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Secular gains in intelligence test scores have perplexed researchers since they were documented by
Flynn (1984, 1987). Gains are most pronounced on abstract, so-called culture-free tests, prompting
Flynn (2007) to attribute them to problem-solving skills availed by scientifically advanced cultures.
We propose that recent-born individuals have adopted an approach to analogy that enables them to
infer higher level relations requiring roles that are not intrinsic to the objects that constitute initial
representations of items. This proposal is translated into item-specific predictions about differences
between cohorts in pass rates and item-response patterns on the Raven’s Matrices (Flynn, 1987), a
seemingly culture-free test that registers the largest Flynn effect. Consistent with predictions,
archival data reveal that individuals born around 1940 are less able to map objects at higher levels
of relational abstraction than individuals born around 1990. Polytomous Rasch models verify
predicted violations of measurement invariance, as raw scores are found to underestimate the
number of analogical rules inferred by members of the earlier cohort relative to members of the later
cohort who achieve the same overall score. The work provides a plausible cognitive account of the
Flynn effect, furthers understanding of the cognition of matrix reasoning, and underscores the need
to consider how test-takers select item responses.
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Intelligence test scores in developed nations rose dramatically
during the 20th century (Flynn, 1984, 1987) and continue to rise in
other parts of the world (e.g., Brouwers, Van de Vijver, Van
Hemert, 2009; Daley, Whaley, Sigman, Espinosa, & Neumann,
2003; Khaleefa, Abdelwahid, Abdulradi, & Lynn, 2008; Wicherts,
Dolan, Carlson, & van der Maas, 2010). Contrary to intuition, the
so-called Flynn effect is most pronounced on tests that were once
regarded as culture-free such as Cattell’s Nonverbal Intelligence
Test (Lynn, Hampson, & Millineux, 1987) and the Raven’s Ma-
trices (Flynn, 1987). Culture in many countries has clearly
changed since the early 20th century, and yet the tests purported to
measure it (viz., crystallized intelligence) have seen relatively
minor gains. How is it possible for scores to rise so quickly on the
very tests that are not supposed to measure cultural changes?

Given the disproportionate effect sizes for abstract, culture-free
tests, it is tempting to rule out otherwise plausible explanations

such as learning, or even to dismiss environmental hypotheses
altogether. Some have suggested that nutrition played a major role
(Lynn, 1990; Sigman & Whaley, 1998), as there is evidence that
nutritional supplementation can raise test scores (e.g., Schoentha-
ler, Amos, Eysenck, Peritz, & Yudkin, 1991). However, the effect
sizes of nutritional supplementation are relatively small, and there
is little regional or temporal correspondence between nutritional
improvements and rising scores (Flynn, 1999). Mingroni (2007)
suggested that the magnitude and stability of intelligence herita-
bility estimates—heritabilities have remained stable while scores
have risen—imply a genetic cause, but Sundet, Eriksen, Borren,
and Tambs (2010) observed a within-sibship Flynn effect for
69,000 Norwegian brother-pairs, which cannot be explained by a
genetic change.

By presuming that statistical patterns generalize across time
periods and cultures, investigators often mistake local, rela-
tional characteristics of whole populations for universal, intrin-
sic properties of persons or items (e.g., Borsboom, Mellen-
bergh, & van Heerden, 2003; Lamiell, 2007; Wicherts &
Johnson, 2009). Regardless of veracity, the biological hypoth-
eses described above rest on a conceptual metaphor of the Flynn
effect as an increase in some psychological quantity that is
already possessed in greater or lesser amounts by every person
in every population. Contrary to this interpretation, recent find-
ings suggest the trend is better conceptualized as reflecting a
know-how or approach to problem solving, a form of knowl-
edge that proliferates only in relatively modern cultures. Item
response models (Beaujean & Osterlind, 2008) and multigroup
confirmatory factor analyses (Must, te Nijenhuis, Must, & van
Vianen, 2009; Wicherts et al., 2004) reveal violations of mea-
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surement invariance between cohorts, suggesting that the dis-
tributions of problem solving skills within a given region have
changed over time. Other studies reveal that variation in fluid
intelligence test scores diminished over time, particularly in the
lower-performing half of the distribution (Colom, Lluis-Font, &
Andrés-Pueyo, 2005; Teasdale & Owen, 2005). This implies
that the proportion of very low performers declined more than
the proportion of very high performers increased (Rodgers,
1998) and is compatible with the assumption that base-rate of
individuals capable of accomplishing some necessary sub-goal
of solving culture-free items has risen.

In this article, we seek to render specific, and therefore
testable, the hypothesis that rising scores on the Raven’s Ma-
trices reflects adoption of an approach to analogy by recent-
born individuals that enables them to infer higher-level rela-
tions requiring roles that are not intrinsic to the objects that
constitute initial representations of items. This hypothesis has
important implications for cross-cultural comparisons that we
consider in the General Discussion.

Coping With Indeterminacy

Flynn (2007) surmised that everyday cognition in the modern
world requires more abstraction than a century ago when agri-
culture and industry were the most common vocations, and the
only symbols ordinary people dealt with were familiar letters
and numbers. An important implication of Flynn’s proposal is
that people have learned to search for and identify relations that
are not immediately apparent given their initial interpretation of
a problem. To show how this could improve performance on the
Wechsler Adult Intelligence Scale (WAIS; Wechsler, 1955)
Similarities—a test of acquired knowledge—Flynn and Weiss
(2007, p. 217) considered the mental processes of a hypothetical
child who supplies a “correct” similarity between dusk and
dawn:

You get up in the morning and go to bed at night but that makes no
sense because I often sleep past dawn and go to bed after dark. They
are alike in that the sky is half-lit and often very pretty but of course
that is not always true. What they really have in common is that they
are the beginning and end of both the day and the night. The right
answer must be that they separate day and night.

Flynn and Weiss (2007) implied that children today are less
prone than their grandparents to offering the first similarities (or
dissimilarities) that they consider when comparing the two con-
cepts. In what follows, we show that this account of how children
have become better at diagnosing abstract relations need not be
confined to transparent tests of acquired knowledge. The same
basic idea can be translated into item-specific predictions about
differences in patterns of item responses between cohorts on the
seemingly culture-free Raven’s Matrices.

Most people who are familiar with the analogs solar system and
atom can solve the analogy, sun is to planet as nucleus is to__
because the concepts sun, planet, and nucleus have familiar roles
or functions that are intrinsic to their existence as concepts. To
know a sun or a nucleus is to know that it attracts, and to know a
planet is to know that it orbits.

Abstract items found on culture-free tests such as the Raven’s
Matrices are distinct from analogies like the one above in that

appropriate responses call for higher-level relations requiring roles
that are not intrinsic to the objects, or the “pieces” that constitute
initial representations of items.1 Many problem solvers would be
stumped by the analogy, &$B:B&$::T&T:$$_, even if they are
familiar with the symbols contained therein because no one’s
conception of & includes a role pertaining to &’s relation with $ in
this particular analogy; to know & or $ is not to know that both are
members of a pair.

The principal distinguishing feature of &$B:B&$::T&T:$$_
then is not its unfamiliarity per se, but the indeterminacy of
appropriate roles and relations with respect to how the problem is
first represented (see Linhares, 2000, for some pictorial examples).
Analogies like this one are difficult because objects themselves do
not constitute knowledge about the roles or relations that charac-
terize the analogy as a whole. Importantly, this does not imply that
needed relations are complex (Carpenter, Just, & Shell, 1990) or
even unfamiliar, but rather that they cannot simply be read off of
the problem (e.g., Bunge, 1997; Chalmers, French, & Hofstadter,
1992; Linhares, 2000).2 The rule or common relation needed to
solve the analogy above is identical to the one that is needed to
solve the most difficult Raven’s Matrices items (Carpenter et al.’s,
1990, distribution-of-two-values rule) but is no less familiar than
the principle used to sort one’s socks.

Mapping Similar Objects

When objects in two or more analogs are similar, mapping can
be accomplished by simply equating objects with their roles, and
analogs with their relations. Such analogies epitomize concrete-
ness, although they may still evoke impressions of “abstractness”
if they call for little or no factual knowledge. For example, there is
little problem of indeterminacy in the analogy, &B:#E::&B:#_.
The “relations” are synonymous with the analogs, &B:#E, because
the roles are synonymous with the objects, &, B, #, and E. The rule
(which is the same as the relations and the analogs) is self-evident
precisely because objects are synonymous with their roles. Al-
though this example may seem contrived, analogies in which
objects serve as their own roles are common among easier items on
tests like the Raven’s Matrices.

Mapping Dissimilar Objects

A more flexible approach is needed to identify roles and rela-
tions when objects in two or more analogs are dissimilar (Chalm-
ers et al., 1992), one that allows role to remain open like an

1 It is beyond the scope of this article to discuss the important issue of
how objects are defined in the first place. Our assumptions about which
parts of items are objects to test-takers (and readers) should not be read as
the claim that these objects exist out there independent of how problems
are interpreted (see Chalmers et al., 1992). A finding that we do not discuss
in the text is relevant: An analysis of think-aloud reports (Ericsson &
Simon, 1980; Fox, Ericsson, & Best, 2011) collected from a small subset
of Study 2 participants revealed considerable uniformity across persons
and cohorts with respect to which potential objects were given verbal labels
in Raven’s Matrices items (e.g., “circle”).

2 The physicist and philosopher, Mario Bunge (1997, p. 420), has
provided an excellent scientific exemplar of the argument made in this
paragraph: “Astronomers can measure positions and velocities, but they
cannot read the law of gravitation off their data [emphasis added]: such a
law had to be invented [emphasis added] (and of course checked).”
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unknown or a variable. Problem solvers can accomplish this by
“acknowledging” that roles and relations are unknowns, and test-
ing prospective roles and relations that defy initial interpretations
of objects. This means actively searching for new roles, but more
subtly, “understanding” that roles and relations are not necessarily
compatible with initial representations.

Although roles and relations are not immediately apparent,
the analogy contains enough information to stimulate retrieval
of the simplest and most generalizable among previously ac-
quired roles and relations. For example, a very common relation
such as number of x in &$B:B&$::T&T:$$_ may be inferred
quickly even if this relation is not sufficient by itself for
mapping all of the objects (it does not apply to T and B).
Immediately apparent roles and relations can be altered or
combined if they do not enable mapping of relevant objects. For
example, a modification may reveal that the more abstract
relation, two of a kind, applies to every object in both analogs.
This relation is more abstract because its role, pair, subsumes
the concrete roles, &, $, B, and T, and returns the missing
object, &. What distinguishes this approach from the superficial
approach described above is that it allows roles to remain
unknowns, even if only tentatively, until mapping is accom-
plished. We elaborate more on the distinction between concrete
and abstract roles and relations by applying the same general
principle to matrix reasoning.

Matrix Reasoning Tests

The items on all matrix reasoning tests are organized in a similar
manner: Rules must be identified from the interrelations of objects
in an array to determine which response choice would best com-
plete the array. Our approach to identifying sources of item diffi-
culty is influenced by Carpenter et al.’s (1990) taxonomy. How-
ever, we take into account how prospective objects are identified
based on inferences about how participants within a given popu-
lation characterize physical features of items. Each group of cor-
responding objects for a given item is classified according to the
level of dissimilarity at which these objects must be mapped to
infer a rule. This approach is distinct from rule taxonomies in that
it replaces rigid generalizations about how people identify objects
(i.e., operational definitions) with the flexible process of task
analysis (e.g., Ericsson & Simon, 1993). Thus, one theory can
accommodate two different populations even if members of these
populations represent different features of the same items as ob-
jects, and one theory can be applied to tests comprised of different
content. In this article, we compare populations that are similar
enough to assume no difference in initial representations of ob-
jects.

Levels of Dissimilarity

Figure 1 is a relatively easy item that can be solved by mapping
physically similar objects. Dots, each identical to the others, in-
crease in number on the top from left to right. In addition, the
number of dots decreases on the side from top to bottom. Notice
that corresponding objects for a rule are present within single rows
and columns. Every figure in the left column is one dot wide, every
figure in the middle column is two dots wide, and every figure in
the right column is three dots wide. Every figure in the top row is

three dots tall, every figure in the middle row is two dots tall, and
every figure in the bottom row is one dot tall. This neat spatial
organization of corresponding objects is not a necessary condition
for a coherent item. A rule requiring one of each quantity (one,
two, or three dots) in every row and column, regardless of location,
would entail mapping the same physical objects but would require
a more abstract rule. That is, the rule, one dot on the left, two dots
in the middle, and three dots on the right, is less abstract than one
of each of the quantities, one, two, and three dots.

Both rules of Figure 1 occupy the lowest level of dissimilarity
(Level 1) depicted in Table 1, which shows how rules must
become more abstract and inclusive as dissimilarity of correspond-
ing objects increases. The progression of dissimilarity is from
Level 1, where objects with corresponding roles have the same
physical appearance, physical placement, and function; to Level 2,
where objects with corresponding roles have the same physical
appearance or physical placement and function; to Level 3, where
objects with corresponding roles have only the same function, and
not the same physical appearance or placement. The more abstract
rule, one of each of the quantities, one, two, and three dots,
occupies Level 2 but would still yield a correct solution when
applied to a rule at Level 1. At least one of the levels in the table
is applicable to any rule of any item on the Raven’s Matrices.

The levels are applied to Figures 2, 3, and 4 to illustrate the
progression of increasing abstractness as a function of minor
changes in features of items. Figure 2 is considered an addition-
subtraction item in Carpenter et al.’s (1990) taxonomy because
objects in the middle column and middle row are the concatenation
of objects in the other two columns or rows. Thus, Figure 2 can be
solved with the relatively concrete rule, right and left appear in the

Figure 1. Identical dots decrease in number from top to bottom in
columns and increase in number from left to right in rows. Both rules are
classified as Level 1 because objects are synonymous with their roles
(presence and placement within a figure). The answer is 1.
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middle (Level 2). Figure 3 is a simple modification of Figure 2 that
requires a slightly more abstract version of addition or subtraction
as it applies within single rows or columns: one plus another
equals the third (the intermediate level in Table 1). By rearranging
the objects in Figures 2 and 3, it is possible to create an item with
the most abstract rule in Carpenter et al.’s taxonomy. Figure 4 is a
distribution-of-two-values item, or as it is presented in Table 1,

two of a kind. The role, pair, lacks similar physical appearance or
placement in every row and column.

Figure 5, best illustrates the importance of the distinction be-
tween representation and actual physical features of an item. The
three-sided shape in each row is clearly apprehended by the reader
as an instance of the role, triangle, because people who have

Table 1
Level of Dissimilarity for Rules of Figures 2, 3, and 4

Level of dissimilarity
Similarities of objects with

same role Example of relation Example of role
Application to Figures 2, 3,

and 4

1 Physical appearance, physical
placement, and function

Vertical lines on right
and middle

Vertical lines Incorrect response to Figures
2, 3, and 4

2 Physical appearance or
physical placement, and
function

Right plus left equals
middle

Right figure (any
objects)

Correct response to Figure 2;
incorrect response to
Figures 3 and 4

Theoretical intermediatea Only function (but dependent
upon physical organization
of objects within an
analog)

One plus another
equals the third

Addend 1 (any figure
[any objects])

Correct response to Figures 2
and 3; incorrect response
to Figure 4

3 Only function (but indifferent
to the physical
organization of objects
within an analog)

Two of a kind Pair (any class of
object [any figure]
[any object])

Correct response to Figures
2, 3, and 4

Note. Parentheses contain the more concrete (less generalizable) categories that are subsumed by a role. The representation of objects at every level
subsumes the representation at lower levels. Similar physical placement means placement within the same row or column.
a This level is not represented by the Raven’s Matrices items.

Figure 2. A figure-addition or subtraction and distribution-of-two-values
item according to Carpenter et al.’s (1990) classifications. As an addition/
subtraction item, Figure 2 is classified as Level 2 because objects with the
same roles occupy the same location within rows or columns, but they do
not necessarily appear similar because some objects are absent. The answer
is 4.

Figure 3. A modified version of Figure 2 that would be classified as the
theoretical intermediate between Level 2 and Level 3 (see Table 1). Unlike
Figure 2, Figure 3 cannot be solved with ordinary addition or subtraction
(using whole rows or columns) because objects with the same role (e.g.,
addend, sum) do not occupy the same location or appear similar across
rows and columns. In other words, individual rows and columns must be
added or subtracted separately. The answer is 8.
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learned to read have also learned to regard three-sided shapes as
members of the same category. However, these three-sided shapes
are definitely not physically identical to one another. Because the
role, triangle, may not be as universal as it seems, we commit to
a formalist perspective for present purposes, whereby Figure 5
entails mapping objects that are dissimilar. In addition to differing
in physical appearance, the corresponding objects do not occupy
the same rows and columns as do the corresponding objects in
Figure 1. A relation such as basic shape (Level 3) must be
generated if the common roles of triangle, square, and diamond are
not retrieved automatically (in which case the rule would be
classified more accurately as Level 2). This example shows why
no operational definition of dissimilarity can be expected to apply
to every population unless there happen to be features of items that
are perceived as objects by every person in every population (see
Footnote 1).

As Table 1 shows, the notion of abstractness necessarily cova-
ries with dissimilarity of objects because more abstract rules refer
to features of items that differ from initial representations (Car-
penter et al., 1990). To reiterate, abstract rules subsume concrete
rules such that concrete rules often do not generalize beyond single
objects whereas abstract rules may generalize to entirely different
analogies on different tests. Every Raven’s Matrices item can be
solved by mapping objects at the third level of abstractness or
lower.

Item Difficulty

It is possible that, contrary to what we have proposed, the level
of dissimilarity at which objects must be mapped is not a source of

item difficulty. Perhaps every person can map every object, re-
gardless of level of dissimilarity, in much the same way that every
person can use a pencil properly when selecting a response. If
differences in level of dissimilarity elicit no within- or between-
subjects variation, then it must be some other feature or features of
items that make some more difficult than others.

It is also possible that level of dissimilarity is a source of
difficulty in only one population and not another, or a major source
of difficulty in one population and only a minor source in another.
It is even possible that the same set of items elicits different
rank-orders of difficulty for different individuals within a single
population. Establishing that level of dissimilarity is a source of
difficulty within at least one population is essential to establishing
that the ability to map dissimilar objects varies between cohorts.
The studies reviewed below report findings based on data collected
mostly from American undergraduates born recently enough (most
after 1970) to be considered samples of the same large, recent
cohort.

There are two basic item dimensions that are known to moderate
item difficulty: number of rules and dissimilarity of objects.

Number of rules. Studies reveal that items that require infer-
ring more rules (referring specifically to number of tokens and not
number of types throughout the article) to arrive at a solution are
more difficult (e.g., Carpenter et al., 1990; Embretson, 1998). This
finding is robust, at least within the population of young adults
who have participated in matrix reasoning studies (Carpenter et al.,
1990; Embretson, 1998; Primi, 2002).

Dissimilarity of objects. Consistent with the thesis of this
article, there is also compelling evidence that the difficulty of
items increases with the dissimilarity of corresponding objects.

Figure 5. Corresponding objects are one of three shapes with wide and
narrow versions, with or without a fold. The rules are classified as Level 3,
but most formally educated problem solvers are likely to represent the
shapes of a given type (e.g., triangle) as similar. The answer is 7.

Figure 4. A modified version of Figures 2 and 3 that cannot be solved
using an addition or subtraction rule. The item is classified as Level 3
because the abstract role, pair, does not have the same appearance or
placement in every row or column. The answer is 7.
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Embretson (1998) and Primi (2002) constructed experimental
items based on Carpenter et al.’s (1990) theory. Both studies found
that items containing rules with dissimilar objects were more
difficult than those containing rules with similar objects. Proba-
bilities of solution were found to be lower when corresponding
objects were not located in same rows and columns, and when
corresponding objects were physically dissimilar to one another.
Items generated by a program developed by Freund, Hofer, and
Holling (2008) revealed the same pattern of findings as probabil-
ities of solution were lower when the physical form of correspond-
ing objects differed.

Based on our levels of dissimilarity, another study is also highly
relevant. Meo, Roberts, and Marucci (2007) manipulated object
familiarity by constructing items with common letters and novel
letter-like symbols that were isometric in terms of relations be-
tween objects to those from the Raven’s Standard Progressive
Matrices and Advanced Progressive Matrices. Meo et al. found
that the Raven’s Matrices items were most difficult, followed by
letter-like symbols, and then ordinary letters. This pattern of find-
ings is compatible with our proposal. The corresponding objects of
these new items are more similar than corresponding objects in the
original test because the investigators essentially labeled the ob-
jects with either letters that are familiar to participants or with
easily identified symbols; in other words, the investigators made
the roles and objects identical to one another.

Consider the dissimilar objects in Figure 5. Such an item, based
on Meo et al.’s (2007) classification, would use a single letter or
symbol to represent the corresponding objects of each shape (e.g.,
all triangles are “A”), thus allowing mapping to occur by simply
“reading” the figures. From this same representational standpoint,
two versions of the same letter-like symbol are somewhat less
similar to one another than are ordinary letters even though both
are physically very similar (albeit not necessarily identical) to one
another because letter-like symbols are not as easily recognized as
objects (i.e., they are not chunks). However, two versions of the
same letter-like symbol are, to the extent that they can rightfully be
regarded as the same symbol, more similar to one another than are
any physically dissimilar objects in the Raven’s Matrices.

Summary. The literature on matrix reasoning suggests two
major sources of item difficulty within samples of individuals born
after 1970. It is well-recognized that items with a greater number
of rules are more difficult, and additional research suggests that
items containing rules with dissimilar objects are also more diffi-
cult.

Hypothesis

No studies of matrix reasoning have examined sources of item
difficulty in samples of younger adults from earlier cohorts. Ac-
cording to our analysis, individuals born more recently should find
items containing rules with dissimilar objects easier to solve than
did young adults born decades earlier. That is, if the Flynn effect
reflects improvements in the ability to map dissimilar objects, then
gains should be most pronounced on items with dissimilar objects.

Study 1: Predicting Changes in Item-Specific Pass
Rate

The goal of Study 1 is to compare item-specific pass rates on the
Raven’s Matrices of two samples from two cohorts with virtually

identical overall pass-rates. The first sample of pass rates was
collected roughly four decades earlier than the second. We predict
that higher pass rates in the more recent sample will be concen-
trated among items with rules containing dissimilar objects. This
prediction of differences between cohorts in a specific skill, to be
contrasted with differences in overall performance, is a prediction
about measurement invariance, although we do not consider it in
these terms until Study 2. It is further predicted that number of
rules will correlate highly with pass rates within cohorts, but will
not correlate with magnitude of changes in pass rate between
cohorts.3

We consider one important caveat before proceeding. Item pass
rates are not identical to item difficulties because they do not
contain information about which individuals passed which items.
Without this information, it is impossible to verify that the ordinal
rank of difficulty for any two items within one cohort is uniform
from person to person, that is, that difficulty is distribution-free.
The need to satisfy this condition within the allowances of a
probabilistic item response function is, of course, the basis of the
Rasch model (e.g., Wright, 1977). From a strictly empirical stand-
point, correspondence between predicted changes in pass rate and
actual changes in pass rate would lend aggregate, on-average
support to our proposal regardless of whether or not pass rates
reflect distribution-free difficulties. However, the same findings
would confer stronger, more nomothetic support for our proposal
if pass rates do in fact reflect distribution-free difficulties because
uniformity of difficulty implies greater generalizability of group
findings to the individuals who comprise these groups. Accuracy
data for Raven’s Matrices items has been found to fit the Rasch
model fairly well, at least compared to other tests that were not
designed to meet this constraint (e.g., Gallini, 1983; Green &
Kluever, 1992; van der Ven & Ellis, 2000; Vigneau & Bors, 2005).
As Andrich (2004) recounts, the Raven’s Matrices was one of the
first tests found by Georg Rasch to fit his model. In Study 2, we
use Rasch models to examine item difficulty for the same test with
actual responses from comparable populations.

Method

Cohorts. Our goal was to locate sets of item-specific pass
rates from at least two cohorts that are derived from large samples
and separated by at least several decades. In conjunction with a
standard literature search, we conducted a systematic search of

3 As Wicherts and Johnson (2009) have shown, aggregate statistics such
as heritabilities and differences between two populations in item-specific
pass rate are expected to be greatest at pass rates of around 50% for a
statistical reason that is logically distinct from any empirical hypothesis
(i.e., 50% is the level of difficulty at which the most variance can be
observed). Thus, hypotheses that predict a correlation between heritabili-
ties and differences in pass rates will appear to receive empirical support
regardless of whether they are true. This is not a problem in the present
case because dissimilarity and number of rules, unlike heritabilities, are
defined conceptually (from a psychological task analysis of items) rather
than empirically (from an aggregate statistical analysis of items). Thus,
correlations between differences in pass rate and dissimilarity or number of
rules are not a logical certainty. Scatterplots confirm that neither dissimi-
larity nor number of rules evince the inverse U-shaped relationship with
pass rate that would be expected if either variable were correlated with
change in pass rate for the artifactual reason discussed by Wicherts and
Johnson.
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some 8,000 Raven’s Matrices-related abstracts compiled by J. M.
Wicherts for the terms item analysis, item analyses, pass rate(s),
and proportion (in)correct. We located nine articles that report
item-specific pass rates or the information needed to calculate
item-specific pass rates of non-clinical participants who completed
the Raven Advanced Progressive Matrices Test: Arthur and Day
(1994); Forbes (1964); Mitchum and Kelley (2010); Rushton,
Skuy, and Bons (2004); Salthouse (1993); Unsworth and Engle
(2005); Vigneau and Bors (2005); Wicherts and Bakker (2012);
and Yates (1961).

Six of the nine studies—Forbes (1964), Mitchum and Kelley
(2010), Rushton et al. (2004), Unsworth and Engle (2005), Vi-
gneau and Bors (2005), and Wicherts and Bakker (2012)—can be
divided into two comparable groups that are separated by about 50
years: Cohort 1940 and Cohort 1990. After discussing these two
groups, we return to the remaining three studies.

Cohort 1940 consists of Forbes’s (1964) young adults and late
adolescents who were born around or shortly after 1940 and who
were tested around 1961. Forbes’s sample is, by itself, sufficiently
large (n � 2,256) to provide reliable pass rates.

Cohort 1990 is a contemporary sample derived from com-
bining the remaining data sets: Mitchum and Kelley (2010; n �
117), Rushton et al. (2004; n � 306), Unsworth and Engle
(2005; n � 160), Vigneau and Bors (2005; n � 506), and
Wicherts and Bakker (2012; n � 522). Original articles should
be consulted for information about administration of the test,
which varied across studies.4 Birth years of the 1,611 partici-
pants span more than a decade, but item-specific pass rates are
internally consistent (� � .98), and correlations of pass rates
between any two samples exceed r � .90.

The two cohorts are closely matched on mean pass rate across
items (Cohort 1940: M � .60, SD � .29; Cohort 1990: M � .63,
SD � .27; d � 0.12). Overall pass rates in Forbes’s (1964)
sample are relatively high for the time period. The sample
consisted of Air force recruits (n � 1,500), telephone engineer-
ing applicants (n � 500), and students at a teachers’ training
college (n � 256). Although Forbes expressed interest in dis-
criminating at high levels of ability (pp. 223–224), he gave no
indication that participants were sampled for high ability in
particular. We cannot rule out the possibility that there is
something unique about Forbes’s participants that invalidates
the present comparison between this sample and contemporary
young adults. However, studies revealing violations of mea-
surement invariance between cohorts (Must et al., 2009; Wich-
erts et al., 2004) are compatible with the assumption that the
difference between Forbes’s participants and their contempo-
raries is psychometrically distinct from the difference between
Forbes’s participants and modern test-takers.

Cohorts 1940 and 1990 were comparable in age at the time of
testing with mean ages of about 20 years. Cohort 1940 is com-
prised of young adults and some late-adolescents. Cohort 1990
consists entirely of undergraduates from psychology department
participant pools except for Rushton et al.’s (2004) sample, which
consists of engineering students. Sex is confounded with cohort, as
Cohort 1940 is primarily male (at least 66%), and Cohort 1990 is
primarily female (roughly 60%–70%). There is evidence of a
minor male advantage on the Raven’s Matrices (Abad, Colom,
Rebollo, & Escorial, 2004; Mackintosh & Bennett, 2005), but this
advantage is not robust (Vigneau & Bors, 2008) and is probably

too small to pose a concern given that the predicted advantage for
Cohort 1990 on more abstract items will exceed the effect size of
sex within cohorts if data are extreme enough to be interpreted as
support for our proposal. Finally, Cohort 1940 data were collected
in the United Kingdom, and Cohort 1990 data were collected in the
United States, Canada, the Netherlands, and South Africa. Each
region witnessed large Flynn effects (Flynn, 1987; te Nijenhuis,
Murphy, & van Eeden, 2011).

Although we have provided an a priori basis for predicting that
contemporary young adults (Cohort 1990) perform disproportion-
ately better on items containing rules with dissimilar objects than
their counterparts did 50 years ago (Cohort 1950), we cannot rule
out the possibility that this hypothesis will be confirmed in the
present study because of regional differences or unique effects of
the specific periods from which these samples are drawn (see
Rodgers, 1998), which may or may not be caused by the same
factors responsible for the Flynn effect. In fact, our interpretation
of the Flynn effect as a cohort effect rather than a series of distinct
time period and/or region effects is a conceptual assumption that
cannot be falsified by the study. It is noteworthy, however, that
comparing each of the five data sets that constitute Cohort 1990 to
Cohort 1940 in isolation reveals the same basic pattern of findings
as those reported below. Interested readers can compare study-
specific findings to the aggregate findings reported below by
consulting Table 2.

Of the remaining three studies, Salthouse (1993) could not be
used because pass rates of Items 23–36 are not reported. Yates’s
(1961) pass rates, derived from participants born around 1920, are
too low to confer meaningful discriminations for the modern
Advanced Progressive Matrices (Yates’s, 1961, participants solved
several easier items in addition to the 36 items that now constitute
the Advanced Progressive Matrices), especially when comparing
two distinct item variables. Only 11 of the 36 items have pass rates
greater than 50%. Individuals who perform as low as participants
in Yates’s sample cannot be accommodated by our proposal with-
out elaborating on the levels of dissimilarity in Table 1 through a
task analysis of what are today considered very easy items (e.g.,
the Standard Progressive Matrices). Arthur and Day’s (1994) data
are comparable to Cohort 1940 and Cohort 1990 but were col-
lected from a sample of participants who were born a decade too
early to justify their inclusion in Cohort 1990. We do not include
Arthur and Day’s pass rates in Cohort 1990; however, Table 2
displays effect sizes of Arthur and Day’s pass rates in relation to
Cohort 1940. Overall item-specific pass-rates for cohorts 1940 and
1990 are displayed in Figure 6.

Item classifications. Carpenter et al.’s (1990, p. 431) classi-
fications were used to assign number of rules to Raven’s Matrices
items. Carpenter et al. did not report numbers of rules for 11 of the
36 items either because the item could not be used in their analysis
(n � 9) or because the item cannot be classified according to their
taxonomy (n � 2). To maximize the number of observations
available for analysis, we assigned numbers of rules to the nine
compatible items using Carpenter et al.’s taxonomy, and we as-

4 For example, the test was administered with a 20-min time limit in
Wicherts and Bakker (2012). An analysis including only those participants
who completed nearly all of the items (34 of 36; n � 42) yielded results
comparable to those reported in Table 2. Only 30 participants completed all
36 items.
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signed numbers of rules to the remaining two items using novel
rules. These decisions did not alter the pattern of results reported
below. Interested readers can compare study-specific findings to
the aggregate findings reported below by consulting Table 2
(study-specific pass rates are available in the supplemental mate-
rials along with all of the data analyzed in this article).

Classifying rules according to the dissimilarity of corresponding
objects requires nothing less than knowledge of how participants
represent objects. Because this information is unavailable, simple
criteria were used to optimize simplicity and plausibility including
the assumption that members of Cohorts 1940 and 1990 have the
same objects. In a manner consistent with classifications in studies
reviewed above, we defined similarity with respect to the positions
and physical features of the parts of items that occupy the same
role based on relations that are compatible with correct answers.
Given these criteria, corresponding objects that differ in size, but
remain otherwise identical (this includes lengths of single lines;
e.g., Item 10), and shading patterns (which may appear on different
shapes; e.g., Item 21) are considered similar. As noted, physically
distinct shapes like the three triangles in Figure 5 are considered
dissimilar.

Each rule of every item was classified as one of the three levels
of dissimilarity presented in Table 1. Rules were assigned to the
lowest (most similar) level that is sufficient for correct mapping of
objects. Because our proposal makes no assumptions about
whether participants represent columns or rows as analogs, the
lowest level of dissimilarity compatible with solution was estab-
lished by comparing objects from row to row and column to
column. In accord with Table 1, rules were classified as Level 1 if
corresponding objects are similar in appearance and occupy the
same figure within their respective rows or columns. Rules were
classified as Level 2 if corresponding objects are similar in ap-
pearance or occupy the same figure within their respective rows or
columns. Finally, rules were classified as Level 3 if corresponding
objects are dissimilar in appearance and occupy a different figure
within their respective rows or columns.

The Appendix shows classifications at the level of individual
rules. Not surprisingly, these classifications overlap considerably
(about r � .6) with a variable representing Carpenter et al.’s
(1990) ranking of rules by difficulty.

Results

The limited number of observations (one for each of 36 items
per sample) preclude sophisticated regression models for examin-
ing relationships between level of dissimilarity, number of rules,
and the outcome variables of pass rate and change in pass rate.
However, because number of rules and dissimilarity are correlated
(r � .42), linear regression is used to obtain partial correlations
representing unique variance shared between either predictor vari-
able and pass rates or change in pass rates.

It was found that number of rules and level of dissimilarity both
correlate with item-specific pass rates in both cohorts. In regres-
sion models, the two variables account for about two thirds of the
variance in pass rate in Cohort 1940 (R2 � .66) and Cohort 1990
(R2 � .61). Effect sizes for number of rules are large in Cohort
1940 (r � –.68, 95% CI [–.82, –.45]) and Cohort 1990 (r � –.70,
95% CI [–.84, –.48]), as pass rate was found to decrease with
greater numbers of rules. The effect sizes for level of dissimilarity
are comparable to those for number of rules in Cohort 1940 (r �
–.69, 95% CI [–.83, –.47]) and Cohort 1990 (r � –.62, 95% CI
[–.79, –.37]). These results are consistent with findings of Carpen-
ter et al. (1990), Embretson (1998), and Primi (2002).

Table 2
Study-Specific Effect Sizes for Cohort 1990 in Relation to Cohort 1940 as Partial Correlations With 95% Confidence Intervals (CIs)

Pass rate Difference in pass rate from Cohort 1940

Dissimilarity No. of rules Dissimilarity No. of rules

Study Effect size [95% CI] Effect size [95% CI] Effect size [95% CI] Effect size [95% CI]

Arthur & Day (1994)a �.53 [�.73, �.24] �.60 [�.78, �.34] .43 [.12, .66] .10 [�.24, .41]
Mitchum & Kelley (2010) �.46 [�.69, �.15] �.60 [�.78, �.34] .33 [.02, .58] �.06 [�.38, .27]
Rushton et al. (2004) �.47 [�.69, �.17] �.57 [�.76, �.30] .55 [.27, .74] .19 [�.15, .49]
Unsworth & Engle (2005) �.56 [�.75, �.28] �.60 [�.78, �.34] .34 [.01, .60] .08 [�.26, .40]
Vigneau & Bors (2005) �.52 [�.72, �.23] �.57 [�.76, �.30] .43 [.12, .66] �.08 [�.40, .26]
Wicherts & Bakker (2012) �.45 [�.68, �.14] �.65 [�.81, �.41] .55 [.27, .74] �.38 [�.63, �.06]

Overall �.50 [�.71, �.21] �.61 [�.78, �.35] .60 [.33, .78] �.10 [�.41, .24]

Note. Partial correlations reflect unique variance shared between item variables and pass rate or difference in pass rate in relation to Cohort 1940.
a Study is not included in Cohort 1990 because data were collected from test-takers who were born too early to be in this cohort.

Figure 6. Comparison of item-specific pass rates of Cohorts 1940 and
1990 for Study 1.
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Because number of rules correlates with level of dissimilarity, it
is informative to consider the unique variance that either predictor
shares with pass rates within either cohort. Partial correlations
reveal that both number of rules (Cohort 1940: r � –.59, 95% CI
[–.77, –.32]; Cohort 1990: r � –.61, 95% CI [.35, .78]) and level
of dissimilarity (Cohort 1940: r � –.61, 95% CI [–.78, –.35];
Cohort 1990: r � –.50, 95% CI [–.71, –.21]) are strong indepen-
dent predictors of pass rate in both cohorts. These within-cohort
results concur with previous research and support the hypothesis
that level of dissimilarity contributes to item difficulty in multiple
cohorts.

To test the prediction that pass rates increased more on items
with dissimilar objects, gains in item-specific pass rates from
Cohort 1940 to Cohort 1990 were calculated by subtracting item-
specific pass rates of Cohort 1940 from those of Cohort 1990.
These changes in item-specific pass rates approximate a normal
distribution (kurtosis and skewness are within the range of �1;
Kolmogorov–Smirnov Z � .42) and are treated as a continuous
dependent variable in the following analysis.

Regression revealed a small effect size for number of rules (r �
.20, 95% CI [–.14, .50]) that remains small when unique variance
is isolated (r � –.10, 95% CI [–.41, .24]). The effect size of
dissimilarity is larger (r � .61, 95% CI [.35, .78]), but it too
remains virtually unchanged when unique variance is isolated
(r � .60, 95% CI [.34, .78]). This confirms our prediction that
recent-born individuals outperform their predecessors primarily on
items that require mapping dissimilar objects.

Figure 7 is a scatterplot of differences in pass rates between
Cohorts 1940 and 1990 as a function of level of dissimilarity. As
predicted, level of dissimilarity is positively associated with
changes in pass rates, as Cohort 1990 gains were concentrated in
items with dissimilar corresponding objects. Although number of
rules may also be associated with change in pass rate, the associ-
ation appears to be a consequence of items with more rules also
tending to have rules with dissimilar objects.

Table 2 confirms that the same pattern of findings is obtained by
comparing any individual Cohort 1990 group to Cohort 1940.

Discussion

Study 1 shows that number of rules and level of dissimilarity are
sources of variation in item-specific pass rates from two large
samples collected nearly 50 years apart.

As predicted, cohort-related gains in pass rates are associated
with level of dissimilarity, but not number of rules. These
item-specific gains in pass rate on the test with the largest Flynn
effect are consistent with the assumption that young adults
became better at mapping dissimilar objects over time. The
comparison revealed the expected difference in pass rates for
items with rules containing dissimilar objects despite equiva-
lence in overall scores of the two cohorts. The effect size of
r � .60 is fairly large despite being constrained by a correlation
between the variables representing level of dissimilarity and
number of rules. Although results of Study 1 should not be
taken for granted to generalize across all between-cohort com-
parisons, Table 2 suggests that they are robust enough to
generalize across several distinct populations. Even by itself,
Study 1 offers compelling evidence that rising scores reflect
changes in the means by which people map dissimilar objects.
However, it is also important to consider that differences be-
tween pass rates of items are not identical to differences be-
tween difficulties of items.

It is illustrative at this point to consider our Study 1 predic-
tion from the perspective of measurement invariance (e.g.,
Millsap, 2007), in particular, measurement invariance as it
relates to achievement of actual goals that must be accom-
plished to select a correct response (without guessing). In
matrix reasoning, these goals are mapping objects at one or
more levels of dissimilarity for each of one or more rules. By
proposing that members of Cohort 1990 map objects at higher
levels of dissimilarity than Cohort 1940 participants who
achieved the same overall pass rates, we also predicted that
Raven’s Matrices scores either overestimate the level of dis-
similarity at which Cohort 1940 participants map objects rela-
tive to Cohort 1990 participants, or underestimate the number
of rules that Cohort 1940 participants infer relative to Cohort
1990 participants (or some combination of both). In other
words, members of Cohort 1940 either map objects at lower
levels of dissimilarity than Cohort 1990 participants who
achieve the same score on the Raven’s matrices, or infer a
greater number of total rules than Cohort 1990 participants who
achieve the same score (or some combination of both).

Although Study 1 yielded findings consistent with this pre-
diction, we were unable to verify the prediction conclusively
because Study 1 data consisted of pass rates rather than diffi-
culties. We cannot regenerate true difficulties out of 50-year-
old pass rates, but we can test the same prediction in a contem-
porary cross-sectional sample consisting of present-day
younger adults and older adults, the latter of whom were
roughly the same age as Forbes’s (1964) participants at the time
that he collected his data.

Study 2: Measurement Invariance

Study 2 tests the prediction that Raven’s Matrices scores
violate measurement invariance in relation to response catego-
ries defined by goals that must be achieved to generate correct
responses.

Figure 7. Differences in pass rates between Cohorts 1940 and 1990 as a
function of level of dissimilarity. Differences reflect Cohort 1990 pass rates
minus Cohort 1940 pass rates.
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Raven’s Matrices responses were obtained from a cross-
sectional sample of participants from two cohorts (i.e., younger
and older adults) separated by roughly 50 years.5 Although the use
of contemporary younger and older adults is not ideal, this con-
found of age with cohort is mitigated by two considerations. First,
most studies examining effects of biological aging on cognition
use cross-sectional data, and there is no reason to assume these
studies are any less susceptible to the same confound. Although
this does not excuse the present confound, it does provide a
precedent for attributing a predicted effect to the prospective cause
that motivated predictions. Second, findings verifying our predic-
tion that younger adults will map objects more successfully at
higher levels of dissimilarity cannot be attributed to biological
aging without providing an alternative explanation of the primary
finding of Study 1, namely, that a group of young adults who are
now of comparable age to older adults in the present study per-
formed relatively poorly on items requiring mapping of dissimilar
objects.

Testing for measurement invariance is much like testing for any
other interaction. According to Millsap’s (2007) definition, a test
(e.g., the Raven’s Matrices) is measurement invariant in relation to
a group variable (e.g., cohort) and a criterion variable “if and only
if” (p. 463) the probability of achieving a score on the test given
group membership and placement along a criterion variable is
identical to the probability of achieving the same score given only
placement along the criterion variable.

The criterion variables for present purposes are the actual prob-
lem solving goals achieved by participants as indicated by the
correspondence between actual item responses and correct item
responses. More specifically, criterion variables are defined by the
level of dissimilarity at which participants were able to map
objects and the number of rules they were able to infer according
to features of their actual item responses. From this perspective,
the hypothesis of this article is that Raven’s Matrices scores violate
measurement invariance, either by overestimating the level of
dissimilarity at which members of earlier cohorts map objects
relative to members of later cohorts, or underestimating the num-
ber of rules that members of earlier cohorts are able to infer
relative to members of later cohorts. Verifying this prediction
would help to justify our earlier conclusions by revealing that there
is nothing paradoxical about Cohort 1940 participants in Study 1
achieving the same overall pass rates as Cohort 1990 participants
despite having lower pass rates on items with dissimilar corre-
sponding objects.

Polytomous Rasch Models

Polytomous models distinguish between response choices
within single items, making it possible to define latent variables
representing the level of dissimilarity at which participants map
objects, and the number of rules that participants infer, by classi-
fying the response choices for every item. Thus, it is possible to
express our predictions within the confines of a preexisting test
such as the Raven’s Matrices by creating latent variables that are
distinct from raw score or accuracy (e.g., Kelderman, 1996).

Masters’s (1982) partial credit model (PCM) is the foundation
of the models presented below. The PCM combines the unique
conceptual properties of the Rasch model (Wright, 1977) with the
allowance of multiple response categories. Both the Rasch model

and its PCM extension posit distribution-free scaling; that is,
knowledge of one person’s ability, as defined within the confines
of the model, is fully contained within his or her responses, and is
not furthered in any way by comparing his or her responses to
those of others (e.g., Wright, 1977). However, unlike the dichot-
omous Rasch model, which accommodates only accuracy data, the
polytomous PCM allows levels of a latent variable to have an
ordering that is distinct from the ordering of number of correct
responses. That is, one participant can score higher on the test than
another participant in terms of number of correct responses, but
still place lower on the latent variable. This means that the PCM
can accommodate the prediction that Cohort 1940 participants
place higher on a latent variable than Cohort 1990 participants who
achieve a lower raw score on the Raven’s Matrices, or conversely,
that Cohort 1940 participants place lower on a latent variable than
Cohort 1990 participants who achieve a higher raw score.

The PCM transposes the dichotomy of the Bernoulli distribution
from accuracy of item response to the probability of responding in
Category k relative to one or more additional ordinal categories.
The probability of responding in Category k of item i is

Pik(�) �
exp�j�0

k (� � �ik)

�i�0
m�1 exp�j�0

k (� � �ik),

where �ik is the difficulty parameter, and � is the latent variable
corresponding to the ability expressed by the model. Figure 8
illustrates the model with hypothetical item category response
functions. The predicted probability of a response in, say, Category
3 relative to Category 2 increases with higher placement along the
latent variable. Considering only the two most extreme values of �
(the far left and the far right of the graph), it is clear that individ-
uals low in ability are almost as likely to respond in Category 3 as
Category 2, whereas individuals high in ability are much more
likely to respond in Category 3 than Category 2.

We utilize two polytomous models. The dissimilarity model
equates ability with the level of dissimilarity at which participants
can successfully map corresponding objects. Responses containing
no correct objects or correct objects for rules with similar corre-
sponding objects occupy lower categories, and responses contain-
ing correct objects for rules with dissimilar corresponding objects
in addition to correct objects for rules with similar corresponding
objects occupy higher categories. In other words, the model takes
for granted that participants who map objects for, say, a Level 3

5 A unique study by Babcock (2002) has revealed similar response
patterns for contemporary older and younger adults with respect to the
kinds of errors they commit according to Forbes’s (1964) taxonomy of
errors. It is unclear whether Babcock’s results are compatible with our
own. If older adults have particular difficulty with mapping dissimilar
objects, they should be more likely than younger adults to make wrong-
principle and repetition errors, and possibly confluence-of-ideas errors (see
Forbes, 1964), because these error types suggest failure to infer rules.
Although the finding was not deemed significant by conventional stan-
dards, Babcock did find that a greater proportion of older adult errors were
wrong-principle errors, while repetition and confluence-of-ideas errors
were more similar across groups. An important caveat of Babcock’s study
is that patterns of responses and error rates for more difficult items may
have been systematically biased if the very brief time limit of 20 min (half
of the optional standardized time limit) forced many participants to guess
at these items or forego providing a response.
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rule, can and do map objects for a Level 2 rule within the same
item.

In contrast, the number-of-rules model equates ability with the
number of rules inferred by a participant by assuming that high
ability participants select responses with more correct objects. The
number-of-rules model places responses containing correct objects
for, say, two rules, in a higher category than responses containing
correct objects for only one rule, regardless of similarity of objects.
Both models place responses with no correct objects in the lowest
possible category. Notice that ordinal categories themselves are
distinct from individual goals or “steps” (Masters, 1982, p. 155)
within these categories (viz., rules).

Predictions and assumptions of the two models coincide with
one another to the extent that response options containing
correct objects at higher levels of dissimilarity also contain
correct objects at lower levels of dissimilarity (i.e., to the extent
that some response options are simply closer to being correct
than others based on our criteria). Response options for both
variables are not perfectly counterbalanced within items and
there is linear dependence between the two variables both
within and between items (i.e., correlations between response
and item vectors representing levels of variables). For these
reasons, we cannot test a multidimensional model that includes
both variables (e.g., see Adams, Wilson, & Wang, 1997). How-
ever, we emphasize that our primary goal is to test predicted
violations of measurement invariance on a preexisting test with
a large Flynn effect rather than to advance a definitive model of
matrix reasoning.

As a baseline reference for the polytomous models, and a
means of testing our earlier assumption that aggregate pass
rates of Raven’s Matrices items can be interpreted as if item
difficulties are distribution-free, we also test a dichotomous
model that accommodates only accuracy data. This model
equates ability with success at solving Raven’s Matrices items
rather than any claim about how item responses are selected.

Testing for Violations of Measurement Invariance

In the context of individual tests, measurement invariance is
generally evaluated at the level of individual items. An item
exhibits differential item functioning (DIF; sometimes called item
bias) to the extent that members of one group who respond in the
same category as members of the other group achieve a higher or
lower raw score on the test.6

Miller and Spray’s (1993) logistic discriminant function analy-
sis is used to detect DIF because it is applicable to polytomous
items and is more powerful than parametric approaches and non-
parametric alternatives such as the generalized Mantel–Haenszel
procedure (Miller & Spray, 1993; Su & Wang, 2005) and multi-
nomial logistic regression (Hidalgo & Gomez, 2006). The proce-
dure does not appear to inflate Type I error relative to these
alternatives (Hidalgo & Gomez, 2006; Su & Wang, 2005). Logistic
discriminant function analysis is applied within a logistic regres-
sion framework by interchanging conditional and fixed variables
such that group membership is conditioned on raw score and
response category. Thus, cohort membership becomes the depen-
dent variable, and detection of DIF becomes a matter of determin-
ing whether or not response category improves predictions of
cohort membership above and beyond overall raw score on the
Raven’s Matrices. To the extent that it does, Raven’s Matrices
scores violate measurement invariance in relation to cohort and
latent variables as defined by response categories.

Method

Items and participants. Because the Flynn effect is, first and
foremost, an effect of raw scores, the most valid indicator of
Raven’s Matrices score is number correct. Thus, our analysis is
limited to complete sets of responses to a common set of items.
The sample consists of 260 older (Cohort 1940) and younger
(Cohort 1990) participants. Each participant completed a comput-
erized version of the Raven’s Matrices within a 3-year period
spanning from 2008 to 2010. This includes 50 participants from
Boot et al. (2012). Boot et al. omitted four items from their version
of the test (Items 21, 25, 29, and 33). These items are excluded
from the analysis in keeping with the criteria specified above. The
final data set consists of 32 items completed by 223 participants
(Cohort 1940: n � 72, mean age � 73 years; Cohort 1990: n �
151, mean age � 19 years). Cohort 1940 participants in the present
study were born around the same time as Cohort 1940 participants
in Study 1.

Response classifications. The eight response options for each
of the 36 Raven’s Matrices items (one correct response and seven
lures) were categorized according to the dissimilarity and number-
of-rules models using the same criteria as used in Study 1.

In the dissimilarity model, responses were categorized accord-
ing to the level of dissimilarity of correct objects such that each

6 Both our predictions and our use of “DIF” in the text refer to uniform
DIF in particular. Psychometricians often distinguish between uniform
DIF, or bias that is constant across levels of ability, and non-uniform DIF,
or bias that interacts with level of ability (e.g., Su & Wang, 2005). Because
we neither predicted nor found substantial non-uniform DIF, we forgo
discussing it in the text to evade a potentially confusing distinction that is
incidental to our thesis. Statistics for non-uniform DIF have been made
available in Table 3 for interested readers.

Figure 8. Partial credit model item category response functions for a
three-category item. The predicted probability of a response in Category 3
relative to Category 2 increases with higher placement along the latent
variable. Considering only the two most extreme values of � (the far left
and the far right of the graph), the model assumes that individuals with low
ability scores are almost as likely to respond in Category 3 as Category 2,
whereas individuals with high ability scores are far more likely to respond
in Category 3 than Category 2.
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response was placed in the category corresponding to the lowest
level of dissimilarity for any of its correct objects. For example,
the eight choices for an item with one Level 2 rule and one Level
3 rule contain either (1) no correct objects, (2) the correct object
for the Level 2 rule and incorrect object for the Level 3 rule, (3) the
incorrect object for the Level 2 rule and correct object for the
Level 3 rule, or (4) correct objects for both the Level 2 and Level
3 rules. The ordinal categories for these choices are 1, 2, 1, and 3,
respectively. If there is only one Level 3 rule, it follows that
Category 3 admits only one response, the correct response. Other
responses that contain a correct object for the Level 3 rule neces-
sarily contain incorrect objects for the Level 2 rule and are cate-
gorized as 1.

In the number-of-rules model, response choices were catego-
rized according to the number of correct objects that they contain.
Response options for an item with two rules contain either no
correct objects, one correct object, or two correct objects. Thus, the
ordinal categories for these responses are 1, 2, and 3, respectively.
Response categories for both models are shown in the Appendix.

The imperfect correspondence between the hypothesis and Ra-
ven’s Matrices response categories leads to several limitations of
the models. The deviation of the dissimilarity model from the
dichotomous model (i.e., accuracy data) is limited because many
items containing rules with Level 2 or Level 3 dissimilarity do not
contain partially correct responses (see the Appendix). This makes
it difficult to confirm the prediction that Raven’s Matrices scores
overestimate the level at which Cohort 1940 participants map
objects.

In addition, some incorrect responses of some items contain odd
variations of objects that are incompatible with rules as defined by
Carpenter et al. (1990) and the criteria used in the first two studies.
For example, each figure of the matrix in Item 14 contains the
same invariant object (a “Y” shape rotated 90° clockwise). As an
invariant “constant,” this object is exempt from Carpenter et al.’s
(1990) rules but must be present in the correct answer. In fact, the
object is present in every response option, but is incorrectly in-
verted in one option that would otherwise be considered correct
because it contains correct objects for both of the two rules.
Incorrect response options like this one cannot be categorized in
accordance with either model without making additional assump-
tions about how participants solve items. However, they cannot be
excluded without reintroducing the problem of missing data. Our
solution was to place the 18 response options for nine items like
this one into the lowest response categories. Although not strictly
consistent with either model, this can only decrease confirmation
of our predictions because it reduces the degree to which scores on
the polytomous variables can deviate from ordinary raw scores.

Differential item functioning. Logistic discriminant function
analysis (Miller & Spray, 1993) simplifies the otherwise awkward
application of logistic regression to polytomous items by exchang-
ing the categorical predictor (group) and binary dependent variable
(accuracy) such that the regression represents the conditional prob-
ability of membership in one group versus the other given raw
score (number of Raven’s Matrices items answered correctly), the
criterion variable (response category), and an interaction term for
non-uniform DIF (Raven’s Matrices score by response category;
see Footnote 6). The p values of changes in chi-square in the
stepwise procedure are the probability of obtaining data at least as
extreme as those observed if there is no DIF to be found at the

level of the population (see Miller & Spray, 1993, for more
details). The procedure is applied to every item in isolation.

Results

The analysis can be decomposed into the two basic stages of
first evaluating the fit of the models to a population comprised of
Cohort 1940 and Cohort 1990 participants, and then testing Ra-
ven’s Matrices scores for measurement invariance in relation to
cohort and item-level response categories as defined by the models
(i.e., DIF).

Accuracy and fit. Cohort 1990 participants achieved higher
raw Raven’s Matrices scores than Cohort 1940 participants (Co-
hort 1990: M � 17.11, SD � 5.11, 95% CI [16.29, 17.93]; Cohort
1940: M � 10.79, SD � 5.01, 95% CI [9.63, 11.94]; d � 1.25),
and they achieved higher sum-scores on dissimilarity (Cohort
1990: M � 22.70, SD � 6.27, 95% CI [21.60, 23.80]; Cohort
1940: M � 16.00, SD � 5.81, 95% CI [14.70, 17.30]; d � 1.11)
and number-of-rules (Cohort 1990: M � 43.60, SD � 9.07, 95%
CI [42.20, 45.00]; Cohort 1940: M � 35.10, SD � 8.23, 95% CI
[33.2, 37.0]; d � 0.98) variables. The between-cohort effect size
for Raven’s Matrices scores (d � 1.25) is fairly representative of
both the Flynn effect and typical findings in cross-sectional studies
of cognitive aging.

In accord with distribution-free assumptions of the Rasch
model, conditional maximum likelihood was used to estimate item
and person parameters independently. Because the overall fit of the
data to all three models (dissimilarity, number-of-rules, and di-
chotomous models) is very good, we present more specific item-
level fit statistics in the form of weighted mean-squares (Wright &
Masters, 1982). Values of 1 indicate ideal fit, values of less than 1
indicate less variation than predicted by the model, and values of
greater than 1 indicate greater variation than predicted (unex-
plained variation). Interpretation of a given value is unaffected by
number of participants (Smith, Rush, Fallowfield, Velikova, &
Sharpe, 2008), in part, because the denominator is the degrees of
freedom.

Fit statistics for all three models are displayed in Figure 9. As
the figure shows, patterns of responses are fairly compatible with

Figure 9. Weighted mean-square by item for all three models. The solid
horizontal line represents ideal fit, and the dotted horizontal lines represent
rule-of-thumb boundaries for acceptable fit.
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all three models. Excellent fit of responses to the dichotomous
model lends justification to our interpretation of Study 1 pass rates
as indicators of item difficulty. Correspondence of data with the
dissimilarity model suggests that the level of dissimilarity at which
participants map objects is distribution-free, but we reiterate that
the Raven’s Matrices does not permit the dissimilarity variable to
deviate far enough from raw score to justify any firm conclusions
(see the Appendix). Finally, response patterns are also compatible
with the number-of-rules model, which shows that difficulties are
distribution-free when difficulty is defined by number of rules in
items within these populations.

Fit of the data to the polytomous models is compatible with the
interpretation of dissimilarity and number of rules as distribution-
free sources of item difficulty. The pivotal question is whether the
relationship between ordinary Raven’s Matrices scores and the
problem goals corresponding to scores on these variables are
comparable in Cohorts 1940 and 1990.

Differential item functioning. DIF statistics for Raven’s Ma-
trices scores in relation to response categories, derived with Miller
and Spray’s (1993) procedure, are presented in Table 3. Raven’s

Matrices scores exhibit at least some degree of DIF in relation to
variables defined by each of the three models. The magnitude of
changes in chi-square reveal that the number-of-rules variable
manifests far greater DIF for a greater number of items (n � 18)
than the dissimilarity variable (n � 8) or the dichotomous variable
(n � 5) using the arbitrary criterion of p � .05. In fact, the
number-of-rules variable reveals substantial DIF for every item
that shows any DIF for the other variables. This suggests that
Raven’s Matrices scores violate measurement invariance between
cohorts by either overestimating or underestimating the number of
rules inferred by Cohort 1940 participants relative to Cohort 1990
participants.

The directionality of DIF for the number-of-rules variable and
dissimilarity variable is ascertained by evaluating response pat-
terns within items.

Number-of-rules. An example helps to illustrate how direc-
tionality of DIF was assessed for the number-of-rules variable.
Figure 10 shows a logistic discriminant function analysis (see
Miller & Spray, 1993) for Item 28. The y-axis represents the
log-odds of Cohort 1990 membership when cohort membership is

Table 3
Differential Item Functioning as Indicated by Raven’s Matrices Scores in Relation to Cohort and Response Categories

Item

Dichotomous (accuracy) Dissimilarity Number-of-rules

Uniform Non-uniform Uniform Non-uniform Uniform Non-uniform

1 1.61 0.27 1.88 1.15 3.00 0.26
2 2.65 0.59 2.65 0.59 5.06* 0.35
3 8.38** 2.13 8.38** 2.13 8.99** 7.09**

4 0.42 0.15 0.42 0.15 5.32* 0.20
5 2.16 0.51 2.16 0.51 4.09* 4.10*

6 0.35 0.32 0.35 0.32 14.71** 0.83
7 6.98** 0.04 6.98** 0.04 6.98** 0.04
8 0.59 0.13 0.59 0.13 3.40 2.96
9 0.08 0.02 0.07 0.02 0.08 0.02

10 0.34 2.40 0.34 2.40 6.11* 2.83
11 0.34 0.48 0.34 0.48 0.34 0.48
12 1.30 1.22 1.30 1.22 1.30 1.22
13 0.13 2.11 2.88 2.68 3.05 2.67
14 5.98* 0.04 5.98* 0.04 6.30* 1.84
15 3.60 0.88 3.60 0.88 6.12* 4.57*

16 0.00 0.60 0.00 0.60 0.00 0.60
17 1.93 0.90 4.31* 3.60 4.31* 3.60
18 9.93** 0.05 9.93** 0.05 10.57** 4.60*

19 0.01 0.15 0.01 0.15 4.33* 0.20
20 0.49 0.00 0.49 0.00 0.49 0.00
22 0.02 0.02 0.02 0.02 0.69 6.30*

23 0.10 1.79 0.10 1.79 0.10 3.37
24 0.02 0.04 0.02 0.04 1.01 3.37
26 0.23 0.01 0.23 0.01 0.44 1.93
27 0.03 0.06 0.03 0.06 2.75 0.21
28 3.44 0.73 3.44 0.73 10.29** 2.10
30 4.15* 9.36** 4.15* 9.36** 8.10** 18.91**

31 0.25 2.60 0.12 2.06 5.68* 6.68**

32 0.64 2.09 1.69 2.84 9.06** 2.65
34 3.80 0.01 4.25* 2.03 4.25* 2.03
35 1.50 0.02 1.15 0.76 1.51 0.76
36 0.15 3.59 7.81** 4.13* 3.93* 5.96*

Note. Uniform and non-uniform differential item functioning (DIF) as indicated by raw Raven’s Matrices score in relation to cohort and response category
for dichotomous, dissimilarity, and number-of-rules variables. The text refers only to uniform DIF (see Footnote 6). Values are chi-square with one degree
of freedom for changes in likelihood between successive steps in Miller and Spray’s (1993) logistic discriminant function analysis. Identical values for two
different variables indicate that response categories are the same for that item (see the Appendix).
* p � .05. ** p � .01. (Probability of obtaining data at least as extreme as those observed if there is no DIF. Strictly speaking, p values are higher because
they are not corrected for multiple tests.)
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conditioned on Raven’s Matrices score (the x-axis) and response
category. Each solid line represents the function for one of the four
response categories. The dotted line is the function of cohort
membership conditioned solely on Raven’s Matrices score (the
“null” function). Thus, the solid lines overlap the dotted line when
there is no DIF. The low position of higher response category
functions in relation to the null function reveal that participants
responding in the highest category at any given level of Raven’s
Matrices score are more likely to be members of Cohort 1940.
Response patterns for this item are compatible with predictions in
revealing that Cohort 1940 participants inferred more rules than
Cohort 1990 participants who achieved the same score on the
Raven’s Matrices.

Eleven of the 18 affected items (Items 2, 3, 5, 6, 10, 14, 17, 19,
28, 31, and 36) have the same relatively straightforward interpre-
tation as Item 28. The seven remaining items show the reverse
effect, but six of these seven items have rules at Level 2 of
dissimilarity or higher, making it impossible to rule out the con-
found between dissimilarity and number of rules as an alternative
explanation, or at least a source of ambiguity that can only be
resolved by determining which participants selected which re-
sponses from either category. In fact, response categories for two
of these items (Items 7 and 34) are identical for the dissimilarity
and number-of-rules variables, meaning that the incompatibility of
their orders with our number-of-rules prediction constitutes sup-
port of our dissimilarity prediction. This is precisely why we made
our predictions at the level of the test rather than individual items.

Indeed, an overall analysis of the entire set of 32 items, condi-
tioning cohort membership on Raven’s Matrices score, overall
sum-score (the sufficient statistic for the latent variable rather than
category for a single item) for the number-of-rules variable, and
the interaction term, revealed an increased likelihood of Cohort
1940 membership for participants with high sum-scores relative to
Raven’s Matrices scores, �2(1) � 11.23, r � .23. These results
confirm our prediction that raw Raven’s Matrices scores underes-
timate the number of rules inferred by Cohort 1940 participants
relative to Cohort 1990 participants.

Dissimilarity. An item-level analysis of response patterns ver-
ified the predicted direction of DIF for the dissimilarity variable in
only four of eight items that revealed DIF (Items 7, 18, 30, and 34).
Although an overall analysis across items revealed DIF in the
direction that is opposite to predictions for the dissimilarity vari-
able (sum-score), �2(1) � 4.37, r � .14, this finding appears to be
due entirely to overlap in response categories with the number-of-
rules variable. The dissimilarity variable revealed no DIF when the
number-of-rules variable was added as an additional criterion
variable, �2(1) � 0.78, r � .06. These results imply no overall DIF
for the dissimilarity variable, but again, this conclusion is tentative
because the variable is highly underdetermined by the items and
response choices of the Raven’s Matrices.

Graphical illustration. Some readers may find violations of
measurement invariance more transparent in the familiar context
of linear regression. Figure 11 is a linear regression-like scatterplot
of raw Raven’s Matrices scores as a function of scores on the latent
variables. Polytomous sum-scores are displayed rather than thetas
in keeping with a linear interpretation (thetas show the same basic
effect in a logistic “S”-shape rather than a straight line). The figure
shows that Raven’s Matrices scores vary similarly between cohorts
across levels of the dissimilarity variable, but tend to underesti-
mate the number-of-rules variable for Cohort 1940 participants
relative to Cohort 1990 participants as evidenced by the high
proportion of white dots beneath the trend line. The size of the
effect is highly constrained by the overlap in response categories
between Raven’s Matrices score and the number-of-rules variable,
but the effect is nonetheless clearly visible. Consistent with pre-
dictions and our interpretation of Study 1, the Raven’s Matrices
test violates measurement invariance between cohorts by underes-
timating the number of rules inferred by Cohort 1940 participants
relative to Cohort 1990 participants. That is, for Cohort 1940
participants and Cohort 1990 participants who earn the same raw
score, Cohort 1940 participants would correctly infer a greater
number of rules.

Discussion

The purpose of Study 2 was to verify an assumption behind our
interpretation of Study 1 while testing the prediction that Raven’s
Matrices scores overestimate the level of dissimilarity at which
Cohort 1940 participants map objects relative to Cohort 1990
participants, or underestimate the number of rules inferred by
Cohort 1940 participants relative to Cohort 1990 participants.

The excellent fit of the data to the dichotomous Rasch model
suggests that our interpretation of Study 1 pass rates as indicators
of distribution-free difficulty is defensible, at least when consid-
ering young adults born sometime around or after 1940 in highly
developed countries. Although constraints of test materials forced

Figure 10. Logistic discriminant function analysis for differential item
functioning (DIF) of Item 28 for the number-of-rules model. The y-axis
represents the log-odds of Cohort 1990 membership when cohort mem-
bership is conditioned on Raven’s Matrices score (the x-axis) and response
category. Each solid line represents the function for one of the four
response categories. The dotted line is the function of cohort membership
conditioned solely on Raven’s Matrices score (the “null” function). Thus,
the solid lines overlap the dotted line when there is no DIF. The low
position of higher response category functions in relation to the null
function reveals that participants responding in the highest category at any
given level of Raven’s Matrices score are more likely to be members of
Cohort 1940.
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both variables to correlate highly with raw test scores and with one
another, results confirm our prediction that raw score underesti-
mates the number of rules inferred by Cohort 1940 participants
relative to Cohort 1990 participants who achieve the same score on
the Raven’s Matrices.

It is important to note constraints that preexisting tests place on
the degree to which scores on polytomous variables can deviate
from raw score. Although response choices of Raven’s Matrices
items do vary in a manner that permits limited testing of predic-
tions, the test includes very few items with more than two levels of
dissimilarity in the response choices, which restricted the degree to
which response categories for the dissimilarity variable could
differ from mere accuracy. This lack of variation suppressed the
opportunity to observe measurement violations of raw scores in
relation to dissimilarity. This is probably why we did not find that
Raven’s Matrices scores overestimate the level at which Cohort
1940 participants map objects relative to Cohort 1990 participants
even though this pattern of results would have been compatible
with the findings of Study 1. The null finding does not rule out the
possibility of observing the predicted effect for the level-of-
dissimilarity variable with a test designed specifically to test the
same predictions. Raven’s Matrices items permitted the number-
of-rules variable to deviate somewhat more from mere accuracy,
revealing systematic DIF that is compatible with predictions de-
spite methodological constraints of imperfect response categories.

For the same reason that the dissimilarity and number-of-rules
variables overlap with raw score, they also overlap with one
another. The study would have served little purpose if it were not
possible in principle for participants to achieve different scores on
the two variables, but the fact remains that it is impossible to
achieve a high score on one variable without achieving a relatively
high score on the other. For our purposes, it was necessary to use
a test with a documented Flynn effect, ideally the same test
completed by participants in Study 1, but given the constraints
identified above, the most effective way of assessing measurement
invariance in relation to theoretically-motivated variables in future
studies is to design items whose response options vary systemat-

ically in accordance with predictions (e.g., Embretson, 1998;
Freund et al., 2008).

It should not be forgotten that a difference between cohorts is,
at least in this case, also a difference between age groups, but an
age-related explanation of the findings is not easy to defend. As far
as we know, there are no theories in cognitive aging that would
make the same item-specific predictions as the current proposal. A
cohort-related interpretation is more compatible with Study 1
findings, which confirmed that conceptually similar predictions
with a data set of two cohorts that were comparable in mean age
at the time of testing. Finally, and perhaps most decisively, the
Flynn effect has to be caused by something that is distinct from
causes of age-related cognitive decline. As we show below, the
proposal that motivated predictions is highly compatible with the
general pattern of between-cohort gains that is observed when
various subtests are differentiated according to structure and con-
tent.

A final point merits special emphasis. The dichotomous model
not only lends support to our distribution-free interpretation of
Study 1 findings, but also illustrates an important limitation of
interpreting latent variables as causal entities in their own right.
The good fit of dichotomous data to the Rasch model along with
the relative lack of DIF for dichotomous data could easily lead
investigators to conclude that there exists an ability common to
members of both cohorts . . . if it is forgotten that the Rasch model,
like any other latent variable model, is a set of probabilistic criteria
that does not arbitrate the existence or non-existence of psycho-
logical properties (Maraun, 1996). Because the dichotomous
model defines ability as something no more specific than
distribution-free patterns of response accuracy, it was never capa-
ble of distinguishing between any two theories of performance
that are both compatible with distribution-free patterns of re-
sponse accuracy.

In sum, our findings are compatible with the prediction that
Raven’s Matrices scores violate measurement invariance between
cohorts by underestimating the number of rules inferred by Cohort
1940 participants relative to Cohort 1990 participants. A reason-

Figure 11. A linear regression-like depiction of raw Raven’s Matrices scores as a function of placement along
the latent variables. Sum-scores (sufficient statistics) are presented rather than thetas in keeping with a linear
interpretation. The apparent scarcity of data is due to frequent overlap among the 223 cases. Raven’s Matrices
scores vary uniformly between cohorts across levels of the dissimilarity variable but tend to underestimate
placement along the number-of-rules variable for Cohort 1940 participants relative to Cohort 1990 participants
as evidenced by the frequency of white dots on the right side of the trend line.
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able interpretation of the findings is that raw score is, on
average, constrained by different limiting factors in the two
cohorts such that Cohort 1940 participants tend to lose more
points than Cohort 1990 participants because of their inability
to map dissimilar objects. A more general (and perhaps less
cautious) interpretation is that test-takers born around 1940 are
more limited than their recent-born counterparts in their ability
to form abstract concepts, but not in their ability to keep track
of these concepts once they are formed. Regardless of interpre-
tation, our results imply that there is nothing paradoxical about
Cohort 1940 participants in Study 1 having achieved the same
overall pass rates as Cohort 1990 participants despite having
lower pass rates on items with dissimilar corresponding objects.

Confirmatory factor-analysis has already shown that test batter-
ies violate measurement invariance between cohorts (Must et al.,
2009; Wicherts et al., 2004). The present study is the first to
confirm a prediction of measurement invariance within a single
preexisting test using latent variables defined by a cognitive ac-
count of rising scores.

General Discussion

Studies 1 and 2 provide converging support for our proposal that
rising scores reflect improved mapping of dissimilar analogical
objects. The findings are of immediate relevance to the cognition
of matrix reasoning and have important implications for cognitive
aging research. We conclude by placing the findings in the larger
context of rising scores.

Implications for Matrix Reasoning and Cognitive
Aging

Unlike others who have investigated matrix reasoning, we do
not attribute our findings to individual differences in working
memory, but instead note that our proposal is compatible with
Carpenter et al.’s (1990) well-known findings precisely because
their FAIRAVEN and BETTERAVEN models differ only in
productions (procedural knowledge). More specifically,
BETTERAVEN’s additional productions enable the model to rec-
ognize rules containing dissimilar objects. In ordinary language,
FAIRAVEN assumes that objects corresponded to one another
only if verbal protocols revealed that they were typically given the
same name by participants (e.g., line or circle). In contrast,
BETTERAVEN’s additional productions allow it to test other
rules when the mapping of matching names does not successfully
elicit a rule. Although neither model infers rules per se,
BETTERAVEN’s advantage over FAIRAVEN is highly compat-
ible with the thesis of this article.

Attributing differences in test scores to differences in working
memory requires a definition of working memory that is logically
distinct from performance itself (e.g., see Boag, 2011; Maraun,
1998; Maze, 1954; Michell, 2011; Wallach & Wallach, 1998).
Carpenter et al. (1990) provided such a definition by formalizing
working memory demand in terms of the features of items. How-
ever, the working memory demand of items, as defined by Car-
penter et al.’s models, does not predict the magnitude of correla-
tions between working memory span scores and item-level
accuracy on the Raven’s Matrices (Unsworth & Engle, 2005; see
also Wiley, Jarosz, Cushen, & Colflesh, 2011). That an accepted

theoretical construct of working memory demand (a prospective
source of item difficulty) is incompatible with an accepted empir-
ical construct of working memory (observed ability as defined by
performance on a working memory test) is testimony to the inde-
terminacy of the term, “working memory,” as it is currently used
in the literature. Our conclusions can neither corroborate nor
contradict working memory claims until investigators agree on a
definition of working memory that enables claims about the con-
struct to be disconfirmed, that is, a single, a priori criterion for
employment of the term “working memory.”

Studies 1 and 2 are consistent with earlier conclusions that
number of rules is a source of item difficulty (Carpenter et al.,
1990; Embretson, 1998). However, preserving rules requires map-
ping objects in the first place, which is why accounting for indi-
vidual differences entails not just identifying variables, but ascer-
taining how various levels of performance are achieved
(Borsboom, Mellenbergh, & van Heerden, 2004; Ericsson &
Kintsch, 1995). Study 2 is an empirical demonstration of why it is
problematic to equate observed differences in scores, including
latent variable scores, with literal psychological quantities.

For very similar reasons, our findings encourage cognitive aging
researchers to be cognizant of the Flynn effect and its implications.
The trend constitutes a major cross-sectional confound that is
seldom mentioned in this literature. Dickinson and Hiscock (2010)
concluded after analyzing normative data from two versions of the
WAIS—Wechsler Adult Intelligence Scale—Revised (WAIS–R;
Wechsler, 1981) and Wechsler Adult Intelligence Scale—Third
Edition (WAIS–III; Wechsler, 1997)—that cohort is responsible
for the majority of the differences in cross-sectional scores ob-
tained across subtests for groups separated by 50 years of age. In
an earlier study, Hiscock (2007) estimated that only about one
third of the cross-sectional difference in Raven’s Matrices scores is
attributable to age. The present findings lend substance to concerns
raised by others (Hofer & Sliwinski, 2001; Schaie, 2009; Zelinski
& Kennison, 2007) that effects of cohort and time period are
understated or misrepresented by prevailing interpretations of
cross-sectional findings.

Making Sense of the Flynn Effect

The gold standard for any theory of rising scores is accounting
for gains on Raven’s Matrices. However, our emphasis on this test
has led us to understate the application of our proposal to other
tests that are seemingly less abstract. It is informative to return to
Flynn and Weiss’s (2007) discussion of Similarities.

Assuming children are familiar with dusk and dawn, presenta-
tion of these two concepts would tend to activate other concepts
common to both. Time of day and intermediate brightness are
common objects and roles that may be retrieved spontaneously and
offered indiscriminately by a child who does not test for deeper
relations. However, a child who knows to expand her search
beyond the obvious can evaluate further possibilities. If she re-
trieves both time of day and intermediate brightness, she can treat
them as objects in need of roles and perhaps, infer the relation,
separates night and day.

The major difference between her and an unskilled problem
solver is that she is flexible enough to treat a full-fledged role (time
of day) as an object in need of a more abstract role (separates night
and day). This does not imply that she would not benefit from
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additional knowledge (e.g., a heuristic of attempting to account for
the most objects with the fewest relations). Greater facility for
treating roles as objects can help to explain why today’s average
child scores at the 94th percentile of her grandparents’ generation
on Similarities (Flynn & Weiss, 2007). There is no reason why
greater representational flexibility must disappear in the presence
of content.

If the ability to map objects between items has contributed to
higher scores, gains should be largest on tests composed of items
with a structure that is both initially unfamiliar and relatively
uniform from item to item. Knowing how to cope with indetermi-
nacy would confer little or no advantage on tests with structures
that are highly familiar to test-takers, or tests composed of items
that are not analogically similar to one another. The Wechsler and
Stanford–Binet both contain many subtests requiring problem
solving procedures that test-takers would seldom encounter out-
side the context of intelligence testing, and that remain relatively
consistent throughout an individual test. Consistent with predic-
tions, these tests show moderate improvement across subtests.

The lowest gains are observed on subtests consisting of items
that resemble schoolwork or scholastic achievement tests, such as
Arithmetic, Information (a test of general knowledge), and Vocab-
ulary (Flynn, 1999; Flynn & Weiss, 2007). There is little to be
gained from mapping objects between items on these subtests
because their structures are already familiar to every test-taker.
Even if their structures were unfamiliar, the items call for declar-
ative knowledge that must be acquired prior to the test. In contrast,
subtests bearing little resemblance to traditional schoolwork such
as Similarities, Picture Arrangement, Block Assembly, and Coding
show considerably larger gains (Flynn, 1999; Flynn & Weiss,
2007). These subtests have problem structures that are relatively
uniform throughout and are unfamiliar to most test-takers.

In general, the theory predicts that gains in raw scores should be
highest on tests where higher-level analogical mapping is most
crucial, regardless of whether the tests were designed to assess this
ability or not. How participants obtain solutions to items is a
question of the actual goals and sub-goals they must accomplish to
respond correctly. This question can only be answered by task
analysis (e.g., Ericsson & Simon, 1993).

Cross-Cultural Implications

Our proposal that improved test performance reflects a form of
knowledge that proliferates only in modern cultures is consistent
with Brouwers et al.’s (2009) cross-cultural meta-analysis of the
Raven’s Matrices. This analysis revealed that scores at any given
time (i.e., when controlling for publication year) were associated
with educational age (years of education in the test sample) and
educational permeation of country, both of which coincide with
cultural factors such as economic development. Given that primar-
ily young people have been tested (the mean age was about 17
years for the nearly quarter-of-a-million participants), often in only
recently developing countries, it is more likely that these factors
cause higher test scores than vice versa.

Conceived in very simple terms, possession of a form of knowl-
edge will correlate with performance on various tests and other
tasks to the extent that it facilitates performance and is neither too
common nor scarce within a population (see Wicherts & Johnson,
2009). Thus, psychometric properties of items and tests, such as

their covariation with other tests (i.e., their so-called g-loadings),
will be lowest when either very few or very many people have
acquired the knowledge, and highest when about half the popula-
tion has acquired it. By this reasoning, our proposal is compatible
with Wicherts et al.’s (2010) exhaustive analysis of Raven’s Ma-
trices scores of sub-Saharan Africans, which revealed relatively
low g-loadings in this population of test-takers who are unlikely to
have acquired a form of knowledge that is conferred only by
modern cultures. By the same reasoning, our proposal is compat-
ible with a decline in covariance over time (Kane & Oakland,
2000) in the United States where the knowledge has become a
standard feature of higher-level cognition.

Findings of Studies 1 and 2 are compatible with a growing
literature revealing violations of measurement invariance between
cohorts (Beaujean, & Osterlind, 2008; Must et al., 2009; Wicherts
et al., 2004). However, Study 2 is also a demonstration of why
accuracy data cannot be expected to reveal violations of measure-
ment invariance in terms of how responses are generated when two
distinct approaches to generating responses both confer
distribution-free patterns of accuracy. In other words, two popu-
lations may not be comparable to one another even when mea-
surement invariance is observed if the research question one seeks
to answer by comparing these populations is more specific than the
data used to establish invariance. Ultimately, one cannot rule out
violations of measurement invariance entirely, but only attempt to
test increasingly detailed hypotheses about how various levels of
performance are achieved in two or more populations.

Summary

This article attempts to account for rising scores on culture-free
intelligence tests as a knowledge-based phenomenon by reconcil-
ing Flynn’s (2007) proposal that rising scores were caused by
improved abstract reasoning with insights and discoveries that
have emerged from studies of matrix reasoning (e.g., Carpenter et
al., 1990; Embretson, 1998; Primi, 2002; Meo et al., 2007).

A review of the literature suggests that the level of dissimilarity
at which individuals map objects is a source of variation in scores
on culture free tests, and a study of archival data shows that
contemporary young adults are better at mapping dissimilar ob-
jects than their predecessors of 50 years ago. Polytomous Rasch
models suggest that Raven’s Matrices scores of today’s young
adults are constrained less by the inability to map dissimilar
objects than scores of young adults from around 1960.

If the Flynn effect is a testament to the capacity of humans to
adapt to their environments, then it is also a statement about the
vastness and irregularity of human diversity. The need to accom-
modate this irregularity will become increasingly apparent as
cross-cultural, cross-geographical findings accumulate in the com-
ing years (see Henrich, Heine, & Norenzayan, 2010). Establishing
a psychology that can cope with diversity and change will require
looking beneath the surface features of human variation for prin-
ciples that transcend both culture and time.
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Appendix A

Item Classifications for Study 1 and Polytomous Response Categories for Study 2

Item

Study 2

Study 1 Dissimilarity Number-of-rules

Dissimilarity No. of rules Category Responses Category Responses

1 1.67 3 1 (2, 3, 6, 7, 8) 1 (6, 7)
2 (1, 4) 2 (1, 2, 3, 4, 8)
3 (5) 3 (5)

2a 1.00 2 1 (2, 3, 4, 5, 6, 7, 8) 1 (4, 7)
2 (1) 2 (2, 3, 5, 6, 8)

3 (1)
3 1.00 2 1 (1, 2, 3, 4, 5, 6d, 7, 8) 1 (1, 4, 5, 6d)

2 (7) 2 (2, 3, 8)
3 (7)

4 1.00 2 1 (1, 2, 3, 5, 6, 7, 8) 1 (2, 6, 7, 8)
2 (4) 2 (1, 3, 5)

3 (4)
5 1.00 2 1 (1, 2, 4, 5, 6, 7, 8) 1 (6)

2 (3) 2 (1, 2, 4, 5, 7, 8)
3 (3)

6 1.00 2 1 (2, 3, 4, 5, 6, 7, 8) 1 (4, 5, 6, 7)
2 (1) 2 (2, 3, 8)

3 (1)
7 2.00 1 1 (1, 2, 3, 4, 5, 7, 8) 1 (1, 2, 3, 4, 5, 7, 8)

2 (6) 2 (6)
8 2.00 2 1 (2, 3, 4, 6, 7, 8) 1 (2, 5, 6, 7, 8)

2 (1) 2 (3, 4)
3 (1)

9 2.00 2 1 (1, 2, 3, 4, 5, 6, 7) 1 (1, 2, 3, 4, 5, 6, 7)
2 (8) 2 (8)

10c 1.00 2 1 (1, 2, 3d, 5, 6, 7d, 8) 1 (3d, 5, 6, 7d)
2 (4) 2 (1, 2, 8)

3 (4)
11a 2.00 1 1 (1, 2, 3, 4, 6, 7, 8) 1 (1, 2, 3, 4, 6, 7, 8)

2 (5) 2 (5)
12 2.00 1 1 (1, 2, 3, 4, 5, 7, 8) 1 (1, 2, 3, 4, 5, 7, 8)

2 (6) 2 (6)
13 1.33 3 1 (4) 1 (4)

2 (1, 3, 5, 6, 7, 8) 2 (1, 8)
3 (2) 3 (3, 5, 6, 7)

4 (2)
14c 1.00 2 1 (2, 3, 4, 5, 6d, 7, 8) 1 (2, 3, 4, 5, 6d)

2 (1) 2 (7, 8)
3 (1)

15a 2.00 2 1 (1, 3, 4, 5, 6, 7, 8) 1 (1)
2 (2) 2 (3, 4, 5, 6, 7, 8)

3 (2)
16 2.00 1 1 (1, 2, 3, 5, 6, 7, 8) 1 (1, 2, 3, 5, 6, 7, 8)

2 (4) 2 (4)
17 1.50 2 1 (1, 2, 4, 5, 7) 1 (1, 2, 4, 5, 7)

2 (3, 8) 2 (3, 8)
3 (6) 3 (6)

18ab 2.00 2 1 (1, 2, 3, 4, 5, 6, 8) 1 (2, 4, 5, 6)
2 (7) 2 (1, 3, 8)

3 (7)
19ab 2.00 2 1 (1, 2, 4, 5, 6, 7, 8) 1 (1, 2, 6, 8)

2 (3) 2 (4, 5, 7)
3 (3)
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Appendix (continued)

Item

Study 2

Study 1 Dissimilarity Number-of-rules

Dissimilarity No. of rules Category Responses Category Responses

20a 2.00 1 1 (1, 2, 3, 4, 5, 6, 7) 1 (1, 2, 3, 4, 5, 6, 7)
2 (8) 2 (8)

21ac 2.00 4 1 (1, 2, 3, 4, 5d, 6d, 7d) 1 (4, 5d, 6d, 7d)
2 (8) 2 (2, 3)

3 (1)
4 (8)

22 3.00 3 1 (1, 2, 3, 4, 5, 6, 8) 1 (1, 4, 6)
2 (7) 2 (8)

3 (2, 3, 5)
4 (7)

23 3.00 4 1 (1, 2, 3, 4, 5) 1 (4, 7)
2 (6) 2 (1)

3 (2, 3, 5, 8)
4 (6)

24a 1.00 2 1 (1, 2d, 4, 5, 6, 7, 8) 1 (2d, 7)
2 (3) 2 (1, 4, 5, 6, 8)

3 (3)
25ac 2.00 3 1 (1, 2, 3, 4, 6, 8) 1 (1, 2, 3, 4, 5, 6, 8)

2 (5) 2 (7)
3 (7)

26 3.00 2 1 (1d, 3d, 4d, 5, 6, 7, 8d) 1 (1d, 3d, 4d, 7, 8d)
2 (2) 2 (5, 6)

3 (2)
27 3.00 2 1 (1, 2, 3d, 4, 5d, 6, 8d) 1 (2, 3d, 5d, 8d)

2 (7) 2 (1, 4, 6)
3 (7)

28a 2.00 4 1 (1, 2, 3, 4, 6, 7, 8) 1 (1)
2 (5) 2 (3, 6, 7)

3 (2, 4, 8)
4 (5)

29c 2.33 3 1 (1) 1 (1)
2 (2, 3, 4, 5, 6, 7, 8) 2 (3, 4, 5)
3 (6) 3 (2, 7, 8)

4 (6)
30a 3.00 3 1 (1, 2, 3, 4, 6, 7, 8) 1 (1, 2, 7)

2 (5) 2 (3, 6, 8)
3 (4)
4 (5)

31 2.67 4 1 (1, 3, 7, 8) 1 (5, 7)
2 (2, 5, 6) 2 (1, 2, 3, 6, 8)
3 (4) 3 (1)

4 (4)
32 2.33 4 1 (2, 6) 1 (6)

2 (1, 3, 4, 5, 7) 2 (1, 2, 3)
3 (8) 3 (5, 7)

4 (4)
5 (8)

33c 2.00 2 1 (1, 2, 3, 4, 6, 7, 8) 1 (1, 3, 4, 6, 7, 8)
2 (5) 2 (2)

3 (5)
34 2.25 4 1 (2, 4, 6, 7, 8) 1 (2, 4, 6, 7, 8)

2 (3, 5) 2 (3, 5)
3 (1) 3 (1)
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Appendix (continued)

Item

Study 2

Study 1 Dissimilarity Number-of-rules

Dissimilarity No. of rules Category Responses Category Responses

35 2.75 4 1 (1, 2d, 4d, 5d, 6d, 8) 1 (1, 2d, 4d, 5d, 6d, 8)
2 (7) 2 (7)
3 (3) 3 (3)

36 2.80 5 1 (1, 4, 6, 7) 1 (1, 6)
2 (3, 5, 8) 2 (4, 5)
3 (2) 3 (3, 7)

4 (2)

Note. Category � ordinal rank of response with respect to latent variable. The number of categories correspond to Carpenter et al.’s (1990) study and
Studies 1 and 2 to the extent permitted by response choices.
a Carpenter et al. (1990) did not report their own classification of item. b Item cannot be classified based on Carpenter et al.’s (1990) taxonomy (see p.
431 of their article). c Item was not analyzed in Study 2 because responses were not available for every participant (see the Method section). d Response
has been placed in lowest category because it includes an incorrect object that is incompatible with rules as defined in the article.
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