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Abstract. Many school psychologists focus their interpretation on composite
scores from intelligence test batteries designed to measure the broad abilities from
the Cattell-Hom-Carroll theory. The purpose of this study was to investigate the
general factor loadings and specificity of the broad ability composite scores from
one such intelligence test battery, the Woodcock-Johnson Hm Tests of Cognitive
Abilities Normative Update (Woodcock, McGrew, Schrank, & Mather, 2007).
Results from samples beginning at age 4 and continuing through age 60 indicate
that Comprehension-Knowledge, Long-Term Retrieval, and Fluid Reasoning
appear to be primarily measures of the general factor at many ages. In contrast,
Visual-Spatial Thinking, Auditory Processing, and Processing Speed appear to be
primarily measures of specific abilities at most ages. We offer suggestions for
considering both the general factor and specific abilities when interpreting Cat-
tell-Horn-Carroll broad ability composite scores.

School psychologists have been inun- senting specific cognitive abilities. The major-
dated this decade with intelligence test batter- ity of the specific cognitive abilities targeted
ies that provide a variety of composites repre- by these contemporary test batteries are
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grounded in design blueprints based on the
Cattell-Horn-Carroll (CHC) theory1 (see Al-
fonso, Flanagan, & Radwan, 2005). The com-
posites from these batteries are most often
designed to measure the broad abilities of
CHC theory, such as Crystallized Intelligence
and Fluid Intelligence. In addition to intelli-
gence test batteries based on the CHC design
blueprint, interpretive approaches guiding us-
ers to form composites within and across bat-
teries based on CHC theory have proliferated
(e.g., Flanagan, Ortiz, & Alfonso, 2007;
McGrew & Flanagan, 1998). Because broad
ability composite scores typically possess sub-
stantial validity evidence and have overcome
reliability limitations inherent in the interpre-
tation of subtest scores (McGrew, 1997;
Watkins, Glutting, & Youngstrom, 2005),
there has also been increased research focused
on their interpretation within score profiles
(e.g., Bergeron & Floyd, 2006; Floyd,
Bergeron, & Alfonso, 2006; Proctor, Floyd, &
Shaver, 2005).

Despite this increased prevalence of test
batteries, interpretive approaches, and re-
search employing composite scores based on
CHC theory, some important measurement
properties of these broad ability composite
scores remain unstudied-the effects of gen-
eral and specific cognitive abilities. The goal
of this article is to produce the estimates of
these effects on the broad ability composite
scores from the first intelligence test battery
based on CHC theory, the Woodcock-Johnson
III Tests of Cognitive Abilities (WJIII COG;
Woodcock, McGrew, & Mather, 2001).

General and Specific Abilities

Mental ability as a general, unitary trait
was first postulated by Spearman (1904) based
on his observation that all mental test scores
were positively intercorrelated. Spearman sup-
ported this postulation with research using fac-
tor analysis. This method led him to discover
the general factor (Spearman, 1927) underly-
ing the positive manifold across mental ability
test scores. Since the time of Spearman, hun-
dreds of studies have demonstrated that the
general factor accounts for approximately
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25% to 50% of the variance shared by such
tests-typically the largest percentage of any
factor. In addition, another large body of re-
search has demonstrated that scores represent-
ing the general factor (e.g., IQs) are strong
predictors of representations of personal com-
petence, such as academic success and job
performance (see Jensen, 1998; Schmidt,
2002).

Despite extensive evidence for the gen-
eral factor and its predictive properties, a num-
ber of challenges to its primacy has been lev-
ied. Some scholars have argued that largely
independent, specific cognitive abilities better
account for the relations between and among
mental test scores. For example, Thurstone
(1935) offered seven primary mental ability
factors: Comprehension, Fluency, Memory,
Number, Reason, Space, and Speed. Cattell
(1943) proposed the existence of Fluid Intel-
ligence (Gf) and Crystallized Intelligence
(Gc). Later, Cattell and Horn (e.g., Horn &
Cattell, 1967, 1982) concluded that multiple
factors existed that mirrored those of Thurst-
one, and they identified other factors repre-
senting understudied perceptual abilities, such
as Auditory Processing. They labeled the mul-
tiple higher order factors broad abilities and
the lower order group factors narrow abilities.
Since then, Horn and colleagues extended
Gf-Gc theory and produced an impressive
body of evidence supporting the validity of
these broad abilities (e.g., Horn, 1991; Horn &
Blankson, 2005; Horn & McArdle, 2007).

Rapprochement and Contemporary
Support

Both arguments supporting the highly
predictive and ubiquitous general factor as
well as arguments supporting the specific cog-
nitive ability factors are supported by a sizable
body of research, and it seems that these per-
spectives are not mutually exclusive. For ex-
ample, Thurstone (1947) conceded that there
were correlations among his seven primary
mental ability factors that could represent the
general factor. In a similar manner, Spearman
(1939) conceded that the general factor alone
could not account for all of the relations be-
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tween tests of mental abilities and acknowl-
edged the existence of group factors representing
more specific cognitive abilities. Holzinger and
Swineford (1939) merged Spearman's model
focusing on the general factor with Thurst-
one's model of primary mental ability factors
to produce a hybrid model (Jensen, 1998). In
this model, the general factor represents the
relations among all test scores and specific
ability factors represent the remaining reliable,
shared variance across subsets of test scores.

In recent years, explanatory models of
human cognitive abilities that specify both a
general factor and specific factors have be-
come commonplace. For example, Carroll
(1993) developed the three-stratum theory of
cognitive abilities based on reanalysis of more
than 460 data sets using a factor-analytic tech-
nique designed to extract the general factor as
well as more specific ability factors from the
patterns of relations among test scores. His
synthesis of results yielded a model espousing
abilities at varying levels of generality: Stra-
tum mI (the level of general factor), Stratum II
(the level of broad abilities), and Stratum I
(the level of narrow abilities). Since Carroll's
seminal publication, theoretical models speci-
fying both a general factor and more specific
ability factors have been prevalent in test man-
uals and in recently published articles in
school psychology and assessment-oriented
journals. For example, some researchers have
considered both the general and specific fac-
tors through use of Carroll's methods of ex-
ploratory factor analysis (EFA; e.g., Nelson,
Canivez, Lindstrom, & Hatt, 2007; Watkins,
2006; Watkins, Wilson, Kotz, Carbone, &
Babula, 2006). Many others have included at
least two orders of factors (i.e., Stratum mI-
general and Stratum 11-broad) in their con-
firmatory factor analyses (CFA; e.g., Keith,
Fine, Taub, M. R. Reynolds, & Kranzler,
2006; Oh, Glutting, Watkins, Youngstrom, &
McDermott, 2004; Phelps, McGrew, Knopik,
& Ford, 2005; Sanders, McIntosh, Dunham,
Rothlisberg, & Finch, 2007; Tulsky & Price,
2003). These publications provide contempo-
rary support for the rejection of most models
that do not consider abilities at more than one
stratum.

In summary, research published through-
out the past century and into the present suggests
that scores from all tests of cognitive abilities
share common variance. Despite arguments and
some empirical evidence offered by Horn and
others (e.g., Horn, 1991), it appears that this
common variance is best conceptualized as the
general factor (Carroll, 1993; Jensen, 1998).
However, such test scores also share variance
with only measures involving similar task de-
mands and requiring similar cognitive pro-
cesses. These groups of test scores measure
more specific cognitive abilities (e.g., Stra-
tum II- broad abilities), and it appears that,
because of the similarities in the identifica-
tion and labeling of these abilities by Carroll
(Carroll, 1993) and Horn and colleagues
(e.g., Horn & Blankson, 2005), test authors
and other scholars have recently
focused significant attention on these spe-
cific cognitive abilities (see McGrew, 2005;
McGrew, 2009).

How Are the Effects of General and
Specific Abilities on Test Scores

Demonstrated?

When considering the large body of ev-
idence supporting the existence of general and
more specific cognitive abilities, psychologists
and other professionals engaged in. ability
measurement should understand the methods
used to determine the effects of these abilities
on test scores.

g Loadings

Many researchers have applied factor-
analytic techniques to data from intelligence
test batteries to determine effects attributable
to the general factor. Our preliminary review
of peer-reviewed,joumal articles identified 47
articles (presenting the results from 91 analy-
ses) published since 1981 that have presented
g loadings of subtest scores from published
intelligence test batteries.2 The g loadings are
standardized coefficients that have a hypothet-
ical range of .00 to 1.00, and they represent the
effect, in standard deviation units, of the gen-
eral factor on the subtests. Across the studies
reviewed, authors employed principal factors
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analysis (a.k.a. common factor analysis) in 24
articles, whereas authors of only 5 articles
employed principal components analysis. Au-
thors of 10 articles employed a hierarchical
EFA technique (i.e., Wherry hierarchical fac-
tor analysis and the Schmid-Leiman proce-
dure). In contrast, authors of 15 articles used
maximum-likelihood estimation via CFA;
only one study employed generalized least
squares estimation via CFA.

Across all studies, g loadings ranged
from .91 with data from a heterogeneous sam-
ple (Keith & Dunbar, 1984) and .95 with data
from a low general ability sample (Kane, Oak-
land, & Brand, 2006) to .10 with data from
adults recruited from a college campus (Vis-
ser, Ashton, & Vernon, 2006). The g loadings
have been interpreted using the following
standards: .70 and above indicate a high mea-
sure of the general factor, .69 to .50 indicate a
medium measure of the general factor, and .50
and below indicate a low measure of the gen-
eral factor (McGrew & Flanagan, 1998; cf.
A. S. Kaufman, 1979, 1994). In 49 of the
analyses, measures targeting Crystallized In-
telligence had the highest g loadings. For ex-
ample, the Vocabulary subtests from child and
adult editions of the Wechsler Intelligence
Scales (e.g., Wechsler, 2003) and from the
Stanford-Binet Intelligence Scale, Fourth Edi-
tion (R. L. Thorndike, Hagen, & Sattler, 1986)
produced the highest g loadings (ranging
from .72 to .90) in many analyses (e.g., Gig-
nac, 2006a, 2006b; Watkins, 2006; Watkins et
al., 2006). The Riddles subtests from the
Kaufman Assessment Battery for Children and
the Kaufman Assessment Battery for Chil-
dren, Second Edition (A. S. Kaufman & N. L.
Kaufman, 1983; A. S. Kaufman & N. L. Kauf-
man, 2004) produced the highest g loadings
(ranging from .67 to .91) in other analyses
(e.g., A. S. Kaufman & McLean, 1987; Keith
& Novak, 1987; Naglieri & Jensen, 1987;
M. R. Reynolds, Keith, Fine, Fisher, & Low,
2007).

Measures of Fluid Reasoning demon-
strated the highest g loadings in 22 analyses. 3

For example, the Arithmetic subtests from the
Kaufman Assessment Battery for Children,
the Wechsler Adult Intelligence Scale, Third

Edition (Wechsler, 1997), and the Wechsler
Intelligence Scale for Children, Fourth Edition
(Wechsler, 2003) produced the highest g load-
ings (ranging from .77 to .86) in some analy-
ses (e.g., Gignac, 2006b; Keith et al., 2006;
Keith & Novak, 1987). Subtests with "quan-
titative reasoning" in their titles from the Dif-
ferential Ability Scales (Elliott, 1990) and the
Stanford-Binet Intelligence Scale, Fifth Edi-
tion (Roid, 2003) produced the highest g load-
ings (ranging from .74 to .79) in other analyses
(e.g., DiStefano & Dombrowski, 2006; Sand-
ers et al., 2007). Measures of the following
broad abilities also demonstrated the highest g
loadings in some analyses: Visual-Spatial
Thinking (11 analyses), Short-Term Memory
(5 analyses), reading ability (i.e., Reading and
Writing; 3 analyses), and Processing Speed (1
analysis).

In 43 analyses, measures targeting Vi-
sual Processing demonstrated the lowest g
loadings. For example, the Gestalt Closure
subtests from the Kaufman Assessment Bat-
tery for Children and the Kaufman Assess-
ment Battery for Children, Second Edition
(A. S. Kaufman & N. L. Kaufman, 1983; A. S.
Kaufman & N. L. Kaufman, 2004) produced
the lowest g loadings ranging from .40 to .52
(e.g., A. S. Kaufman & McLean, 1987; M. R.
Reynolds et al., 2007), and the Mazes subtests
from the Wechsler Intelligence Scale for Chil-
dren-Revised (Wechsler, 1974) and the
Wechsler Intelligence Scale for Children,
Third Edition (Wechsler, 1991) produced the
lowest g loadings (ranging from .16 to .39) in
some analyses (e.g., Keith & Witta, 1997;
Smith & Stanley, 1987). In 30 analyses, mea-
sures targeting Processing Speed demon-
strated the lowest g loadings. For example, the
Coding and Digit Symbol-Coding subtests of
the Wechsler Intelligence Scale for Chil-
dren-Revised, the Wechsler Intelligence
Scale for Children, Fourth Edition, the Wech-
sler Adult Intelligence Scale, Revised (Wech-
sler, 1981), and the Wechsler Adult Intelli-
gence Scale, Third Edition, produced g load-
ings ranging from .25 to .49 in some analyses
(e.g., Ashton & Lee, 2006; Gignac, 2006a,
2006b; Watkins, 2006; Watkins et al., 2006).
Measures of the following broad abilities also
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demonstrated the lowest g loadings: Short-
Term Memory (7 analyses); Long-Term Re-
trieval (6 analyses); Crystallized Intelligence,
Fluid Reasoning, and reading ability (2 anal-
yses); and Auditory Processing and inspection
time (1 analysis).

Specificity

Once general factor effects have been
considered, reliable, specific variance and er-
ror variance remain. Whereas error variance is
the portion of a test score that is not reliable
and that is not accounted for by the general
and specific abilities, reliable, specific vari-
ance can be considered specificity. Obtaining
estimates of specificity for individual mea-
sures is important to those who consider
broad and narrow abilities because such es-
timates may establish that these measures
can be interpreted as independent of the gen-
eral factor.

We identified 15 articles published since
1981 (producing 18 analyses) that presented
specificity estimates.4 In 8 studies, authors ob-
tained specificity estimates through multiple
regression analysis in which multiple correla-
tions between the subtests in question and all
other subtests in the battery was squared. Au-
thors then subtracted these squared multiple
correlations from the reliable variances of the
subtests in question. The squared multiple cor-
relations represent general factor variance, and
internal consistency reliability coefficients,
such as split-half reliability estimates, repre-
sent reliable variance. Authors of 6 articles
obtained specificity estimates by subtracting
communality estimates of the subtests in
question from the subtests' reliable vari-
ances. Communality estimates stem from
factor analysis rather than multiple regres-
sion analysis. Like squared multiple corre-
lations, if only a single general factor is
extracted from factor analysis, communality
estimates represent general factor variance.
In only 1 study were CFA techniques used to
calculate specificity estimates (i.e., M. R.
Reynolds et al., 2007).

Specificity estimates are typically re-
ported as percentages to represent the propor-

tion of variance that is reliable and specific.
Specificity estimates have typically been inter-
preted using the following rules of thumb: (a)
for high specificity, estimates must be greater
than error variance and represent at least 25%
of total variance; (b) for medium specificity,
estimates must be greater than error variance
and represent 15% to 24% of total variance;
and (c) for poor specificity, estimates must be
greater than error variance and represent less
than 15% of total variance (McGrew & Flana-
gan, 1998; cf. A. S. Kaufman, 1994). The
specificity estimates from our review ranged
from 63% (Kamphaus & Platt, 1992) to 3%
(M. R. Reynolds et al., 2007). Measures of
Short-Term Memory produced the highest
specificity estimates in 7 analyses; they ranged
from 41% to 63%. For example, the Digit
Span subtests from the WAIS-R and the
WISC-11I; the Memory for Sentences and
Memory for Digits subtests from the Stan-
ford-Binet Intelligence Scale, Fourth Edition;
and the Word Order subtests from the Kauf-
man Assessment Battery for Children, Second
Edition often demonstrated the highest speci-
ficity (e.g., Gutkin, C. R. Reynolds, & Galvin,
1984; M. R. Reynolds et al., 2007). In addi-
tion, measures of Processing Speed produced
the highest specificity estimates in 3 analyses;
they ranged from 43% to 44% and were evi-
dent from the Digit Symbol subtests from the
Wechsler Adult Intelligence Scale (Wechsler,
1955) and the WAIS-R and from the Animal
Pegs subtest from the Wechsler Preschool
and Primary Scale of Intelligence-Revised
(Wechsler, 1989). Measures of Processing
Speed, Visual Processing, Auditory Process-
ing, and Long-Term Retrieval demonstrated
the highest specificity in 2 analyses; a measure
of Fluid Reasoning demonstrated the highest
specificity in another. In 15 analyses, mea-
sures of Crystallized Intelligence demon-
strated the lowest specificity. Measures of Vi-
sual Processing demonstrated the lowest spec-
ificity in 2 analyses, and measures of Fluid
Reasoning as well as measures of Short-Term
Memory demonstrated the lowest specificity
in other studies.
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Purpose of the Study

Much research has produced g loadings
and specificity estimates for subtests from in-
telligence test batteries, but in recent years
interpretive approaches guiding users to form
CHC broad ability composites have prolifer-
ated. However, no published studies have pro-
duced g loadings or specificity estimates for
such composite scores from contemporary in-
telligence test batteries using large, heteroge-
neous samples (cf. Kane et al., 2006). The
results of this study should inform CHC theory
by indicating whether the current move toward
rapprochement is warranted. If broad ability
composite scores are uniformly highly g
loaded, redundancy in measurement across
them is identified and specific ability effects
may be questioned. On the other hand, if broad
ability composite scores demonstrate uni-
formly high specificity, the independence of
each of these measures is apparent and the
expectation of an expansive and monolithic
general factor will be questioned. Results of
this study should also inform practice by pro-
viding insights about the strength of specificity
effects on the broad ability composite scores,
which should be expected because they target
specific ability constructs, as well as insights
about the strength of general factor effects,
which may be considered construct irrelevant
when targeting specific ability constructs
(American Educational Research Association,
American Psychological Association, & Na-
tional Council on Measurement in Education,
1999).

This study examined the g loadings and
specificity of the CHC factor cluster scores
from the WJIII COG. The WJIII COG pro-
duces seven CHC broad ability composite
scores, which is greater in number than any
other contemporary intelligence test battery.
Based on our review of the literature, we hy-
pothesized the following about these scores:
(a) Fluid Reasoning and Comprehension-
Knowledge should demonstrate high g load-
ings and low specificity; and (b) Processing
Speed, Short-Term Memory, Long-Term Re-
trieval, Visual Processing, and Auditory Pro-
cessing should demonstrate high specificity

and moderate to low g loadings. The wide age
range coverage of the WJIII COG also al-
lowed us to examine developmental differ-
ences in these effects from preschool age
through late adulthood.

Method

Participants

All participants were drawn from the
WJIII United States standardization sample
(McGrew & Woodcock, 2001). This nation-
ally representative standardization sample was
formed using a stratified sampling plan that
controlled for 10 individual and community
variables. Participants ages 4 through 90+
who completed all necessary tests to pro-
duce scores for this study were included
(N = 3,577). These participants were divided
into seven age-based subsamples (n = 179 to
n = 875). Information about the size, gender
distribution, race and ethnicity distribution,
and socioeconomic status distribution of each
subsample is presented in Table 1. Gender,
race, and Hispanic ethnicity were unequally
distributed across groups, X

2(6) = 50.67, p <
.001, ×2(18) = 128.80, p < .001, and

X2(6) = 39.93, p < .001, respectively. For
gender, there were fewer males than expected
in the 20-39 age group, based on comparison
to the 14-19 age group, X2(l) = 10.63, p =
.001. For race, there were fewer Black, Asian
and Pacific Islander, and American Indian
children than expected for the 4-5 age group,
based on comparison to the 6-8 age group,

X2(3) = 9.78, p = .021, as well as fewer Black
and Asian and Pacific Islander participants
than expected in the 20-39 age group, based
on comparison to the 14-19 age group,

2 (3) = 41.06, p < .001. For Hispanic ethnic-
ity, there were fewer Hispanic participants
than expected for the 20-39 age group, based
on comparison to the 14-19 age group,

X2(1) = 6.51, p = .011.
Parent education level, operationalized

by the highest education level of a parent
or caregiver, differed significantly across
the child and adolescent samples, F(3,
2392) = 8.59, p < .001. Tukey post hoc tests
indicated that parent education level for those
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Table 1
Percentages of Participant Sex, Race, and Ethnicity and Descriptive

Statistics for Highest Education Level for Seven Age Levels

Sex Race and Ethnicity Education Level

Parent Education/Years of
Age Level n F M W B Al API Hispanic Educationa M(SD)

4-5 236 50.0 50.0 84.3 11.9 1.3 2.5 9.7 4.1 (1.0)
6-8 471 46.7 53.3 74.5 17.0 3.6 4.9 8.5 4.0(1.0)
9-13 875 49.1 50.9 75.4 16.0 3.0 5.6 9.3 3.9 (1.0)

14-19 846 50.2 49.8 78.0 15.4 1.4 5.2 7.8 4.1 (0.9)
20-39 640 58.8 41.3 89.5 7.0 1.9 1.6 4.5 14.6 (2.1)
40-59 330 60.9 39.1 89.4 5.2 3.3 2.1 2.1 14.9 (2.7)
60+ 179 68.7 31.3 95.5 1.7 2.2 0.6 1.1 13.1 (2.8)

Note. F = female; M = male; W = White; B = Black; Al = American Indian; API = Asian or Pacific Islander.
aParent education level is reported for age groups 4-5 through 14-19. Years of education is reported for age groups
20-39 through 60+. Some data were missing for the parent education variable and years of education variable, so values
for these variables are based on slightly smaller sample sizes than reported for all other variables reported in this study.

in the 4-5 age group was significantly higher
than those in the 9-13 age group and that
parent education level for those in the 14-19
age group was higher than those in the 6-8
and 9-13 age groups, p < .05. Years of edu-
cation across the adult samples was also sig-
nificantly different, F(2, 1139) = 36.26, p <
.001. Those in the 60+ age group reported
significantly fewer years of education than
those in the other two groups, p < .05.

Measures

Age-based standard scores (M = 100,
SD = 15) were the metric of analysis. These
scores were obtained from a reweighting of
the WJIII standardization data based on 2005
United States census data (i.e., the WJIII
Normative Update; Woodcock, McGrew,
Schrank, & Mather, 2007). The seven WJII
COG CHC factor cluster scores served as
measures. 5 Median internal consistency reli-
ability estimates obtained from McGrew,
Schrank, and Woodcock (2007) are noted in
the following paragraph for each cluster. Clus-
ter reliabilities were calculated based on the
obtained reliabilities for component tests. Ra-
sch analysis was used to calculate the reliabil-

ity of speeded tests (i.e., Visual Matching,
Retrieval Fluency, Decision Speed) and tests
that employed multiple-point items (i.e., Spa-
tial Relations, Retrieval Fluency, and Picture
Recognition). Split-half reliability analyses
were used for the remaining tests. Extensive
validity evidence supporting cluster scores is
reviewed in McGrew and Woodcock (2001),
McGrew et al. (2007), and Floyd, Shaver, and
McGrew (2003). The development, standard-
ization, and psychometric properties of the
WJIII have been evaluated favorably by inde-
pendent reviewers (e.g., Cizek, 2003; Sando-
val, 2003).

The Comprehension-Knowledge cluster
measures the breadth and depth of knowledge
and the ability to communicate and reason
using this knowledge. It is formed from scores
on the Verbal Comprehension and General
Information tests. Across ages 4-80+, its me-
dian reliability coefficient was .95. The Long-
Term Retrieval cluster measures the ability to
store information and fluently retrieve it later.
It is formed from Visual-Auditory Learning
and Retrieval Fluency. Its median reliability
coefficient was .88. The Visual-Spatial Think-
ing cluster measures the ability to perceive and
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manipulate visual stimuli. Its median reliabil-
ity coefficient was .81. It is formed from Spa-
tial Relations and Picture Recognition. The
Auditory Processing cluster measures the abil-
ity to analyze, synthesize, and discriminate
auditory stimuli. It is formed from Sound
Blending and Auditory Attention. Its median
reliability coefficient was .91. The Fluid Rea-
soning cluster measures the ability to reason
and form concepts. It is formed from Concept
Formation and Analysis-Synthesis. Its median
reliability coefficient was .95. The Processing
Speed cluster measures the ability to perform
simple cognitive tasks quickly and repeatedly.
It is formed from Visual Matching and Deci-
sion Speed. Its median reliability coefficient
was .92. The Short-Term Memory cluster
measures the ability to hold language-based
information in immediate awareness and use it
within a few seconds. It is formed from Num-
bers Reversed and Memory for Words. Its
median reliability coefficient was .88.

Analysis

g Loadings and general factor vari.
ance. To obtain the g loadings for each factor
cluster, standard scores from all seven clusters
at each age level were entered into a principal
factors analysis in which one factor was ex-
tracted.6 The g loadings represent the correla-
tion between the cluster scores and the general
factor, and they may be interpreted as effect
size estimates (Hunter & Schmidt, 2004;
Jensen, 1982). Consistent with previous re-
search, the g loadings were squared to obtain
estimates of the percentage of variance in
the cluster score at each age level attribut-
able to the general factor (i.e., communality
estimates).

Specificity and specific variance.
Specificity estimates for each factor cluster
were obtained at each age level by following
three steps. First, communality estimates were
obtained from the g loadings from principal
factors analysis. Second, reliability coeffi-
cients for each cluster were obtained from
McGrew et al. (2007), and the mean reliability
coefficient for each age level was calculated.
Third, the communality estimate for each clus-

ter was subtracted from its respective mean
reliability coefficient to obtain an estimate of
specificity.7 Because values representing the
percentage of "variance accounted for" likely
mask the true effects of one variable on an-
other and do not allow for interval-level com-
parisons to be made across such values, the
square roots of each specificity estimate at
each age level were calculated to provide ef-
fect size estimates mirroring g loadings
(Hunter & Schmidt, 2004; Jensen, 1982).

Error variance. Estimates of error vari-
ance for each cluster were obtained by sub-
tracting reliability coefficients from 1, but spe-
cific results are not reported. Error estimates
represent the proportion of variance in a clus-
ter attributed to unsystematic sources of score
variability.

Results

Preliminary data analysis was conducted
with each age-based sample to ensure that the
assumptions of absence of outliers, normality,
linearity, and factorability of the correlation
matrix were not violated. Results revealed 54
univariate outliers (with p = .001, two-tailed
test), but for no variable were there more
than 4 univariate outliers for an age level.
Because each age-based subsample was rea-
sonably large, only one case with an extreme
univariate outlier (z = -5.13) was deleted.
Subsequent results revealed 17 multivariate
outliers (using Mahalanobis distance with p =
.001 for the X2 value). These cases were also
deleted. No variable was notably skewed (all
values < 11.01) at any age level. Although two
variables demonstrated notable positive kurto-
sis (i.e., both > 1.0 but less than 2.0) for ages
4-5, no kurtosis was severe enough to affect
our analyses with such large samples (Water-
naux, 1976). Review of scatterplots revealed
that the assumption of linearity was not vio-
lated. Finally, for each principal factors anal-
ysis, the Kaiser-Meyer-Olkin measure of
sampling adequacy was .6 or higher (M = .87,
SD = .01, range = .85 to .88), and Bartlett's
test of sphericity was statistically significant
(p < .001).
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Table 2
General Factor Effects and Specific Effects for the WJIIl CHC Factor

Clusters Across Age Levels

CHC Factor Cluster

Ge Glr Gv Ga Gf Gs Gsm
Age

Level Effect ES % ES % ES % ES % ES % ES % ES %

4-5 General .70
Specific .66

6-8 General .74*
Specific .61

9-13 General .77*
Specific .59

14-19 General .77*
Specific .60

20-39 General .69
Specific .70

40-59 General .70
Specific .70

60+ General .75
Specific .64

.49 .82* .68 .45 .20 .59

.44 .44 .20 .82* .68 .76*

.55 .73* .54 .36 .13 .55

.37 .58 .34 .78* .61 .75*

.60 .72* .53 .48 .23 .61

.34 .59 .34 .74* .55 .71*

.59 .74* .54 .53 .28 .62

.36 .59 .35 .73* .53 .72*

.48 .74* .55 .60 .36 .67

.49 .61 .38 .69 .47 .70

.49 .76* .58 .56 .31 .67

.48 .59 .35 .74* .55 .70

.57 .76* .58 .48 .23 .63

.41 .57 .33 .79* .62 .74

.35 .70

.58 .68

.30 .65

.57 .73

.37 .78*

.51 .59

.38 .79*

.52 .56

.45 .79*

.49 .58

.45 .67

.49 .72

.39 .66

.55 .73

.49 .60 .36 .62

.47 .75* .56 .73

.43 .52 .27 .60

.53 .81* .66 .72*

.60 .49 .24 .62

.35 .82* .67 .69
.63 .52 .27 .63
.32 .80* .64 .70
.62 .51 .26 .61
.34 .82* .67 .73*
.45 .62 .38 .62
.52 .75* .57 .72
.43 .61 .37 .61
.54 .76 .58 .74

Note. WJII CHC = Woodcock-Johnson III Cattell-Horn-Carroll; G-c = Comprehension-Knowledge; Glr = Long-
Term Retrieval; Gv = Visual-Spatial Thinking; Ga = Auditory Processing; Gf = Fluid Reasoning; Gs = Processing
Speed; Gsm = Short-Term Memory; ES = effect size; % = percentage of variance in CHC factor cluster scores. Bold
denotes effect size estimates that are >.70.
*Substantial differences, considering 95% confidence intervals, are evident between general factor effects and specific
effects.

g Loadings

When the general factor was extracted
from the seven CHC factor cluster scores from
each age-based sample, the general factor ac-
counted for approximately 42% of the vari-
ance, on average, among scores (SD = 2.50%,
range = 36.87% to 44.20%). The coefficient
of congruence, the correlation between the
extracted general factor and the "true" general
factor, was .91, on average (SD = .01,
range = .89 to .92).

Table 2 presents g loadings and their
squared values reported percentage of vari-
ance attributable to the general factor. The g
loadings for Comprehension-Knowledge were
typically high (M = .73, Mdn = .74,
SD = .04). At only one age level (20-39) was
its g loading medium (.69). The g loadings for

Long-Term Retrieval were the highest, on av-
erage, of any cluster (M = .76, Mdn = .74,
SD = .03). For every age level, its g loading
was strong. Its highest g loading was at ages
4-5 (.82), which was the highest for any cluster.
In contrast to Compnehension-Knowledge and
Long-Term Retrieval, the g loadings for Visual-
Spatial Thinking were low or medium. They
were the lowest and demonstrated the greatest
variability of any cluster (M = .50, Mdn = .55,
SD = .08). For the first three age levels, its g
loading was less than .50, its lowest g loading
was at ages 6-8 (.36), which was the lowest for
any cluster. The g loadings for Auditory Pro-
cessing were also most often medium (M = .62,
Mdn = .62, SD = .04). The g loadings for Fluid
Reasoning were typically high (M = .72,
Mdn = .70, SD = .06). For the first five age
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levels, its g loading was .70 or higher, but its
g loadings were lower for the oldest age lev-
els. Its highest g loading was for ages 14-19
and ages 20-39 (.79), whereas its lowest g
loading was for ages 60+ (.66). The g load-
ings for Processing Speed were typically me-
dium (M = .55, Mdn = .52, SD = .05). Only
its g loading at ages 9-13 was low (.49). The
g loadings for Short-Term Memory were me-
dium, and they varied minimally across age
levels (M = .61, Mdn = .62, SD = .01).

Specificity

Table 2 presents for each CHC factor
clusters and for each age level both (a) the
effect size estimates representing the influence
of specificity on test scores and (b) the tradi-
tional specificity estimates representing the
percentage of variance in scores attributable to
specificity. Results indicate that specificity vari-
ance exceeded error variance for every cluster
across all age levels (M difference = 39.74%,
SD = 11.36%, range = 7.05% to 60.62%).

We propose that the effect size estimates
for specific variance be evaluated using the
exact same standards as g loadings. Specificity
effects for Comprehension-Knowledge were
from medium to high (M = .64, Mdn = .64,
SD = .05). For only ages 20-39 and 40-59
were specificity effects high (.70). Specificity
effects for Long-Term Retrieval were typi-
cally medium (M = .57, Mdn = .59,
SD = .06). For only ages 4-5 was its speci-
ficity low (.44). Specificity effects for both
Visual-Spatial Thinking and Auditory Pro-
cessing were typically high (M = .76,
Mdn = .74, SD = .05 and M = .73,
Mdn = .72, SD = .02, respectively). Specific-
ity effects for Visual-Spatial Thinking and Au-
ditory Processing were highest at ages 4-5.
Specificity effects for Fluid Reasoning were
medium to high, and they demonstrated the
greatest variability of any cluster (M = .66,
Mdn = .68, SD = .08). Specificity effects for
Processing Speed were high-and the highest
of any cluster (M = .79, Mdn = .80,
SD = .03). Specificity effects for Short-Term
Memory were typically high (M = .72,
Mdn = .72, SD = .02). At only one age level

(9-13) was its specificity effects medium
(.69).

Differences Between General and
Specific Effects

Table 2 also presents indications of sub-
stantial differences between g loadings and
specificity effects for each CHC factor cluster
and each age level. For each effect size, 95%
confidence intervals were calculated based on
sample size. Effect size estimates were trans-
formed to z prime (z') scores, upper and lower
limits of the confidence interval for z' scores
were calculated, and z' score were trans-
formed back to effect size estimates (Cohen,
Cohen, West, & Aiken, 2003). Confidence
interval values were compared for each pair of
g loadings and specificity effects, and confi-
dence intervals that were not overlapping in-
dicated substantial differences between these
values. When substantial differences were
identified, the higher of the two effect size
estimates was marked with an asterisk in Ta-
ble 2. (These differences are not statistically
significant because of our inability to identify
a relevant method to compare interdependent
values. The specificity estimate is derived
from the g loading, and their sum cannot ex-
ceed 1.0.). In addition, to indicate absolute
effects, we identified (and made bold in Table
2) g loadings and specificity estimates that
exceeded .70.

As evident in Table 2, three CHC factor
clusters appear to be primarily measures of the
general factor across age levels because they
demonstrate both substantial effects of the
general factor and substantially greater g load-
ings than specificity effects. Long-Term Re-
trieval met both criteria for every age level.
Comprehension-Knowledge and Fluid Rea-
soning met both criteria for three of seven age
levels; at other age levels, they were similar in
measuring the g factor and specificity. Three
CHC factor clusters appear across most age
levels to be primarily measures of a more
specific factor or factors. Visual-Spatial
Thinking, Auditory Processing, and Process-
ing Speed demonstrated both substantial ef-
fects of specificity and substantially greater
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specificity effects than g loadings. Visual-Spa-
tial Thinking met these criteria for every age
level, and Auditory Processing and Processing
Speed met these criteria for six of seven age
levels.

The remaining CHC factor cluster,
Short-Term Memory, was most frequently
similar in measuring the g factor and specific-
ity. Short-Term Memory demonstrated both
substantial effects of specificity and substan-
tially greater specificity effects than g loadings
at only two age levels.

Discussion

The goal of this study was to examine
the effects of general and specific abilities on
the WJII CHC factor clusters scores across a
wide range of age levels. Results revealed that,
despite the labels reflecting the CHC broad
abilities given to the factor clusters, three clus-
ters appear to be primarily measures of the
general factor at many age levels: Long-Term
Retrieval, Fluid Reasoning, and Comprehen-
sion-Knowledge. That is, across at least three
age levels, their g loadings were .70 or greater,
and the g loadings were notably higher than
specificity effects. These results support our
hypothesis about Fluid Reasoning and Com-
prehension-Knowledge, but Long-Term Re-
trieval demonstrated more consistently strong
g loadings than expected. However, these gen-
eral patterns are not surprising based on (a)
Carroll's (1993) synthesis, (b) recent research
using CFA techniques to form broad ability
factors from some of the same tests forming
these composites (e.g., Floyd, Keith, Taub, &
McGrew, 2007; Taub & McGrew, 2004), and
(c) research indicating that intelligence test
subtests requiring the greatest number of men-
tal processes during completion of items (i.e.,
cognitive complexity) tend to demonstrate
high g loadings (Marshalek, Lobman, &
Snow, 1983; McGrew, 2002).

Consistent with the design of the WJm
CHC factor clusters and other broad ability
composite scores, specificity effects were siz-
able across age levels and CHC factor clusters.
As hypothesized, Visual-Spatial Thinking,
Auditory Processing, and Processing Speed

appear to be primarily measures of specific
abilities, whereas Short-Term Memory dem-
onstrated sizable specificity effects at only two
age levels (cf. Kamphaus & Platt, 1992; R. M.
Thorndike, 1990). It is perhaps most notable
that, when both g loadings and specificity ef-
fects were put on the same scale, on average,
specificity effects (M = .69, SD = .08, range
.44 to .82) were similar to (and in fact ex-
ceeded) general factor effects (M = .64,
SD = .10, range .36 to .82). Indeed, all CHC
factor clusters except Long-Term Retrieval
demonstrated high specificity effects for at
least two age levels. Furthermore, only Long-
Term Retrieval at one age level (1 of 48)
demonstrated low specificity effects. These
collective results are most likely from the
greater reliability of composite scores than
subtest scores.

Age Differences

There was not great variability in g load-
ings and specificity effects of the CHC factor
clusters across age levels. Standard deviations of
g loadings across the age levels ranged from .01
for Short-Term Memory to .08 for Visual-Spa-
tial Thinking (Mdn = .04), and standard devia-
tions of specificity estimates ranged from .02 for
Auditory Processing and Short-Term Memory
to .08 for Fluid Reasoning (Mdn = .05). Corre-
lations revealed negligible to weak relations be-
tween the rank ordering of (a) the age levels and
(b) the g loadings or specificity effects (p < .40)
for most clusters. Only g loadings for Visual-
Spatial Thinking and Auditory Processing ap-
pear to increase with age, p = .65 and p = .85,
respectively, and only specificity effects for Au-
ditory Processing appeared to decrease with
age, p = -. 60. Because of significant dif-
ferences in composition of our age-based
samples (e.g., gender, race, ethnicity, and
socioeconomic status), we cannot eliminate
the possibility that some of the differences
in g loadings and specificity effects attribut-
able to age-related effects may instead be
effects associated with other personal vari-
ables and their interactions (see Sirin, 2005
and Keith, M. R. Reynolds, Patel, & Ridley,
2008).
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Other Limitations and Alternate
Explanations

Because our results stemmed from an
analysis of normative samples from the stan-
dardization of the WJIII, it is likely that our
results will not generalize perfectly to children
and adults near the tails of the general factor
ability distribution. Spearman's law of dimin-
ishing returns conveys that the general factor
effects on test scores tend to decrease as levels
of the general factor increase (Jensen, 2003;
M. R. Reynolds & Keith, 2007). As a result, it
is possible that the g loadings we present un-
derestimate general factor effects and overes-
timate specificity for very low-functioning in-
dividuals and that the g loadings we present
overestimate general factor effects and under-
estimate specificity for very high-functioning
individuals. Some researchers have suggested
that the g loadings (and specificity effects)
vary to a substantial degree based on the va-
riety of tests included in the factor analysis
(e.g., McGrew & Flanagan, 1998; Woodcock,
1990). For example, some may argue that the
Long-Term Retrieval cluster's g loadings were
spuriously high because of speed-related abil-
ity influencing one of its tests, Retrieval Flu-
ency. We tested the influence of including
both (a) Long-Term Retrieval scores and (b)
Processing Speed scores in the same factor
analysis. Our results revealed the influence of
psychometric sampling error to be negligible
at most age levels. At four of seven age levels,
the difference between the g loadings for
Long-Term Retrieval obtained with and with-
out Processing Speed was .01 or less. The
median difference was .01, and the average
difference was .04 (SD = .06). At only ages
9-13 and ages 60+ did these differences ex-
ceed .05 (i.e., .08 and .16, respectively). Con-
sistent effects of psychometric sampling error
are also improbable because we selected com-
posite scores stemming from tests that have
been demonstrated to well represent different
broad ability factors (McGrew & Woodcock,
2001).

Some may argue that our use of EFA is
inappropriate when more theory-driven and
controlled analyses, such as CFA, can be used.
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We agree that theory and control are needed
for extracting general factors, and in fact, we
believe that we used EFA methods in a con-
firmatory manner-as have most all other au-
thors who have used EFA to extract g load-
ings. Others may argue that we failed to con-
sider first-order factors stemming from two or
more factor clusters from which a higher order
general factor can be specified (e.g., Bickley,
Keith, & Wolfie, 1995). However, analysis of
scree plots, consideration of eigenvalues
greater than or equal to 1.0, and results from
Horn's parallel analysis (Horn, 1965) sug-
gested only a single factor should be extracted
during analysis at each age level. Multiple
viable first-order factors are improbable.

Implications

Theory. The results of this study sup-
port the rapprochement that appears in much
contemporary literature devoted to CHC the-
ory. A review of items from the 14 tests yield-
ing the CHC factor cluster scores will reveal
that a variety of stimuli and output mecha-
nisms and a plethora of cognitive processes
must be employed during test performance;
thus, these tests appear to measure different
processes and specific abilities. However, on
average, the resultant cluster scores are greatly
affected by the general factor. Well more than
one-third of the variance (i.e., -42%) across
these scores can be considered shared. If the
specific abilities that effect CHC factor cluster
scores were independent (or even largely in-
dependent), this percentage would be much
lower. On the other hand, these results reveal
that the general factor is neither expansive nor
monolithic in its effects. Clearly, several CHC
factor cluster scores demonstrate substantial
effects from specific abilities; thus, some
scores are more independent than others. In
addition, when the effects of specific abilities
were put on a level playing field with general
factor effects (putting aside consideration of
only the percentage of variance attributable to
specificity), these effects were relatively equal
influences on the CHC factor cluster scores.

School psychologists embedded in cog-
nitive ability assessment, measurement and
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ability researchers, and wonks steeped in CHC
theory and psychometric interpretive frame-
works may rejoice in the variety of abilities
apparently measured by the CHC factor clus-
ters. These results reveal great diversity in the
cognitive abilities measured by these clusters.
They indicate that at least eight abilities-the
general factor and at least one independent
specific cognitive ability per CHC factor clus-
ter-can be reliability measured in children
and adults. In fact, one can lavish in the array
of variation across the cluster scores and
across age levels. Clearly, these results are
noteworthy from a theoretical perspective, and
CHC theory should steadfastly continue to
embrace a model specifying both a general
ability and more specific abilities.

Practice. Theory and research findings
should guide the interpretation of test scores.
One goal of this study was to inform psychol-
ogists about the measurement properties of
composite scores that target CHC broad abil-
ities, and it used an established method central
to the history of psychology to identify these
properties. Despite our enthusiasm from a the-
oretical perspective, it is possible that consid-
ering the general factor and more specific abil-
ities (as well as error) muddies the waters of
clinical interpretation of composites targeting
CHC broad abilities. These composite scores
are not pure measures of CHC cognitive abil-
ities-even when random error is removed
(Oh et al., 2004)--and it is highly improbable
that any other such composite across intelli-
gence tests would yield a pure measure of any
cognitive ability. Consequentially, psycholo-
gists interpreting CHC broad ability composite
scores should consider the following: (a) com-
posite scores, like subtest scores, are influ-
enced by the general factor, which contributes
construct-irrelevant effects when targeting
CHC broad abilities, per se (Watkins, 2006;
Watkins et al., 2006); (b) composite scores are
influenced by specific abilities (sometimes
substantially), which contributes construct-
irrelevant effects when targeting the general
factor; and (c) there is great variation across
broad ability composites in their measurement
of the general factor and in their specificity.

With these considerations in mind, some
implications may follow. Some WJII CHC
factor clusters are predominantly measures of
the general factor across many age levels. Hy-
potheses regarding environmental effects can
be offered to explain variation among such
scores representing the general factor. For ex-
ample, a score on one high g-loading cluster
that is notably higher than scores on other high
g-loading clusters may be attributed to envi-
ronmental enhancements, such as explicit
training, whereas a score on a high g-loading
cluster that is notably lower than other g-
loading clusters may be attributed to environ-
mental inadequacies, such as being from an
impoverished background (A. S. Kaufman,
1979). These hypotheses may be important
when basic assessment techniques, such as
informant interviews, cannot be used to obtain
more accurate information about potential en-
vironmental effects, and such hypotheses
should be tested when possible (see Hale &
Fiorello, 2004). Although the high g-loading
clusters may be used in place of the IQ in the
diagnosis of mental retardation when there is
reason to doubt the validity of the IQ (National
Research Council Committee on Disability
Determination for Mental Retardation, 2002),
we would not recommend routinely using
them to represent the general factor because of
sizable specificity effects. The practice of ag-
gregating multiple measures of mental ability
to operationalize the general factor and
weighting these measures according to their g
loadings appears to be ideal (Floyd, Clark, &
Shadish, 2008; McGrew & Woodcock, 2001).

Specificity, which may be attributable in
large part to broad and narrow abilities, ap-
pears to be much more consistently sizable for
composite scores than subtest scores and more
sizable for some composites than others. It is
possible that interpretation of item-level per-
formance on tests contributing to high-speci-
ficity clusters will allow clinicians to develop
hypotheses relevant to intervention develop-
ment, but this task is daunting because item-
level performance is besieged by random er-
ror. For example, random error may be evident
in failure to retrieve known answers, use of
detrimental and facilitative strategies, guess-
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ing, and serendipitous exposure to item con-
tent. It is also possible that some composites
with high specificity may offer incremental
value (beyond the general factor) in predicting
some specific outcomes and that profiles of
high specificity composites may provide diag-
nostic information or inform intervention de-
velopment, but previous research has indi-
cated that the actuality of these possibilities is
unlikely (see McDermott, Fantuzzo, & Glut-
ting, 1990; Schmidt, 2002).

Conclusion

A large body of research evidence and
the model espoused by the CHC theory in-
forms test users that most every cognitive abil-
ity test score-be it a composite or a subtest
score-is reflective of some part general fac-
tor, some part broad ability or abilities, and
some part narrow ability or abilities (in addi-
tion to random error). It is an asset to recog-
nize this simple psychometric reality because
assessment instruments are only as good as the
professionals using them (Meyer et al., 2001).
Knowing which composite or test scores are
more saturated with general factor variance,
which are more saturated with variance from a
broad ability, and so on should lead to more
appropriate inferences in practice and research
settings. Without (a) the availability of scores
targeting one cognitive ability freed from the
effects of other abilities, an elusive psycho-
metric goal (Carroll, 1993); or (b) sophisti-
cated, statistically based interpretive methods
designed to overcome construct-irrelevant in-
fluences in ability measurement (e.g., use of
suppressor variables and differential weight-
ing; Woodcock & Johnson, 1977; Woodcock
et al., 2001), professionals may fall prey to
misguided decisions about cognitive ability
strengths and weaknesses and fall short in
developing appropriate interventions.

Footnotes

'CHC theory is only one model describing
human cognitive abilities, and its foundation is fac-
tor-analytic evidence. Other models focus more on
cognitive processes and are formed from other
sources of evidence (see Flanagan & Harrison,
2005; Sattler, 2008; Sternberg, 2000).
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2We realize that g loadings have been pub-
lished in books (e.g., Sattler, 2008) and in test
manuals, but we included only those from peer-
reviewed journals published during 1982 and after-
ward. A table summarizing these results can be
obtained from the first author or online (http://www
.memphis.edu/psychology/people/faculty/floyd.php).

3Measures of Quantitative Knowledge and
Quantitative Reasoning were considered measures
of Fluid Reasoning (Carroll, 1993).

4A table summarizing these results can be
obtained from the first author or his website.

5A table presenting the means and standard
deviations of standard scores for each cluster and
for each sample can be obtained from the first
author or his website.

6Analysis was also completed using princi-
pal components analysis. Results indicated that
across CHC factor clusters, the principal compo-
nents analysis yielded g loadings that were approx-
imately .01 higher on average than those from prin-
cipal factors analysis (SD = .07).

7Use of communality estimates allows the
sum of squared g loadings (communality), specific-
ity, and error to equal 100% or 1.0. We compared
communalities to squared multiple correlations and
found that results were minimally different (mean
difference across clusters and age levels = 5.13%,
SD= 3.07%). The communality estimates were
larger in magnitude, on average, for every CHC
factor cluster (range of difference = 9.21% for
Long-Term Retrieval to 2.21% for Processing
Speed).
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