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Daubert, Cognitive Malingering, and Test Accuracy

Douglas Mossman1,2,3

Daubert v. Merrell Dow Pharmaceuticals (1993) held that trial judges should permit
expert scientific testimony only when “the reasoning or methodology underlying the
testimony is scientifically valid, and . . .properly can be applied to the facts in issue.”
Vallabhajosula and van Gorp (“V&vG,” 2001) have suggested that when the Daubert
standard is applied to tests for malingered cognitive deficits, courts should deem admis-
sible only results that meet this mathematical standard: assuming a pretest probability
of .3, a “positive” score on the malingering test should yield a posttest probability of at
least .8. This paper shows that V&vG’s criterion may lead to misunderstandings about
the kind of information malingering measures provide. After reviewing cases that have
discussed both the Daubert decision and malingered cognitive deficits, this paper uses
data from the Test of Memory Malingering (T. N. Tombaugh, 1996) to provide a general
characterization of the mathematical properties of malingering measures. The paper
then describes how pretest knowledge about malingering is combined with knowledge
about a test’s performance to generate a posttest probability of malingering. The results
can help mental health experts respond to Daubert-inspired challenges to conclusions
based on malingering measures.

KEY WORDS: malingering; Bayes’s Theorem; expert testimony; posttest probability; receiver operating
characteristic; ROC.

1. INTRODUCTION

At least 60 papers in the PsycINFO database discuss whether tests and diagnostic
techniques used by mental health professionals can survive evidentiary challenges
to admissibility under the standards promulgated by the U.S. Supreme Court in
Daubert v. Merrell Dow Pharmaceuticals (1993). In federal courts and in the 30 state
jurisdictions (Parry & Drogan, 2000) that have adopted versions of or variations on
the Daubert standard, a trial judge who faces a “proffer of expert scientific testimony”
must undertake “a preliminary assessment of whether the reasoning or methodol-
ogy underlying the testimony is scientifically valid and of whether that reasoning or
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methodology properly can be applied to the facts in issue” (Daubert v. Merrell Dow
Pharmaceuticals 1993, pp. 592–593).

Although Daubert does not prescribe “a definitive checklist” of matters that
judges should consider, the decision lists four factors that could figure importantly
in a trial court’s assessment of “evidentiary relevance and reliability” (p. 595). These
factors are “whether a theory or technique . . . can be (and has been) tested[,] . . .has
been subjected to peer review and publication[,] . . . the known or potential rate of
error, . . . [and] ‘general acceptance’” within the scientific community (pp. 593–594).
Although Daubert applies specifically to scientific testimony, the Supreme Court
has extended federal judges’ gatekeeping role to other forms of proffered expert
testimony (Kumho Tire Co. v. Carmichael, 1999).

As an 1884 U.S. Supreme Court case (Connecticut Mutual Life Insurance
Company v. Lathrop, 1884) and some pre-1850 state supreme court decisions (e.g.,
Clark v. State, 1843; McLean v. State, 1849) demonstrate, U.S. courts have long asked
witnesses—including nonprofessionals—to help fact-finders distinguish feigning liti-
gants from those with real mental disorders. Traditionally, mental health profession-
als have relied on their clinical acumen to detect malingering, noting, for example,
whether an evaluee with external (recognizable, contextual) motivation to malinger
has produced symptoms or symptom combinations that are “inconsistent with phys-
iological or anatomical mechanisms” (Cunnien, 1997, p. 46) or that are improbable,
unusual, and/or contradictory (Resnick, 1997a, 1997b). In the last two decades, how-
ever, investigators have developed several measures—structured interviews, ques-
tionnaires, self-report instruments, and evaluation exercises—specifically designed
to sort honest from feigning evaluees (Pankrantz & Binder, 1997; Rogers, 1997a).
Given the now-recognized frequency with which litigants fake or exaggerate mental
illness and cognitive deficits (Rogers, 1997b), it is not surprising that several of these
malingering measures have found their way into court through reports or testimony
of who experts who relied on them.

Recently, Vallabhajosula and van Gorp (“V&vG,” 2001) have asked whether
three often-used tests of malingered cognitive deficits—the Rey Fifteen-Item Test
(“FIT”; Rey, 1964), the Test of Memory Malingering (“TOMM”; Rees, Tombaugh,
Gansler, & Moczynski, 1998; Tombaugh, 1996, 1997), and the Validity Indicator
Profile (“VIP”; Frederick & Crosby, 2000)—“likely meet the Daubert standard for
admissibility of scientific evidence” (p. 207). V&vG examine each test’s ability to
meet the following Bayesian criterion: a “positive” result on the test must yield a
positive predictive value (PPV) of greater than .8, assuming that the pretest proba-
bility of malingering equaled .3. V&vG acknowledge that this criterion is “arbitrary,”
but believe it provides a reasonable “common standard by which to compare . . . the
tests” (p. 210). V&vG conclude that TOMM “shows considerable promise,” that VIP
should be used for now with “some caution,” and that FIT fails (p. 214).

This paper does not agree or disagree with V&vG’s conclusions, but instead
argues that their criterion for admissibility may lead to misunderstandings of the
kind of information malingering measures provide. The next section reviews cases
that have discussed both the Daubert case and the possibility of malingered cog-
nitive deficits, to see whether courts have, in fact, developed any sort of statistical
criterion by which to judge tests of malingering measures. Section 3 offers a detailed
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description of V&vG’s criterion. Section 4 explains why that criterion may generate
misunderstandings of the properties of malingering measures, and, using TOMM as
an example, provides a better general characterization of the mathematical proper-
ties of malingering measures. Section 5 draws on recent medical and psychological
publications to show how one combines pretest knowledge about malingering with
knowledge about a test’s performance characteristics to generate a posttest proba-
bility of malingering. Section 6 explains how this paper’s calculations and findings
might help mental health experts respond to Daubert-inspired challenges to conclu-
sions derived in part from malingering measures.

2. CASE LAW AND TESTS OF MALINGERED COGNITIVE DEFICITS

A search of the LEXIS “Combine Federal and State Case Law—U.S.” database4

shows that, through December 2002, 18 published cases refer by name to specific tests
of cognitive malingering. Eleven of the cases refer to FIT, two cases mention TOMM,
two mention VIP, one mentions the modified Hiscock Forced-Choice Procedure
(Guilmette, Hart, Guiliano, & Leininger, 1994), and two cases refer to “forced-choice
tests” without specifying which instruments were used. The case citations appear in
Table 1.

Only four of these cases evaluate malingering measures from the perspective of
Daubert or other legal rules governing admissibility of evidence. Two cases are 1997
New York federal district court decisions by Judge Jack B. Weinstein concerning the
trial and sentencing of Vincent Gigante. The first decision, United States v. Gigante
(1997a; hereinafter “Gigante I”), concerns the defendant’s postconviction request
for a new trial based on purported “new evidence” that he had been incompetent
when tried and convicted. At a hearing on the motion, a defense expert had testified
that he had administered “a battery of interactive, neuropsychological tests, includ-
ing the Portland Digit Recognition Test, the Warrington Face Recognition Test, the
Warrington Word Recognition Test, and the Rey 15-Word Test, that were designed
[sic] to ascertain whether [the] defendant was malingering.” The results of these tests
led the expert to conclude “that [the] defendant was not feigning incapacity, but in
fact suffered from severe cognitive impairment” (Gigante I, p. 147). Judge Weinstein
determined, however, that the expert’s conclusions

were based upon speculative assumptions. For instance, he [the expert] argued that since
defendant seemed to be “trying” on the cognitive tests and scored slightly above the score
of “chance” (that is, the score one might achieve by simply guessing), the conclusion was
valid that malingering was not probable.

None of the defendant’s experts took into account the extensive testimony received by Judge
Nickerson [the previous judge in the case] proving that defendant’s mental difficulties had
been feigned for many years. . . .

4This database includes decisions by the U.S. Supreme Court, all U.S. Courts of Appeals, all federal district
courts, and case law for all 50 states plus the District of Columbia, and all U.S. territories. The search
strategy—(TOMM AND MALING!) OR “TEST OF MEMORY MALINGERING” OR (REY AND MALING!) OR (((FIFTEEN

PRE/1 ITEM) AND TEST) AND MALING!) OR ((HISCOCK OR “FORCED CHOICE” OR “SYMPTOM VALIDITY” OR SVT) AND

MALING!) OR (VIP AND MALING!) OR “VALIDITY INDICATOR PROFILE”)—was designed to detect all published
cases that discuss the tests that are commonly used to detect malingered cognitive deficits. The search
was updated February 10, 2003.
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Table 1. Published Cases Through December 2002 Referring to Instruments for Detecting Cognitive
Malingering

Rey 15-Item Test
United States v. Soldevila-Lopez, 17 F.3d 480, (1st Cir. 1994)
Harris v. Vasquez, 913 F.2d 606 (9th Cir. 1990)
Harris v. Vasquez, 949 F.2d 1497 (9th Cir. 1990), mandate stayed, 1991 U.S. App. LEXIS 33729

(November 15, 1991), reh’g denied and suggestion for reh’g en banc rejected, 1991 U.S. App.
LEXIS 29419 (November 8, 1991)

Downs v. Perstorp Components, Inc., 126 F. Supp. 2d 1090 (E.D. Tenn. 1999)
Hinds v. Apfel, 1999 U.S. Dist. LEXIS 20197 (N.D. Calif., December 3, 1999)
Ingram v. Martin Marietta, 36 F. Supp. 2d 1190 (C.D. Calif. 1999)
United States v. Gigante, 982 F. Supp. 140 (E.D. N.Y. 1997)
United States v. Gigante, 996 F. Supp. 194 (E.D. N.Y. 1997)
Smetana v. State, 991 S.W.2d 42 (Tex. App. 1998)
Morris v. Barnhart, 2002 U.S. Dist. LEXIS 16933 (E. D. Mich., June 28, 2002)
Harbison v. State, 2002 Tenn. Crim. App. LEXIS 315 (February 13, 2002)

Test of Memory Malingering
Villalba v. Consolidated Freightways Corp., 2000 U.S. Dist. LEXIS 11773

(N.D. Ill., August 10, 2000)
Rez v. City of Los Angeles, 2002 Cal. App. Unpub. LEXIS 999, (Cal. App. 2nd Dist., May 9, 2002)

Validity Indicator Profile
United States v. Walker, (S.D.N.Y., May 5, 1998)
Weishaar v. Barnhart, 2002 U.S. Dist. LEXIS 14175, (N.D. Iowa, February 23, 2002)

Modified Hiscock-Forced Choice Procedure
State v. Finley, 1998 Ohio App. LEXIS 2693, (Ohio App., June 19, 1998)

Unspecified Forced Choice
Marks v. 84 Lumber Co., 771 So. 2d 751 (La. App. 2000)
United States v. Greer, 158 F.3d 228 (5th Cir. 1998), cert. denied, 1999 U.S. LEXIS 1664

(March 1, 1999)

The opinions of defendant’s experts were unreliable. They were not consistent with other
evidence in the case. Assuming for the sake of this memorandum that their opinions met
the Daubert test, they were not credible and were unpersuasive. (Gigante I, pp. 147–148)

The second decision by Judge Weinstein, United States v. Gigante (1997b; here-
inafter “Gigante II”), addresses defense lawyers’ postconviction assertion that their
client was incompetent to be sentenced. Gigante II discusses the findings and opinions
of more than a dozen mental health professionals, and includes a lengthy description
of results from neuropsychological tests and malingering measures administered
by the same defense expert who testified in Gigante I (Gigante II, pp. 212–216).
Gigante II contrasts this expert’s interpretation of test results with the interpreta-
tions of a government expert (pp. 222–227), and finds the latter’s interpretations
much more persuasive. Gigante II does not comment on or evaluate specific aspects
of the evidence, which included brain scans as well as tests of malingering. Instead,
just one sentence in the decision refers to the Daubert standard; the standard is ap-
plied globally to the evidence presented by all experts, with whose credentials and
qualifications Judge Weinstein was clearly impressed:

All of the experts assisting the court in dealing with the difficult questions surrounding
diagnosis of defendant’s mental condition were able, ethical, and candid. They all met the
standards of Daubert. . . . That the court did not credit the conclusions of those experts ten-
dered by the defendant constitutes no suggestion of lack of confidence in their professional
skills and veracity. (Gigante II, p. 199)
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In the third case, Downs v. Perstorp Components and ICI Americas (1999), the
two defendant companies sought to exclude expert testimony that the plaintiff suf-
fered a “chemical encephalopathy” following work-related exposure to a compound
called Rubiflex. The plaintiff’s expert had concluded that the plaintiff was not malin-
gering on the basis of information subtest scores on the Wechsler Adult Intelligence
Scale (WAIS) and the plaintiff’s good score on FIT. A defense expert testified, how-
ever, that WAIS “had never been demonstrated to have anything to do with the
measurement of malingering,” and FIT was “well known in the neuropsychology
literature to be insensitive to malingering” (p. 1109). The district court ultimately
excluded testimony by the plaintiff’s expert, finding that his views were “essentially
based upon his determination, without any scientific basis, that all injuries which
occur after exposure to a chemical compound must be causally related to and result
from the individual’s exposure to chemicals” (p. 1128).

The fourth case, Villalba v. Consolidated Freightways Corp. (2000), addresses,
inter alia, a plaintiff’s motion in limine to exclude testimony by a defense expert that
the plaintiff who sought recovery for alleged damages stemming from an automobile
and truck collision was faking cognitive deficits. The motion asserted that (1) the
expert had not revealed “the norms which apply to the Computerized Assessment
of Response Bias (CARB) and TOMM tests or the bases for the comparative figures
relied upon to draw his conclusions,” and (2) the expert’s alleged refusal to answer
questions about the tests “means that his opinions will go effectively unchallenged
at trial without any showing that his opinions are valid or have been subjected to
peer review or meet in any way the requirements set forth by the Supreme Court [in
Daubert] for controlling the rendering of unreliable opinions from experts” (Villalba
v. Consolidated Freightways Corp., 2000, p. 30).

The Court held, however, that the expert’s report had met the requirements of
Federal Rule of Civil Procedure 26(a)(2)(B), which states that an expert’s report
should explain the “basis and reasons” for the opinions and “the data or other infor-
mation” used to reach the opinions. For example, the expert’s report said the plaintiff
“concocted an error rate [on the TOMM] that would not be seen in any legitimate
form of mild head trauma” (Villalba v. Consolidated Freightways Corp., 2000, pp. 31–
32); the report also contained charts that compared the plaintiff’s scores with “the
norms” for the tests. Concerning the second claim, the Court ruled that the plain-
tiff’s “cursory challenge” failed because she had “not provided the Court with any
information concerning how to evaluate a neuropsychologist’s opinions within the
context of the four indices of reliability identified by the Supreme Court in Daubert
(testing, peer review, error rate, and general acceptance)” (Villalba v. Consolidated
Freightways Corp., 2000, p. 30).

Although Coe v. Tennessee (2000) does not discuss measures of cognitive malin-
gering, it offers an instructive view about how courts might respond to efforts to use
Daubert as a bar to evidence of malingering. Coe concerns a condemned prisoner’s
appeal of a trial court’s determination that he was competent to be executed. At the
competence hearing, one of the state’s experts had testified that the prisoner was
malingering, basing this opinion in on the prisoner’s performance on the MillonTM

Clinical Multiaxial Inventory, the Structured Interview of Reported Symptoms, and
the Minnesota Multiphasic Personality Inventory. The appellant prisoner’s lawyers
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argued that these tests were an inadequate scientific basis for the expert’s conclusion
because “(1) they have not been subjected to peer review for their validity in deter-
mining malingering in death row inmates; (2) they have not been tested to determine
their scientific validity for determining malingering in death row inmates; and (3) the
rate of error for these tests has not been established for death row populations” (Coe
v. Tennessee, 2000, p. 225).

In considering this argument, the Tennessee Supreme Court noted that its ju-
risdiction’s standard of admissibility, though narrower than the Daubert standard,
utilized “general principles” (Coe v. Tennessee, 2000, p. 226) similar to Daubert and
Fed. R. Evid.702. Under Tennessee’s standard, admission of the test results by the
trial court was reasonable:

We find that the psychological tests in question were relevant to a determination of the ap-
pellant’s competency to be executed. . . . [T]hese types of standardized tests have long been
recognized as scientifically valid and reliable. . . . Indeed, the reliability of these tests is fur-
ther illustrated by the fact that the appellant’s rebuttal expert witness . . .had administered
almost exactly the same battery of tests as those administered by [the state’s expert].

. . . In light of the conflicting scientific views between [the expert witness], the critical inquiry
here is not the admissibility, but the weight to be given to [state expert]’s testimony. (Coe v.
Tennessee, 2000, p. 227)

Five cases are a very small data set from which to draw conclusions about how
courts might apply Daubert (or similar rules governing admissibility) to malinger-
ing measures. One feature that unites these cases, however, is the courts’ failure
to examine the accuracy (or, more broadly, the reliability) of the malingering mea-
sures under consideration. Although a test’s error rate is listed explicitly in Daubert
as one factor a judge should consider before allowing presentations based on that
test, none of the above decisions examine this matter. This is noteworthy, given the
well-known inadequacies of FIT in distinguishing between honest responders and
malingerers (Greiffenstein, Baker, & Gola, 1996; Guilmette et al., 1994; Schretlen,
Brandt, Krafft, & van Gorp 1991). The V&vG proposal, which implies that courts
should establish a minimum level of accuracy for admitting evidence, thus appears to
address an important gap in courts’ reasoning about tests of cognitive malingering.
Let us now examine that proposal in more detail.

3. CHARACTERIZING THE V&vG PROPOSAL

The V&vG proposal assumes that a malingering test is binary; that is, it will have
(or will be used as though it had) just two possible outcomes, “positive” or “negative.”
Denote these outcomes as T+ and T−, respectively; denote the presence and absence
of malingering as M+ and M−; denote the prior probability of malingering—the
“base rate”—as P(M+). Given a positive test result, Bayes’s Theorem says that the
posterior probability or malingering, or PPV of the test, is (Bayes, 1763)

PPV = P(M+|T+) = P(T+|M+)P(M+)
P(T+|M+)P(M+)+ [1− P(T−|M−)][1− P(M+)]

(1)
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Here, P(M+|T+) represents the conditional probability of malingering, given a
“positive” test outcome; P(T+|M+) represents the true positive rate (TPR) or
the sensitivity of the test, that is, the probability of getting a positive test result
if someone is malingering; and P(T−|M−) represents the true negative rate or
the specificity of the test, that is, the probability of getting a negative test result
if someone is not malingering. Note that a test’s false positive rate (FPR) equals 1−
specificity.

V&vG interpret the Daubert standard as requiring that courts accept evidence
derived from only those malingering measures for which “PPV ≥80 percent with a
base rate of ≤30 percent” (V&vG, 2001, p. 211). Using this paper’s symbols, V&vG
would require that P(M+|T+) be at least .8 when P(M+) is .3, or

(.3)P(T+|M+)
(.3)P(T+|M+)+ [1− P(T−|M−)][1− .3]

≥ .8 (2)

Inspection of Eq. 2 reveals that an infinite number of combinations of sensitivity and
specificity will yield an adequately accurate test under the V&vG standard. But these
combinations may be conveniently summarized. If one divides both sides of Eq. 1 by
1− P(M+|T+), substitutes the right side of Eq. 1 for P(M+|T+) on the right side of
the resulting equation, does some algebra, and then rearranges terms, one gets this
result:

P(M+|T+)
1− P(M+|T+)

= P(T+|M+)
1− P(T−|M−)

× P(M+)
1− P(M+)

(3)

The left side of Eq. 3 equals what one might call the “positive posterior odds,” that
is, the posttest odds that an evaluee is malingering, given the a positive test result
and pretest probability P(M+); denote this as O(M+|T+). The factor on the right
side of the multiplication sign equals O(M+) or the prior odds—the odds, before
test results were known, that the evaluee is malingering.5 The factor between the
equal sign and the multiplication sign is LR+, the likelihood ratio associated with
a positive test result. Sometimes the properties of diagnostic tests and detection
methods are described using the terms hit rate and false alarm rate. A test’s hit rate
is its TPR; a test’s false alarm rate is its FPR. Thus, for a binary diagnostic test,
LR+ = sensitivity/(1− specificity) = TPR/FPR. One can rewrite Eq. 3 as

O(M+|T+) = TPR
FPR

× P(M+)
1− P(M+)

= LR+×O(M+) (4)

If, according to the V&vG proposal, PPV must be at least .8 when P(M+) = .3, then
LR+must be large enough so that O(M+|T+) will be at least 4 when O(M+) = 3/7.
Plugging these numbers into Eq. 4 and solving for LR+, we see that any test for which
LR+ ≥ 28/3 (or TPR/FPR ≥ 28/3) will satisfy the V&vG criterion.

5The relationship between the probability of x, P(x), and the odds of x, O(x), is expressed as O(x) =
P(x)/1− P(x). If a weather forecast asserts, “the probability of rain today is 40%,” then odds of rain is
2/3 = 2:3 = 1:1.5.



P1: IZO

Law and Human Behavior [lahu] pp825-lahu-464299 April 18, 2003 16:44 Style file version June 4th, 2002

236 Mossman

Fig. 1. Combined results from studies of the TOMM, Trial 2.
Hatched: honest respondents. Black: simulated malingerers.

4. PROBLEMS WITH THE V&vG CRITERION

The V&vG criterion has five limitations.

Malingering Measures Have More Than Two Outcomes

V&vG’s criterion implicitly suggests that a malingering test has only two
outcomes—“positive” or “negative.” Although malingering tests are often used as
though they were binary, they usually have several possible outcomes. For exam-
ple, because evaluees can score from 0 to 50 on TOMM, TOMM has 51 possible
outcomes. If readers examine Fig. 1, which contains combined results from several
validation studies of TOMM (Rees et al., 1998; Tombaugh, 1996, 1997), they will see
two overlapping distributions: a set of higher scores obtained by 131 nondemented,
honestly responding persons with genuine neuropsychological problems, and a set of
lower scores obtained by 64 persons known to be faking cognitive deficits.6 Only by

6The results shown in Fig. 1 were derived as follows.
One hundred and thirty-one honest responders with genuine neuropsychological problems. Appendix A
of Tombaugh (1996) gives the actual Trial 2 scores obtained by 108 honestly responding participants who
had a variety of cognitive impairments, aphasias, and traumatic brain injuries (TBIs), as well as clinical
information about these participants’ difficulties (for a summary, see Tombaugh, 1997, pp. 263–264).
Information in the text and Table 3 of Rees et al. (1998) allows one to reconstruct the Trial 2 scores of
10 honest responders with mild TBIs, and similar information concerning Table 4 permits reconstruction
of Trial 2 scores for 13 nonlitigating participants with TBIs. Although these 131 participants comprise a
diagnostically heterogeneous group, their test performances on Trial 2 of the TOMM were very similar
(mean scores ≥ 48.5 out of 50). Not included in this set of results are findings from participants with
dementias, who did comparatively poorly (mean score = 45.7).
Sixty-four malingerers. Dr Tombaugh kindly supplied the actual Trial 2 scores obtained by 64 volunteers
who were asked to simulate the behavior of head-injured persons. The results shown were obtained from
three different testing conditions, but turned out to be similar: for Condition 1, N = 31, mean± SD =
29.6± 8.6; for Condition 2, N = 25, mean± SD = 35.7± 8.9; for Condition 3, N = 8, mean± SD =
32.1± 7.3. These results were previously reported by Tombaugh (1997) and Rees et al. (1998).
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Fig. 2. ROC graph depicting the performing of the
TOMM, Trial 2, as its cut-off is varied from 30 to 50.

choosing a particular cutoff to distinguish “positive” results from “negative” results
can one say that the test has a particular sensitivity and specificity. For example, if a
Trial 2 score below 45 is deemed a “positive” test result, TOMM’s sensitivity in de-
tecting malingering is 58/64 = .91, and its specificity is 125/131 = .95. If one chooses
a higher cutoff (say, 48) the test’s sensitivity rises (to 61/64 = .95), but its specificity
falls (to 118/131 = .90); by lowering the cutoff (to, say, 42), one lowers the sensitivity
(to 53/64 = .83), but raises the specificity (to 127/131 = .97). This means that the
TOMM’s accuracy—and the accuracy of any discrimination tool where test results
form two overlapping distributions—should be described in a way that conveys the
trade-offs between sensitivity and specificity that occur as the cutoff is altered.

Mental health professionals have recognized that receiver operating character-
istic (ROC) graphs provide a readily apprehended means of portraying this feature
of a detection system’s performance, whether that system is used for discerning vi-
olence (Douglas, Ogloff, Nicholls, & Grant, 1999; Gardner, Lidz, Mulvey, & Shaw,
1996; Mossman, 1994a, 1994b; Rice & Harris, 1995) malingering (Mossman, 2000a;
Mossman & Hart, 1996), or other diagnostic categories (Swets, Dawes, & Monahan,
2000). In a ROC graph, it is customary to plot a detection system’s true positive rate
as a function of the system’s FPR. The result is a succinct pictorial summary of the
test’s performance throughout its entire range of possible outcomes.

Figure 2 contains a ROC graph that depicts the performance of TOMM as its
cutoff is varied from 30 to 50.7 Notice that in this figure, individual cutoffs are fitted to
a smooth ROC curve. The curve utilizes the “binormal” assumption of ROC analysis,
which suggests that following a monotonic transformation of the original decision
axis (here, the TOMM scores), the raw data will fall into two overlapping, Gaussian

7None of the honest responders with genuine problems scored below 36.
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(“bell-shaped”) distributions with different means and variances.8 This means that
one can summarize the TOMM test results with the equation

z(TPRi ) = A+ Bz(FPRi ) (5)

In Eq. 5, A equals the difference in means between the two populations, measured
in units of the standard deviation of the malingering (M+) population, B equals the
ratio of test result standard deviations (i.e., SDM−/SDM+), and z(TPRi ) and z(FPRi )
are the normal deviates of the test’s true and false positive rates at a given score i .
In other words, when (FPR, TPR) pairs are plotted as z-scores, the resulting points
tend to fall along a straight line. Applying Metz and colleagues’ software to the data
shown in Fig. 1, one finds that A= 2.8064 and B= 0.9015.

Distinguishing Between Moderately Accurate Tests and Very Good Ones

A second limitation of the V&vG criterion is that, although it purports to set
a high accuracy threshold for admissibility, it does not differentiate between very
accurate malingering measures and those that are intrinsically less accurate. Figure 3
illustrates this. There, three ROC curves appear; they depict the performance of three
hypothetical tests for detecting malingering. All three ROC curves are constructed
by letting B= 1, but the values of A equal 1.2, 2.1, and 3. Also shown in Fig. 3 is a
diagonal line for which TPR/FPR = 28/3. Any point to left of this line represents a
sensitivity–specificity pair that satisfies the V&vG criterion. Because portions of all
three curves contain fall to the left of the diagonal line, all three malingering tests
have cutoffs that would satisfy the V&vG criterion.

Yet the tests have very different performance characteristics. To appreciate this,
suppose that an examiner chose, as each test’s operating point, the score at which
FPR ≤ .02. These cutoffs are represented by ovals on each ROC curve in Fig. 3.
Notice that for the test represented by the lowest ROC curve (for which A= 1.2),
TPR = .197 when FPR = .02, and LR+ = 9.83. Returning to Eq. 4, this means that
a “positive” result increases the odds of malingering by a factor of 9.83; if the prior
probability of malingering is .30, the posttest probability is .81. But for the middle
ROC curve, TPR = .518 when FPR = .02, so that LR+ = 25.9, and for the upper
ROC curve, TPR = .828 when FPR = .02, so that LR+ = 41.4. For these two tests,
a “positive” result raises the posttest probability of malingering from .30 to .92 for
the middle curve, and to .95 for the upper curve. In other words, all three tests
would satisfy the V&vG criterion, but the latter two tests justify a higher level of
confidence than does the first. To put this another way, at the same FPR the lat-
ter two tests—by virtue of their higher TPRs—detect a much larger fraction of the
malingerers.

Notice that the more accurate the test, the larger the area under the ROC curve
(AUC). This is the case because, at any given value of FPR, TPR is larger for the
more accurate test, and thus the integrated AUC for the better test is larger than the

8For more detailed discussions of ROC curves and the binormal curve fitting assumptions as they apply to
forensic mental health issues, see Mossman (1994a, 1994b). Concerning the robustness of the binormal
assumptions, see Hanley (1988, 1996). For recent discussions of the limitations of this model, see Dorfman
et al. (1997) and Metz and Pan (1999).
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Fig. 3. Three hypothetical ROC curves illustrat-
ing relationships among cut-offs, test accuracy,
and the V & vG criterion.

AUC for the poorer test. AUC is related to indices Aand B (Swets & Pickett, 1982;
Somoza & Mossman, 1991a) by the following formula:

AUCz = 8
(

A√
1+ B2

)
(6)

In Eq. 6,8(x) is the cumulative normal distribution function of x, and the subscript z
implies that AUC is calculated from a fitted binormal ROC curve.9 In this context,
AUC also equals the likelihood that, if two individuals are drawn randomly from
the M+ and M− populations, the malingering measure will assign a score more
indicative of malingering to the M+ individual (Hanley and McNeil, 1982). For the
three ROC curves shown in Fig. 3, AUCs are .802, .931, and .983. Although all
three tests can be implemented in a way that satisfies the V&vG criterion, AUC
captures important differences that the V&vG criterion ignores. Incidentally, Metz
and colleagues’ software calculates an AUCz for the TOMM (see Fig. 2) of .9814±
.0083—virtually the same as the AUC of the best test represented in Fig. 3.

Tests That Satisfy the V&vG Criterion Can Be Made to Fail That Criterion

As the preceding paragraphs point out, an examiner has a choice of cutoffs
when implementing or interpreting most malingering measures. Suppose an exam-
iner thought that a good operating point for a malingering test was one at which
FPR ≤ .15. These cutoffs are represented by rectangles on each ROC curve in Fig. 3.
For the test represented by the lowest ROC curve, TPR = .565 when FPR = .15, and

9One can also calculate a “trapezoidal” or nonparametric AUC as determined by the area under a ROC
graph in which (FPR, TPR) pairs are simply connected with line segments (for examples in the forensic
mental health literature, see Douglas et al., 1999; Gardner et al., 1996; Rice & Harris, 1995). Concerning
the mathematical evaluation of trapezoidal ROCs, see Mossman (1995).
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LR+ = 3.77. For the middle ROC curve, TPR = .856 when FPR = .15, and LR+ =
5.71; for the upper ROC curve, TPR = .975 when FPR = .15, so that LR+ = 6.50.
At these cutoffs, none of the tests satisfy the V&vG criterion, because a “positive”
result raises the posttest probability of malingering from .30 to only .62 for the lower
curve, .71 for the middle curve, and .74 for the upper curve. Thus, by simply adjust-
ing the cutoff, an examiner can make the tests, all of which can satisfy the V&vG
criterion, look like they fail to meet that standard.

Single Cutoffs Do Not Use All the Information in a Test Result

In assuming that malingering tests will be used with single cutoffs, the V&vG
formulation risks losing some of the information in a test result. To see this, sup-
pose that a diagnostician decides to designate a TOMM Trial 2 score below 45 as a
“positive” test result. As was noted in Section 4.1, this cutoff choice sets TOMM’s
sensitivity in detecting malingering at .91, and its specificity at .95. Although these
values represent excellent test accuracy, two things happen once this cutoff is se-
lected. First, TOMM scores of 44 and 45 are treated very differently—one is deemed
“positive” and the other “negative”—even though they reflect only the slightest dif-
ference in actual test performance. Second, TOMM scores of 44 and 34 are treated
the same—both are deemed “positive”—despite the fact that a score of 34 represents
much stronger evidence of malingering. Notice that such problems arise for a broad
range of TOMM scores. Ideally, an interpretation of TOMM results should recognize
that scores of 44 and 45 are similar, whereas scores of 34 and 44 give very different
information about an evaluee.

Uncertainty in Estimating Positive Predictive Value

V&vG are not the first to suggest a Bayesian framework for evaluating malin-
gering measures. Mossman and Hart (1996) suggested that Bayes’s Theorem could
help mental health professionals interpret data on malingering and make better pre-
sentations of evidence on malingering in court. However, Rogers and Salekin (1998)
pointed out that imprecision in the estimated “base rate” of malingering (i.e., in
P(M+)) and the estimated accuracy of malingering instruments (i.e., their sensitivity
and specificity) would result in imprecision in P(M+|T+), the posterior probabil-
ity of malingering.10 Although Rogers and Salekin believed that this imprecision
necessitated abandonment of the Bayesian framework, Mossman (2000a, 2000b)
and Mossman and Berger (2000) have described methods of producing intervals for
P(M+|T+), and concluded that the fears of Rogers and Salekin were unwarranted.

Nevertheless, the point Rogers and Salekin make about imprecision is impor-
tant. To illustrate, suppose that a witness wished to assert that an evaluee was malin-
gering on the basis of a test that showed that P(M+|T+) equaled .90. Presumably, it
would matter to a court to know whether the 95% credible interval for that estimate
was, say, (.40–.98), or (.80–.97). If the former interval were correct, the court might
feel that the data lacked adequate probative value, even in a case where the standard

10For earlier, general discussions of this point, see Monsour, Evans, and Kupper (1991), and Baron (1994).
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of proof was only a “preponderance of the evidence.” The latter interval, however,
might satisfy a court’s “clear and convincing” standard.

When proposing that a court accept test-based evidence of cognitive malin-
gering, it would be desirable to describe that evidence while avoiding the flaws in
V&vG’s proposal. The following section does this. It describes a method for estimat-
ing posttest probability that takes into account a test’s multiple outcomes and allows
an evaluator to give a credible interval for the estimate.

5. DISTRIBUTIONS, CUTOFFS, AND CONFIDENCE INTERVALS

Equations 1 through 4 assume that the results of malingering measures can be
dichotomized as either “positive” or “negative.” The results of TOMM (shown in
Fig. 1) suggest, however, that when investigators evaluate a malingering measure,
they typically find that results of malingerers and honest responders form distribu-
tions rather than discrete categories. As the previous explains, it would be desirable
to interpret test results in a way that recognizes and uses all the information in the
distribution of test results. In the case of TOMM, we would like to interpret results
such that gradually lower scores imply gradually stronger evidence of malingering.

To do this, we apply a method described in Mossman (2000a), and rewrite Eq. 1
as follows:

P(M+|Ti ) = P(Ti |M+)P(M+)
P(Ti |M+)P(M+)+ P(Ti |M−)[1− P(M+)]

(1a)

Equation 1(a) states that for a test T that has i possible outcomes, P(M+|Ti ), the
conditional probability of malingering given test outcome Ti is a function of

• P(M+), the pretest probability of malingering;
• P(Ti |M+), the probability of getting test result Ti if someone is malingering;

and
• P(Ti |M−), the probability of getting test result Ti if someone is not malingering.

Applying to Eq. 1(a) algebraic procedures similar to those used to produce Eq. 4
yields

O(M+|Ti ) = LRi ×O(M+) (4a)

Here, O(M+|Ti ) is the posterior odds that an evaluee is malingering, given the
test result Ti and pretest probability P(M+); O(M+) is the prior odds, and LRi is
the likelihood ratio associated with test result Ti .

From Eq. 4(a), it is obvious that imprecision in the estimates of LRi and O(M+)
will produce imprecision in the posterior odds. How might we calculate an interval
for O(M+|Ti ) that would express this imprecision quantitatively?

Mossman (2000a) has described a Monte Carlo method that will produce a useful
interval for just this purpose. It involves (1) characterizing imprecision in the base
rate of malingering, (2) characterizing imprecision in the likelihood ratio, and (3)
combining these results mathematically to generate a distribution from which one
can obtain an interval for O(M+|Ti ).
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Imprecision in the Base Rate of Malingering

Bayes’s Theorem says that what one believes after receiving new information
depends on what one believed before receiving that information. Thus, if one wishes
to quantify one’s confidence that an evaluee is malingering, given a particular test
result, one has to quantify what one knew about the evaluee’s probability of malin-
gering before getting the test result. Here are three approaches to doing this.

(a) As V&vG note, several authors have offered estimates of malingering base
rates that ranging from 7.5–15% (Trueblood & Schmidt, 1993) to 18–33%
(Binder, 1993). People typically make systematic errors when attempting to
estimate probabilities (Russo & Schoemaker, 1989). However, a clinician who
thought these estimates applied to his evaluation setting might use a method
of systematic self-interrogation suggested several years ago by Raiffa (1968).
For example, the clinician might ask himself, “Given my knowledge and ex-
perience, what is the lowest possible rate of malingering in the population
from which this evaluee is drawn? What is the highest possible rate? Can I
give a range of rates such that I am 80 percent sure that the true rate of ma-
lingering falls within that range?” Following such a self-inquiry, the clinician
might say that given his knowledge and experience, there is a 10% chance
that the true base rate P(M+) lies between .05 and .10, a 10% chance that
.30 ≤ P(M+) ≤ .40, and an 80% chance that .10 ≤ P(M+) ≤ .30. The rectilin-
ear distribution in Fig. 4 represents this clinician’s beliefs.11

(b) A second approach would utilize a base-rate-determined “expert consensus.”
Rogers and Salekin (1998) gave an example of such findings, in which forensic
clinicians were polled concerning their beliefs about the prevalence of ma-
lingering. The mean± SD estimate was 0.1744± 0.1444. One can convert this
estimate to a probability distribution by using the beta distribution, which pro-
vides a useful way of characterizing the a priori distribution of the parameter
p of the binomial distribution, when p is the probability of a success on an in-
dividual trial (Iverson, 1984; Newcombe, 1998). One can describe the density
of a Beta(a, b) distribution as

β(a,b)(p) = Cpa−1(1− p)b−1 (7)

for 0 < p < 1, and zero otherwise (Freund & Williams, 1991); the constant C
is used to normalize the total area under the distribution to equal 1. The rela-
tionship between the mean µ and standard deviation σ of a beta distribution
and the parameters a and b is given by Iverson (1984):

a = µ
[
µ(1− µ)
σ 2

− 1
]

b = (1− µ)
[
µ(1− µ)
σ 2

− 1
]

(8)

11This rectilinear distribution is imperfect: at either end, it suggests that probabilities are constant over
a range, then drop suddenly to zero, implying that values just below or above the distribution are
impossible. Such problems could be addressed by creating a rectilinear distribution with a more com-
plicated shape, one representing the belief that all values between 0 and 1 were conceivable, but that
some (e.g., those below .02 and above .6) are very unlikely.



P1: IZO

Law and Human Behavior [lahu] pp825-lahu-464299 April 18, 2003 16:44 Style file version June 4th, 2002

Daubert and Cognitive Malingering 243

Fig. 4. Possible distributions for the pre-test probability of
malingering.

Lettingµ = 0.1744 and σ = 0.1444, one can characterize the expert consensus,
which also is shown in Fig. 4, as a beta distribution with a = 1 and b = 5.12

(c) A third approach utilizes actual available data, and characterizes it with “ob-
jective Bayesian” methods. Objective Bayesians use “noninformative” or de-
fault prior distributions that depend on the data model rather than on sub-
jective beliefs. For a proportion p derived from an event that occurs x out
of n times, Laplace (1812) recommended the “uniform” prior distribution,
Beta(1, 1), and Jeffreys (1961) proposed the Beta(1/2, 1/2) prior distribution,
now termed the “Jeffreys prior.” Using the Jeffreys prior means that after ob-
serving x successes in n tries, we describe the posterior distribution of p as
the Beta(x + 1/2, n− x + 1/2) distribution. The virtues of using Jeffreys prior
for p include the finding that it yields confidence sets with very good coverage
properties (Brown, Cai, & DasGupta, 2001, 2002).

As an example, consider data reported by Gothard, Rogers, and Sewell
(1995), who found that of 55 defendants who underwent evaluations of com-
petence to stand trial, 25 were competent, 23 were incompetent, and 7 were
malingering. Suppose one intends to evaluate malingering only among those
defendants who appear incompetent (since the usual reason one tests for ma-
lingered incompetence is to sort defendants who are truly incompetent from
those who are feigning illness). Then the relevant portion of Gothard and
colleagues’ sample does not include the 25 defendants who are deemed com-
petent. Therefore, p̂ = x/n = 7/30; we represent this finding as the Beta(71/2,
231/2) distribution, also shown in Fig. 4.

12This characterization of the “expert consensus” is presented primarily for illustration purposes. Ten
percent of the Beta(1, 5) distribution falls below .021. Yet it probably is incorrect to say either that 10%
of experts think the rate of malingering among forensic evaluees falls below 2% or that experts think
there is a 10% chance that the true rate of malingering among forensic evaluees falls below 2%.
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Imprecision in the Likelihood Ratio

As explained by Mossman (2000a), the relationship among LRi , the binormal
ROC indices Aand B, and the variance in LRi , are described as follows. For a given
score Ti on a malingering measure, LRi is the ratio of the densities of the M+ and
M− distributions:

LRi = Be−1/2[A2+2ABz(FPRi )+(B2−1)z(FPRi )2] (9)

Taking the natural logarithm, Eq. 9 yields

ln LRi = ln B− 1
2

[
A2 + 2ABz(FPRi )+ (B2 − 1)z(FPRi )2] (10)

It is a simple matter to use a polynomial to tightly fit test results (here, scores
on TOMM) to values of z(FPRi ) (Somoza & Mossman, 1991b; Somoza, Soutullo-
Esperon, & Mossman, 1989), so that for a particular test score, imprecision in lnLRi

is a function of imprecision in the estimates of Aand B. By taking the partial deriva-
tives of Eq. 10 with respect to Aand B and using the Taylor series expansion (Elandt-
Johnson & Johnson, 1980), one obtains this large-number estimate of the variance
of lnLRi :

var(ln LRi ) ≈
(
∂

∂A
ln LRi

)2

var(A)+
(
∂

∂B
ln LRi

)2

var(B)

+ 2
(
∂

∂A
ln LRi

)(
∂

∂B
ln LRi

)
cov(A, B)

(11)

= z(TPRi )2 var(A)+
[

1
B
− z(FPRi )z(TPRi )

]2

var(B)

− 2z(TPRi )
[

1
B
− z(FPRi )z(TPRi )

]
cov(A, B)

In Eq. 11, var(A) and var(B) are the variances of A and B, and cov(A, B) is their
covariance.13 One can use the square route of this estimate for var(lnLRi ) as the
standard deviation of a distribution that characterizes imprecision in the estimate of
LRi . Thus, for example, the upper and lower limits of a 100(1− α)% interval14 for
LRi would be estimated as

LRL,U = e
(

ln LRi ± z(1−α/2)

√
var(ln LRi )

)
(12)

Imprecision in Posterior Odds and Posttest Probability

Having characterized the imprecision in the factors of the right-hand side of
Eq. 4(a), one can implement a Monte Carlo procedure (see Mossman, 2000a;

13The variance–covariance matrix that is part of the output of Metz and colleagues’ ROC analysis software
contains var(A), var(B), and cov(A, B). For the TOMM data discussed earlier in this paper, var(A) =
.2593, var(B) = .0722, and cov(A, B) = .1215.

14For a 95% interval, one sets α equal to .05.
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Table 2. Posterior Probabilities of Malingering for Three TOMM Scores (Trial 2),
With 95%Intervals for Three Prior Probability Distributions

TOMM scores

35 40 45

z(FPRi ) −2.822 −2.244 −1.559
LRi 46.7 8.23 1.14
Prior distribution

Rectilinear .919 (.723–.973) .665 (.309–.876) .214 (.058–.483)
Expert consensus .878 (.197–.984) .541 (.037–.915) .147 (.005–.598)
Objective Bayesian .934 (.817–.977) .717 (.415–.891) .260 (.094–.526)

Mossman & Berger, 2000) with a spreadsheet’s random number generator to con-
struct a distribution for O(M+|Ti ) and an estimate of the “equal-tailed” 100(1− α)%
confidence set for O(M+|Ti ), which can be converted to a 100(1− α)% confidence
set for P(M+|Ti ). That is, one uses a spreadsheet program to:

• draw, at random, one value from the distribution representing the prior prob-
ability of malingering, and convert this value to odds;
• draw, at random, one value from the distribution for lnLRi , and convert this

value to LRi
• combine these values in Eq. 4(a) to obtain a value of O(M+|Ti );
• repeat this process N times (where N is a large number, say, 10,000) to generate

N values of O(M+|Ti );
• convert the N values of O(M+|Ti ) to values of P(M+|Ti ), and sort these values

from lowest to highest;
• find the integer nearest to N/2, and choose the corresponding sorted value

(i.e., the median of the N values) as the estimate of P(M+|Ti );
• find the integers nearest to Nα/2 and N(1− α/2), and choose the Nα/2th and

N(1− α/2)th values as the lower and upper limits of the confidence set for
P(M+|Ti ).

The results of this procedure appear in Table 2, which contains several results
of interest. First, a Trial 2 TOMM score of 35 handily exceeds the V&vG criterion;
because of its high likelihood ratio (46.7), all three central estimates look like they
justify a high degree of confidence that an evaluee with this score is malingering.
That confidence would be undermined, however, if the distribution labeled “expert
consensus” in Fig. 4 were a valid representation of the prior probability of malin-
gering. Using this prior distribution yields a 95% interval of (0.197–0.984). Even
using the 90% interval (in this case, 0.317–0.978) only justifies the inference that the
probability of malingering very likely is greater than 32%.

Second, a Trial 2 score of 40 increases the odds of malingering by a factor
of 8—close to the V&vG criterion. Yet this score does not justify a high level of
confidence that an evaluee is malingering, even though it lies well below most scores
achieved by the “genuine” patients who made up the sample. If one examines the
score distributions in Fig. 1, this finding is less of a surprise. There, one sees that
relatively small fractions of both honest responders and malingerers scored in the
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40–45 range, which suggests that what those scores say about an evaluee’s status is
ambiguous.

Finally, posttest ambiguity is at its greatest for evaluees who score 45. This score
changes the odds of malingering very little, and imprecision in the initial base rate is
amplified by imprecision in the indices of test accuracy.

CONCLUSION: COURTS, DAUBERT, AND EXPERTS’ TEST DATA

One major function of a diagnostic medical test is to influence clinical decision
making by influencing beliefs about the probability that a patient has a particular
disorder. Test results from malingering measures have a similar role in a forensic
context: the results influence fact-finders’ decisions by influencing their opinions
about the honesty of a litigant. Just as errors in medical diagnosis can have serious
implications for treatment and outcome, erroneous judgments about malingering can
undermine the accuracy and fairness of legal determinations about civil liability or
criminal guilt (Rogers & Salekin, 1998). Professionals who present malingering data
and fact-finders who assess those data therefore need to know how much a given test
result should change their beliefs.

This paper has suggested that this problem is more complex mathematically
than one might gather from reading V&vG’s proposal for evaluating measures of
cognitive malingering. The V&vG proposal does not recognize that malingering
tests usually have more than two outcomes, and that because of this, what results
from such measures entail changes gradually as one moves up or down the range
of possible test outcomes. Moreover, V&vG ignore the ambiguity associated with
Bayesian calculations of the likelihood of malingering.

An examination of data on TOMM’s performance shows that errors in test-
based judgments about malingering have at least two sources. First, malingering
tests themselves, though very accurate, are likely to be imperfect, because the test
results of honest responders overlap with those of test takers who are feigning or
exaggerating. Even when a test result justifies a great increase in one’s suspicion
of malingering, some small likelihood may persist that the evaluee who produced
the result was responding honestly. Second, ambiguity or imprecision is inherent
in estimates of the pretest probability of malingering and the accuracy indices that
characterize the malingering test. As a result, an evaluator’s belief about the posttest
probability of malingering is best characterized as an interval that can be calculated
from (and that therefore incorporates) mathematical formulations of imprecision in
base rates and accuracy indices.

The Daubert decision suggests that courts scrutinize “the known or potential rate
of error” of scientific techniques that form the bases of proffered expert opinions.
Although Daubert does not specify a minimally acceptable error rate, V&vG suggest
that malingering measures might be evaluated against some such standard. This paper
suggests, however, that the V&vG approach is unworkable. Malingering measures
usually will have many possible scores, and therefore, many possible error rates.
Therefore, the likelihood of error is a function not just of the test’s properties, but
of the score an evaluee actually achieves. Moreover, Bayes’s Theorem requires that
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test results be interpreted in light of available pretest knowledge. As applied to
malingering measures, this means that evaluators must incorporate their numerical,
but imprecise, estimates of pretest information—which may include a guess about
the base rate of malingering and clinical data obtained from interviews or other
sources—into determinations of what a test means. If, in making a judgment about
a malingering test’s “error rate,” a court is concerned about the likelihood that an
expert’s conclusion is wrong, then Bayes’s Theorem says the calculated error rate
stems in part from the expert’s pretesting information and beliefs about whether an
evaluee was malingering, and from the ambiguity that results from efforts to express
such information and beliefs in probabilistic terms.

A Final Comment

Although clinicians and investigators commonly use diagnostic procedures that
were originally developed with the aid of complicated statistical operations, they
rarely if ever have to perform those operations themselves. Even if clinicians em-
braced the conceptualization of test results that this paper presents, few of them
would have the skills and inclination to carry out the mathematical process de-
scribed in this paper. The author hopes this paper’s description of test properties
will inspire designers of tests to develop software that clinicians can use to create
Bayesian interpretations of diagnostic findings.
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