8.

Last, we constrained the intercepts to be equal across edi-
tions for all subtests except Picture Completion (Model 4).

These constraints caused a substantial degradation in model
fit, so we examined what subtests’ intercepts were the most
discrepant using the results from Model 3. The results, shown
in Table 8, indicate that all the subtests show substantial dif-
ference. Consequently, it appears that between-edition dif-
ferences in the latent constructs do not account for all the

FIGURE 2 Bi-Factor Model for the third and fourth editions of the Wechsler Adult Intelligence Scale subtests. Dashed lines indicate that loadings for the
Processing Speed factor are constrained to be equal within editions. Dotted lines indicate that loadings for the Visual Spatial factor are constrained to be equal
within editions.
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408 BENSON, BEAUJEAN, TAUB

TABLE 9
Invariance Results for the WAIS-III and WAIS-IV in Standardization Samples

Model CFI �CFI Mc �Mc χ2 (df) AIC RMSEA

Configural .988 — .967 — 425.898 (58) 118091 .048
Weak .986 .002a .961 .005a 498.027 (70) 118139 .048
Strong .984 .002a .955 .006a 568.730 (76) 118198 .049
Strict .981 .002a .949 .006a 650.945 (86) 118260 .049
Model 4 +latent variances constrained .979 .002a .943 .006a 725.828 (90) 118327 .051
Model 5 + all latent means constrained .973 .006a .928 .015a 898.382 (94) 118492 .056
Model 6 without constraining g’s mean .978 .001b .942 .001b 742.705 (93) 118337 .051

Note. CFI: comparative fit index; Mc: McDonald’s noncentrality index; AIC: Akaike’s information criterion; RMSEA: root mean square error of approxi-
mation; g: general intelligence.

a Compared to previous model.
b Compared to Model 5.
For identification purposes, in Models 2 through 4 the latent variance for Processing Speed and Visual Spatial Processing were constrained to 1.0 for the

WAIS-III, but freely estimated in the WAIS-IV; the variance of g and Verbal Comprehension were freely estimated in both groups.

differences in subtest scores. That is, WAIS exhibited sub-
stantial change between the revised and third editions, in
addition to any possible changes in the two editions’ stan-
dardization samples. Thus, beta change is responsible for at
least part of the score differences between the two editions.

Third and Fourth Editions

Since the WAIS-IV did not include the Object Assembly
and Picture Arrangement subtests, we did not include them
as indicator variables for the WAIS-III, either. First, we found
a bi-factor model fit the data relatively well in both editions
(see Models B3 and B4 in in Table 6). For these two edi-
tions, in addition to g, there were three group factors: Verbal
Comprehension, Visual Spatial Processing, and Processing
Speed (see Figure 2). Since there were only two subtests for
the Visual Spatial Processing and Processing Speed factors,
we constrained their factor loadings to be equal within an
edition.

The results from the invariance assessment are given in
Table 9, and indicate that these two editions exhibited mea-
surement invariance. Specifically, tests of configural, weak,
strong, and strict invariance (Models 1, 2, 3 and 4, respec-
tively) were supported by relatively small �CFI and �Mc
values. Parameter estimates for the final model are presented
in Table 10.

Since there were only two subtests for the Visual Spatial
Processing and Processing Speed factors, we identified the
models differently than with the WAIS-R-WAIS-III compar-
ison. Specifically, for Model 1 we initially constrained all the
latent variances to be one and constrained the factor loadings
for Visual Spatial Processing and Processing Speed to be
equal within an edition. For Models 2–4, we constrained the
factor loadings for Visual Spatial Processing and Processing
Speed, respectively, to be equal within an edition and across
editions, but constrained their latent variances to be one only
for the WAIS-III edition. To identify the g and Verbal Com-
prehension factors, respectively, we constrained the loadings

TABLE 10
Parameter Estimates for the WAIS-III and WAIS-IV Final Invariance Model in Standardization Samples

Standardized Loading on Standardized Intercept Standardized Residual
Subtest Standardized Loading on g Group Factor Loading Variance

Block Design .73 –.25 .05 .41
Coding .58 .55 .09 .36
Comprehension .67 .50 –.02 .29
Digit Span .60 — –.01 .65
Information .65 .51 –.05 .32
Matrix Reasoning .74 — –.13 .45
Picture Completion .66 –.27 .09 .49
Symbol Search .61 .51 –.11 .37
Similarities .72 .44 .06 .29
Vocabulary .71 .57 .01 .17

Note. Subtests are all on Z score scale. The latent mean of g is zero for the WAIS-III and 0.37 for the WAIS-IV. Latent means for Gc, Gs, and Gv all equal
zero. Latent variances all equal 1. g: general intelligence; Gc: verbal comprehension; Gs: processing speed; Gv: visual spatial processing.
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FLYNN EFFECT IN THE WECHSLER ADULT INTELLIGENCE SCALE 409

for Similarities and Vocabulary to be one and estimated the
latent variances.

Subsequently, we constrained the latent variances (Model
5) and latent means (Model 6) to be equal across editions. The
latent variances did not appreciably differ across editions,
indicating that the constructs the WAIS-III and WAIS-IV
subtests measure are measured with equal precision across
editions. While the latent means of the domain-specific fac-
tors showed no between-edition difference, Model 6’s re-
sults indicated we needed to release g’s mean across editions
(Model 7). The between-edition mean difference in g was
0.373 standard deviation units (i.e., d effect size) higher for
the WAIS-IV’s sample than the WAIS-III’s sample. Thus,
it appears that when comparing the WAIS-III and WAIS-
IV samples on the equated scores, the score changes mostly
reflect alpha change—that is, the score differences reflect
changes in g, not instrumental changes.

DISCUSSION

The purpose of this study was to examine the Flynn ef-
fect (FE) in revised (second), third, and fourth editions of
the Wechsler Adult Intelligence Scales (WAIS) using sound
psychometric analysis of the editions’ standardization data.
We utilized data from the WAIS-R-to-WAIS-III and WAIS-
III-to-WAIS-IV linking studies provided by the publisher to
equate the raw scores for each subtest in the WAIS-R and
WAIS-IV, separately, to be on the same scale as the WAIS-
III. We then investigated invariance between the WAIS-R and
WAIS-III and then between the WAIS-III and WAIS-IV via
multi-group latent variable models. While only weak invari-
ance is tenable when comparing the WAIS-R and WAIS-III,
results indicate that measurement invariance is tenable when
comparing the WAIS-III and WAIS-IV.

Even though score comparability across instruments de-
pends on a minimum level of invariance, FE studies do not
typically examine this assumption. Thus, any difference they
report in manifest scores from these instruments (e.g., FSIQ)
could just as easily be due to changes in the instrument as
due to changes in the examinees (i.e., beta or gamma change
vs. alpha change; Golembiewski et al., 1976). In contrast to
previous studies, our use of score equating placed subtests on
equivalent metrics across editions, which then allowed them
to be combined to form a single reference group. After com-
bining the scores, we converted the raw scores into Z scores
using age-based reference groups. This approach yielded a
distribution of scores based on relative rank within a grand
sample comprised of participants from all three normative
samples.

When comparing the WAIS-R and WAIS-III, results re-
vealed that controlling for differences in the latent variables
did not account for differences in the subtests’ intercepts.
Failure to establish strong measurement invariance indicates
that in creating the WAIS-III, the test authors changed the

WAIS-R subtest’s items in such a way that differences in per-
formance on them is partially due to one of more additional
latent variables not included in our factor model (Steinmetz,
2013). As these differences extended across all the inter-
cepts (see Table 7), one of the unmeasured variables could
be related to administration/administrator differences (Mc-
Dermott, Watkins, & Rhoad, 2014; for additional possible
causes, see Steinmetz, pp. 3–4). Another alternative is that
participants’ test-taking strategies changed in the timespan
between when the WAIS-R and WAIS-III were normed pos-
sibly as a response to the proliferation of standardized testing
for high-stakes decisions proliferated during the 1980s and
1990s. For example, as scoring rules for many tests changed
to reward speediness of responding while simultaneously
reducing penalties for guessing, this could have led to re-
spondents using different test-taking patterns (Must & Must,
2013). Indeed, as shown in Table 7 the largest intercept dif-
ferences between WAIS-R and WAIS-III versions of subtests
were observed for timed subtests (i.e., Coding and Object As-
sembly) while the smallest intercept differences were found
for untimed subtests (i.e., Information and Digit Span). In
any case, because scores from the WAIS-R and WAIS-III are
not on the same metric, any reported between-edition mean
differences (e.g., Flynn, 1998, 2009b) do not necessarily in-
dicate changes in the constructs the scores represent. Thus,
not only are these score comparisons not very informative
concerning the FE research, but they should not be used in
clinical practice, either.

Unlike the WAIS-R and WAIS-III comparison, results
from the WAIS-III and WAIS-IV comparison indicate that
measurement invariance is tenable. Thus, between-edition
score comparisons, at least using scores derived from the cur-
rent study’s subtests, represent differences in the construct the
scores represent. Moreover, as we found that g was the only
latent variable that showed mean changes over time (0.37 SD
increase from the WAIS-III to WAIS-IV sample), any scores
differences between the two editions can be interpreted as
arising largely from differences in g. More specifically, if the
FSIQ is estimated as from the summed 10 subtests shared by
the WAIS-III and WAIS-IV, then there is an increase of 4.37
IQ points when comparing the mean for the WAIS-III stan-
dardization sample (M = 97.98) to the mean for the WAIS-IV
standardization sample (M = 102.36).4 Alternatively, using
the latent mean differences in g, the 0.37 SD translates to a
5.60 IQ point difference.

Comparison to Previous Flynn Effect Research

The current study is the first study we are aware of that
has equated raw scores across editions to create a single
reference group. We believe that our equating strategy is

4To create the FSIQ score, we summed the 11 common subtests and
then formed Z scores within each of the 13 age groups. Subsequently, we
multiplied each Z score by 15 and added 100.
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directly in line with Rodgers’ (1998) proposals for better FE
studies. Relative to methods used in most FE research, the
approach used in the present study allows for a more direct
test of whether the FE arises from genuine secular changes
in intelligence or simply reflects changes in the tests used to
measure intelligence.

Zhou et al. (2010) previously used score equating to study
the FE in Wechsler scales, but their study and use of score
equating was much different than ours. First, they only ex-
amined changes in the Performance Index (PIQ) score. They
found an average score increase of approximately 0.30 PIQ
units per year from the WAIS-R to the WAIS-IV, but this
increase was moderated by the Verbal Index (VIQ) score.
Specifically, the majority of the PIQ score increase from the
WAIS-R to WAIS-III was concentrated in individuals with
VIQ scores in the middle and lower range, but the change
in PIQ scores from the WAIS-III to WAIS-IV had a higher
concentration in individuals with VIQ scores in the upper
range.

Second, Zhou et al. (2010) did not examine invariance in
the equated PIQ scores, so it is difficult to know if the pat-
terns of change they found are due to an increase in the abil-
ities the PIQ measures (i.e., Fluid Reasoning, Visual-Spatial
Ability) between editions or a change in structure of the PIQ
score itself. Third, Zhou et al. used percentiles from equiper-
centile equating as a method to examine changes in the FE.
As expected, after equating they found that for a given per-
centile WAIS-III scores were always higher than the WAIS-
IV scores. Unexpectedly, they found that the amount of dif-
ference was inconsistent across the PIQ score range as higher
scores tended to show larger differences than lower scores.
Likewise, WAIS-R scores were higher than the WAIS-III at
differing magnitudes, except at very high percentiles where
the pattern reversed and WAIS-III scores where higher than
WAIS-R scores. While this somewhat maps onto our finding
that WAIS-R and WAIS-III scores should not be compared,
this confirmation should be interpreted with a caveat. Unlike
our study, they did not report using any smoothing, which
could be why their equating produced the unexpected results.
Thus, it is difficult to distinguish PIQ changes due to the FE
and changes due to problems with the equated scores.

As with the current study, previous invariance research
of the WAIS has suggested that the mean differences in the
subtests cannot be explained solely by differences in the
latent variable (e.g., Beaujean and Sheng, 2014; Wicherts
et al., 2004). Interestingly, Wicherts et al.’s study’s found non-
invariance with the WAIS intercepts and their participants
came from the 1967/1968–1998/1999 Dutch standardization
of the WAIS. This period encompasses the 1981 and 1997
dates that the US WAIS-R and WAIS-III were published, for
which we also found trouble at the level of the intercepts.

In contrast to previous FE research (e.g., te Nijenhuis &
van der Flier, 2013), we found mean differences in g—at
least when comparing the WAIS-III and WAIS-IV samples.
Most of the studies that have concluded that the FE does not

represent a change in g have used the method of correlated
vectors (MCV). In the FE context, the MCV consists of:
(a) extracting a g factor from two batteries of tests normed
at different times, (b) examining invariance of the factor
loadings using a congruence coefficient, (c) calculating the
mean score differences between the two batteries, and (d)
measure g’s effect by calculating the Spearman correlation
between score differences and the g loadings from the com-
bined group (Jensen, 1992). The MCV has been criticized for
multiple reasons (Ashton & Lee, 2005; Dolan & Hamaker,
2001). One criticism is the use of congruence coefficients
to examine invariance. In the current study, we did not find
invariance for the WAIS-R and WAIS-III factors, yet the con-
gruence coefficient for g, extracted using the Schmid-Leiman
transformation, is >.99. Another criticism of the MCV is
that interpretation of the effect values is ill defined. For ex-
ample, the Spearman correlation between g, extracted using
the Schmid-Leiman transformation, and the differences in
subtest scores between the WAIS-III and WAIS-IV equated
subtests is .34. Does that mean there is, or is not, a FE on g?

Limitations and Future Directions

As the current study only investigated three editions of the
WAIS, we have only examined a portion of the instruments
used to assess the FE. Future studies should follow our pro-
cedures with other instruments, such as the Wechsler Intelli-
gence Scale for Children and Stanford-Binet, to determine if
their scores are comparable and, if so, the magnitude of the
FE.

Although the method we used allowed us to create a grand
sample comprised of participants from three normative sam-
ples collected over a time period of close to 30 years, the
respective normative samples are, nevertheless, only cross-
sectional. Studies that combine cross-sectional and longitudi-
nal designs (e.g., Schaie et al., 2005) could likely shed more
light on the FE. Even with longitudinal studies, when the
same tests are administered to the same persons at different
points in time, the measurement scale and meaning of scores
may change (Horn & McArdle, 1992; McArdle & Cattell,
1994). Thus, studies that incorporate a longitudinal design in
which the same version of the WAIS is administered to the
same persons at different points in time and the scales are
assessed for invariance could add to our understanding of the
FE.

The present study is the first we are aware of that has
examined the FE using a bi-factor model. As we discussed in
the Introduction, the advantages of using a bi-factor model
are manifold, but it is not the only model used to explain
the covariance of the WAIS subtests. For example Weiss
et al. (2013) argued that a higher order model is better for
the WAIS than a bi-factor model. Likewise, using an eight-
subtest version of the WAIS-R, Horn and McArdle (1992)
argued for using a two-factor model based on the theory
of fluid and crystallized abilities. Unlike most other two-
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factor models, they allowed all subtests to load on both latent
variables. Unlike the single-factor or two-factor model with
loadings constrained to be zero, their full model was invariant
across all their age groups. Consequently, future FE studies
should look to examine if there is an influence of the factor
model used in both assessing for invariance over instruments
(e.g., Irwing, 2012) as well as measuring the magnitude of
the FE.

Related to the issue of the factor model used for the WAIS
is the model used to examine the FE. As the investigation of
the FE is really an examination of change, there are a variety
of methods available to assess this change (McArdle, 2009).
We believe our use of a multi-group latent variable model us-
ing equated subtest scores was a robust method for handling
the complexities involved with the Wechsler standardization
and linking data that is in line with best practices for measur-
ing change (McArdle & Prindle, 2013). Nonetheless, future
research should compare our results with other robust ways
of measuring change to see the influence of the methods. For
example, Jensen (1998) noted the practical significance of
any change believed to reflect the FE should be evaluated
using tests of predictive bias.

Implications of the Current Study

There are four major implications from this study. First, com-
paring scores between instruments is a tenuous undertaking,
which does not lessen just because the scores come from
different editions of the same instrument. This is not neces-
sarily because norms are obsolete (Flynn, 1998), but because
the different instruments have different metrics (i.e., scales,
origins). Thus, the default stance should likely be that IQ in-
struments’ scores are on their own metrics, and not directly
comparable. Only after sufficient work has been published
indicating the scores are invariant and psychometric tech-
niques have been employed to equate the instruments should
the scores be compared.

Examining comparability of scores is not a novel idea,
but it is one that has escaped most FE research. Although
research suggests that g can be measured dependably and is
strongly correlated across different batteries of tests (Floyd
et al., 2013; Floyd, Shands, Rafael, Bergeron, & McGrew,
2009; Johnson, Bouchard, Krueger, McGue, & Gottesman,
2004; Johnson, te Nijenhuis, & Bouchard, 2008; Major, John-
son, & Bouchard, 2011), relying only on correlations to de-
termine comparability will often lead to misleading results
when attempting to quantify the FE and make score compar-
isons. While the present study suggests comparability across
the third and fourth edition of the WAIS, it is important to
keep in mind that subtest scores were equated across editions
prior to multi-group comparison. Previous FE studies have
not equated scores across editions before comparing values.

The second major implication is that if WAIS scores are
used as the criterion for determining if American adults are

getting smarter over time, then the evidence is modest. Al-
though mean full-scale IQ (FSIQ) scores may appear to be
increasing over time (Flynn, 1984, 1998, 2009b), part of this
increase can be attributed to the test revision process (i.e.,
beta change)—at least until 1997 when the WAIS-III was
published. Similarly, the stability of the FE over time is dif-
ficult to gauge because scores obtained from the WAIS-R
are not equivalent to scores obtained from the WAIS-III, and
the comparability of the original WAIS and WAIS-R scores
is unknown, although we doubt they are comparable (Beau-
jean & Sheng, 2014). As the WAIS-III and WAIS-IV subtests
showed invariance, we can state that over the approximately
11 years between the instruments’ publication, the FSIQ in-
creased 0.40 IQ points a year and g increased 0.51 IQ points
a year, both of which are within the typically espoused 3- to
5-point IQ gain per decade range for the FE.

The third major implication is that the FE was observed
only for g. Flynn’s (2012) belief regarding the FE is that it
arises largely from gains on specific tasks. Notably, Flynn
points out that the Wechsler Similarities subtest and Raven’s
matrices show the largest gains. The Similarities subtest has a
high g loading and Raven’s matrices are viewed as measures
of fluid reasoning, a group factor that is often statistically
indistinguishable from g (Reynolds, Keith, Flanagan, & Al-
fonso, 2013). As fluid reasoning reflects abilities such as
making abstractions and solving novel problems, and fluid
reasoning is often statistically indistinguishable from g, our
findings are consistent with Fox and Mitchum’s (2013) hy-
pothesis that the FE reflects improvements in the ability to
“map objects at higher levels of abstraction” (p. 979). In
higher order models g will cause mean differences in group
factors, as group factors are not independent of g. The use
of a bi-factor model makes it clear that the FE, at least as
measured by the third and fourth editions of the WAIS, does
indeed reflect gains in g. The FE was not observed for group
factors. We believe that if scholars want to examine the
FE in areas beyond g, they should employ bi-factor mod-
els instead of using higher order model or analyzing specific
subtests.

The last implication of this study is that there needs to be
more discussion and research on how to compare scores when
measurement invariance is not found between instruments.
In the short term, such solutions as using scores derived from
invariant subtests or using any between-group intercept dif-
ferences to correct the subtest scores might be useful. These
are only stopgap solutions, though, and will become obso-
lete as new instruments are published. Long-term solutions
will require developing and scaling IQ tests that are invariant
across time. For an instrument undergoing revision, one pos-
sible solution would be to place the aggregate scores on the
same metric as the previous edition. For example, construct
the index scores from the fifth edition of the WAIS to be
on the same metric as the WAIS-IV, making the instruments’
scores directly comparable, literally, out of the box. With new
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instruments, the solution will be more complex. One possible
solution would be to construct the scores to be on the same
metric as a referent instrument. For example, any scores from
new adult intelligence test that NCS Pearson/Psychological
Corporation (the company responsible for the WAIS) pub-
lishes would be constructed to be directly comparable to the
WAIS-IV. Similar procedures could be used for instruments
produced by other test publishers.
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