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To understand the extent to which the general-factor loadings of tests are inherent in their
characteristics or due to the sampling of tests, the number of tests in the correlationmatrix, and
the factor-extraction methods used to obtain them, test scores from a large sample of young
adults were inserted into independent and overlapping batteries of varying sizes. Principal
factors analysis, maximum-likelihood estimation, and principal components analysis yielded
general-factor loadings for each test. Generalizability theory analyses revealed that the
characteristics of the tests consistently contributed the largest percentage of variance. Variance
attributable to the factor-extraction method and its interactions was sizeable when principal
components analysis was included in the analysis but negligible when it was excluded.
Psychometric sampling error produced sizeable variance components in some analyses, and its
effects were magnified when test batteries diminished in size. When results from principal
components analysis were excluded and when the effects of psychometric sampling error were
reduced, general-factor loadings were highly dependable across varying conditions.

© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Many modern psychometric theories of intelligence con-
verge in agreement that the general factor (a.k.a., psycho-
metric g) meaningfully represents the majority of the positive
relations among specific measures of human cognitive
abilities, such as scores from the tests of intelligence test
batteries (Carroll, 1993; Jensen, 1998; Spearman, 1927;
Sternberg & Grigorenko, 2002). Despite this general agree-
ment, several prominent criticisms have been levied against
the construct validity of the general factor. One criticism is
that the general factor is dependent on the factor-analytic
methods used to extract it from a matrix of correlations, and
another criticism is that the general factor is dependent on
the measures used to operationalize it. These criticisms seem
to have become part of virulent memes that pervade the
minds of many professionals and consumers of tests results.

1.1 Factor-extraction methods

Gould (1981, 1994) asserted that the type of factor-
analytic methods used to extract the general factor from a
matrix of correlations affected the identification of the
general factor to the extent that it undermined its mean-
ingfulness. In fact, Gould concluded that the general factor is a
statistical artifact with no representation in reality. A key
target of his criticism was the factor-extraction method
principal components analysis, which analyzes all variance
across scores (including error variance). Snook and Gorsuch
(1989), B. Thompson (2004), and others have demonstrated
that principal components analysis tends to produce inflated
parameter estimates. In addition, principal components
analysis can produce a first component (designed to repre-
sent the general factor) with uniformly positive loadings from
constituent tests when correlations among at least some of
those tests are weak and not significantly different than 0
(Jensen & Weng, 1994). Despite these criticisms of principal
components analysis, when an appropriate correlationmatrix
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is analyzed, values stemming from varying factor-extraction
methods appear to be remarkably consistent—even when
principal components analysis is used to extract the general
factor. For example, Ree and Earles (1991) demonstrated both
(a) correlations between 14 general component scores and
factor scores from principal components analysis, principal
factors analysis, and hierarchical factor analysis derived for
each person and also (b) coefficients of congruence from
general-factor loadings derived from varying factor-extrac-
tion methods that were very strong and near unity. Jensen
and Weng (1994) also supported and extended these results
through their comparisons of results from 6 to 10 different
methods of factor analysis, including principal factors
analysis, hierarchical exploratory factor analysis, and con-
firmatory factor analysis, using artificial correlation matrices
and an archival correlation matrix. Their results indicated (a)
very high correlations between factor scores between general
factors, (b) very high congruence coefficients between
general factor loadings yielded by different methods of
analysis and the “true” general factor loadings used to derive
the artificial correlation matrixes, and (c) consistency in the
percentage of variance attributable to the general factor
across methods. For instance, the Spearman correlations
between general-factor loadings from 24 tests obtained using
10 different factor-extraction methods ranged from .79 to 1.0
(M=.91). Although general consistency across these factor-
extraction methods is apparent, variation across methods is
also evident.

1.2. Test battery composition and test battery size

It is sometimes argued that the general factor is dependent
on the measures used to operationalize it, and it seems
rational to argue, for example, that scores from a battery
including a preponderance of tests of language-based
abilities, when entered into factor analysis, would yield a
very different general factor thanwhen analyzing scores from
a battery including a preponderance of tests of visualization
abilities. Such criticism has often been levied by the most
vocal opponent of the interpretation of the general factor in
recent decades, John Horn (Horn, 1985, 1989; Horn &
Blankson, 2005; Horn & McArdle, 2007). Consistent with
this criticism, Horn has referred to the general factor and its
related scores as conglomerates, mixtures measures, and
hodgepodges of distinct abilities. There is some evidence of
the effect of the test battery composition on the identification
of the general factor. Based on Carroll's (1993) re-analysis of
more than 460 data sets, he offered that “the G factor for a
given data set is dependent on what lower-order factors or
variables are loaded on it. One could say that a higher-order
factor is ‘colored’ or ‘flavored’ by its ingredients” (p. 596). In a
similar manner, Jensen and Weng (1994) conveyed, “Just as
there is sampling error with respect to statistical parameters,
there is psychometric sampling error [emphasis added] with
respect to g, because the universe of all possible mental tests
is not perfectly sampled by any limited set of tests” (p. 236).

Several studies have directly investigated this potential
criticism that the general factor is dependent on themeasures
used to operationalize it. For example, Thorndike (1987)
examined the identification of the general factor when it is
formed from different samples of test scores. He employed

data from 65 tests from the Army Air Forces Aviation Aircrew
Classification Battery. From this battery, 48 tests were divided
into six batteries of 8 tests each. The remaining 17 “probe”
tests were inserted one at a time into each of the six batteries,
and the general-factor loadings for each of the 17 probe tests
were obtained. The median Pearson product–moment corre-
lation coefficient between general-factor loadings across
analyses using the six batteries was strong (.85). The range
of correlationswas .52 to .94, and two correlationswere lower
than .70. The average standard deviation of the general-factor
loadings for the 17 tests was .07 (range=.04 to .14) across the
six batteries. Based on Thorndike's results, it appears that the
magnitude of the tests' loadings on the general factor is
determined largely by the characteristics of the tests, rather
than by characteristics of the test batteries in which they are
inserted, but the influence of psychometric sampling error is
apparent in the varying general-factor loadings across the test
batteries.

More recently, others have examined the relations between
second-order general factors extracted from varying test
batteries using confirmatory factor-analytic methods and
maximum-likelihood estimation, and they have demonstrated
relations between these general factors that are consistently
very near unity. Keith, Kranzler, and Flanagan (2001) produced
a correlation of .98 between general factors derived from scores
from two individually administered intelligence test batteries
formed by 12 and 18 tests. Johnson, Bouchard, Krueger, McGue,
andGottesman (2004) produced correlations of .99, .99, and 1.0
between general factors formed from each of three test
batteries formed by 11 to 17 tests. Most recently, Johnson, te
Nijenhuis, andBouchard (2008) produced correlations from .77
to 1.0 between general factors from each of five test batteries
formed by 4 to 13 tests. Of these correlations, 7 of 10were .95 or
higher.

These results indicate similar identification of the general
factor across independent test batteries. However, it is
evident that disproportionate sampling of tests, biased
toward specific abilities, may not allow specific variances to
“average out” and for common variance, attributable to the
general factor, to remain as the primary source of variance. It
is logical that, as the number of test scores included in the
factor analysis diminishes, the greater the effects that
psychometric sampling error will have on the general factor
and resulting scores. For example, in Johnson et al. (2008), the
general factor formed from only 4 tests demonstrated notably
lower correlations with the other general factors (M=.85)
than did all of the other general factors with each other
(M=.95). In addition, as indicated by the Wilks theorem
(1938), as the number of test scores included in the factor
analysis increases, the relations between the general factors
derived from independent test scores will be strengthened
(Jensen & Weng, 1994).

1.3. Purpose of the study

We sought to understand better the strength of and
interactions between the effects of the factor-extraction
method, the composition of the battery, and an understudied
influence, the number of tests in the battery, on the
identification of the general factor as well as to determine
how these effects compare to differences in characteristics of
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the tests under study. Like Jensen and Weng (1994) and
Thorndike (1987), we chose to focus on these effects as they
are manifested in the general-factor loadings from test scores
for three reasons. First, these general-factor loadings are
commonly reported in the literature, and second, there are
established labels to guide practitioners' interpretation of
these values (Floyd, McGrew, Barry, Rafael, & Rogers, 2009).
In addition, and more importantly, when tests producing
general-factor loadings are sufficiently diverse in terms of
content, operations, stimulus input, and modes of response,
as well as variable in reliability, the general-factor loadings
are likely to vary notably due to the tests' characteristics,
which can be contrasted with effects from the other potential
influences.

To reach these goals, we implemented several innovations.
First, to promote optimal measurement of the general factor
and optimal psychometric sampling, we ensured that the probe
tests scores stemmed from tests that were sufficiently diverse
(see Jensen & Weng, 1994). We included probe tests from the
individually administered cognitive ability test battery, the
Woodcock–Johnson III (WJ III; Woodcock, McGrew, & Mather,
2001; Woodcock, McGrew, Mather, & Schrank, 2003), that
ranged substantially across relevant characteristics. Likewise,
we selected scores from our probe tests that had been analyzed
using confirmatory factor analysis in several published sources
(Floyd, Keith, Taub, & McGrew, 2007; McGrew & Woodcock,
2001; Phelps, McGrew, Knopik, & Ford, 2005; Taub & McGrew,
2004). The results of these prior confirmatory factor analyses
collectively support the fact that the probe tests selected for the
current study represent 7 of the approximately 10 broad
(stratum II) abilities identified in the Cattell–Horn–Carroll
theory: Comprehension–Knowledge, Long-Term Storage and
Retrieval, Visual Processing, Auditory Processing, Fluid Reason-
ing, Processing Speed, and Short-Term Memory (see McGrew,
2009).

Second, we analyzed data from a large, nationally repre-
sentative sample of young adults to prevent restricted
population sampling from attenuating the relations we
identify (Jensen, 1998). Third, we examined the effects of
three factor-extraction methods on general-factor loadings.
We selected (a) principal components analysis, (b) principal
factors analysis, and (c) maximum-likelihood estimation,
favored by many using confirmatory factor analysis. We
believed that these methods would demonstrate some
sensitivity to psychometric sampling error (Jensen & Weng,
1994). Fourth, we not only completed a partial replication of
Thorndike's (1987) analysis using independent batteries to
form the general factors, but we also constructed a large
number of partially overlapping batteries, comprised of
randomly selected tests, to form general factors. We reasoned
that a large number of samples of test batteries (a) would
provide results that are more reliable than those from only a
few independent batteries and (b) would reduce the under-
mining effects of psychometric sampling error due to “biased”
sampling of tests for the independent batteries. Fifth, we
examined the effects of the number of tests used in iden-
tification of the general factor—beginning with batteries
comprising 7 or 8 tests and decomposing these batteries to
4-test batteries and 2-test batteries.

Finally, analysis of the resulting general-factor loadings
was conducted using Generalizability theory to examine the

variance in general-factor loadings attributable to four
systematic sources–(a) the characteristics of the probe test,
(b) the factor-extraction method, (c) the composition of the
test battery, and (d) the size of the test battery–as well as
their interactions. Generalizability theory extends the notion
of measurement error beyond that of classical test theory and
offers a means to assess concurrently multiple sources of
variance (Cronbach, Gleser, Nanda, & Rajaratnam, 1972;
Shavelson & Webb, 1991). In addition to estimating the
proportion of variance that can be accounted for by various
sources (i.e., variance components), Generalizability theory
yields dependability coefficients that are analogous to reli-
ability coefficients.

2. Method

2.1. Participants

Participants were drawn from the standardization sample
of the WJ III (Woodcock et al., 2001). The WJ III standardiza-
tion sample was constructed using a stratified sampling plan
that controlled for 10 individual variables (e.g., race, sex,
educational level, occupational status) and community vari-
ables (e.g., community size, community socio-economic
status) as described by the United States Census projections
for the year 2000 (McGrew & Woodcock, 2001). Participants
ages 20 to 39 (n=1409) from the standardization sample
were included. Participants in this age range were selected in
order to parallel samples from the Ree and Earles (1991),
Thorndike (1987), Johnson et al. (2004), and Johnson et al.
(2008) studies.

2.2. Measures

All measures were drawn from the WJ III. The develop-
ment, standardization, and psychometric properties of these
test batteries have generally been evaluated favorably by
independent reviewers (Bradley-Johnson, Morgan, & Nutkins,
2004; Cizek, 2003; Sares, 2005; Thompson, 2005). This study
employed scores from 19 tests from the WJ III Tests of
Cognitive Abilities, 21 tests from the WJ III Tests of Achieve-
ment, and 5 tests and 1 special composite from the WJ III
Diagnostic Supplement (Woodcock, McGrew, Mather, &
Schrank, 2003). The special composite is Numerical Reason-
ing, which represents performance on the Number Series and
NumberMatrices tests.1 In contrast, 3 tests were omitted from
analyses because they are derivatives of other tests included
in the analyses. These tests were Visual–Auditory Learning:
Delayed, Story Recall: Delayed, and Memory for Names:
Delayed. Had these tests been included, shared residual
variance across the pairs of tests would have produced
spurious results in the factor analyses.

McGrew and Woodcock (2001) and Woodcock et al.
(2003) reported estimates of reliability and evidence of
validity for these 45 tests and 1 composite. Rasch analysis was
used to calculate the reliability of speeded tests (i.e., Cross
Out, Decision Speed, Visual Matching, Math Fluency, Pair
Cancellation, Rapid Picture Naming, Reading Fluency, Retrie-

1 At the time the data set employed in this study was constructed, these
tests produced only a single composite score (Woodcock et al., 2003).
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val Fluency, Writing Fluency in this study) and tests that
employed multiple-point scored items (i.e., Picture Recogni-
tion, Planning, Retrieval Fluency, Spatial Relations, Story
Recall, Spelling of Sounds, and Writing Samples in this
study). Split-half procedures were used for the remaining
tests. Composite reliabilities were calculated based on the
obtained reliabilities for their component tests. As evident in
Table 1, all but 12 measures demonstrated median reliability

coefficients of .80 or greater for both age groups. These ex-

ceptions include only Cross Out (Mdn=.72), Picture Recogni-
tion (Mdn=.77), Planning (Mdn=.75), Sound Awareness
(Mdn=.74), and Spelling of Sounds (Mdn=.71).

2.3. Procedures

From the 45 WJ III tests and the composite, 7 probe tests
were chosen to provide variables for which general-factor
loadings would be obtained across varying conditions: Verbal
Comprehension, Visual–Auditory Learning, Spatial Relations,
Sound Blending, Concept Formation, Visual Matching, and
Numbers Reversed. As evident in Table 1, all of these tests
have demonstrated median reliability coefficients of .80 or
higher, and each test measures a different broad cognitive
ability in accordance with the Cattell–Horn–Carroll theory
(McGrew &Woodcock, 2001; Taub &McGrew, 2004). We first
formed independent batteries comprising 8 tests each from
the remaining 39 tests from the WJ III. Four batteries were
formed of 8 randomly selected tests, and a fifth battery was
formed from the remaining 7 tests (see Table 2). We also
selected, at random (with replacement), 8 (of the 39) tests at
a time to form 30 overlapping batteries of tests (see Table 3).
From these 30 batteries of 8 tests, we also formed 30 batteries
of 4 tests and 30 batteries of 2 tests by first randomly selecting
4 of the 8 tests to be omitted and then randomly selecting 2 of
the remaining 4 tests to be omitted (see italicized tests and
underlined tests in Table 3).

Using correlation matrixes as input (presented in McGrew
& Woodcock, 2001), variables from each of the probe tests
were inserted one at a time into each of the 95 batteries of 8,
4, or 2 tests, and principal factors analysis, maximum-
likelihood estimation, and principal components analysis
were conducted. A single factor was extracted in all cases to
represent the general factor. The correlations between scores
from each of the probe tests and the general factor, the
general-factor loadings, were the primary focus of the
analysis. These general-factor loadings for the probe tests
were submitted to Generalizability theory analysis to exam-
ine their consistency and dependability. Variance compo-
nents were computed using SPSS 12.0, and dependability
coefficients (a.k.a., phi coefficients) were calculated to
provide overall indexes of dependability (Brennan, 2001;
Shavelson & Webb, 1991). The variance estimate attributable
to differences across the probe tests was considered universe-
score variance; it was used as the numerator in the formula to
calculate the dependability coefficients. The variance esti-
mates attributable to the test battery, to the number of tests,
to the factor-extraction method, to all interactions, and to
residual (i.e., unexplained) variance, when each was divided
by the number of variations associated with each facet, were
considered error variance. The denominator of the formula
consisted of the sum of the universe-score variance and error
variance.

3. Results

Means and standard deviations for all WJ III test scores are
shown in the right side of Table 1. Preliminary data analyses
were conducted to ensure that the assumption of the fac-
torability of the correlationmatrixes was not violated, and the
coefficients of congruence, which represent the relations

Table 1
Test characteristics, reliability, and descriptive statistics for the Woodcock–
Johnson III Tests.

WJ III test Test
type

Broad
ability

Reliability Descriptive
statistics

M SD

Verbal Comprehension P Gc .94 100.31 13.86
Visual–Auditory Learning P Glr .92 100.01 14.45
Spatial Relations P Gv .80 99.60 14.45
Sound Blending P Ga .92 100.33 14.55
Concept Formation P Gf .95 100.37 13.98
Visual Matching P Gs .91 100.72 12.73
Numbers Reversed P Gsm .89 100.53 14.20
Analysis–Synthesis B Gf .92 100.85 13.85
Academic Knowledge B Gc .90 102.15 12.05
Applied Problems B Gq, Gf, Gc .94 101.44 13.01
Auditory Attention B Ga .86 100.78 11.30
Auditory Working Memory B Gsm .82 102.40 12.46
Block Rotation B Gv .84 100.85 12.90
Calculation B Gq .87 101.27 13.09
Cross Out B Gs, Gv .72 101.62 12.70
Decision Speed B Gs .86 100.67 13.90
Editing B Grw .92 99.87 14.01
General Information B Gc .94 100.47 13.76
Incomplete Words B Ga .85 101.26 13.48
Letter–Word Identification B Grw .93 100.78 12.34
Math Fluency B Gq, Gs .90 101.21 14.10
Memory for Names B Glr .91 100.70 14.95
Memory for Sentences B Gsm, Gc .93 100.20 13.06
Memory for Words B Gsm .81 99.97 14.19
Numerical Reasoning B Gf .95 101.47 12.58
Oral Comprehension B Gc .90 99.76 14.66
Pair Cancellation B Gs .84 102.52 14.35
Passage Comprehension B Grw, Gc .82 101.18 12.82
Picture Recognition B Gv .77 100.50 14.10
Picture Vocabulary B Gc .87 99.39 15.00
Planning B Gv .75 99.88 11.33
Quantitative Concepts B Gq, Gf .93 100.93 13.20
Rapid Picture Naming B Glr, Gs .97 102.14 13.80
Reading Fluency B Grw, Gs .91 100.03 16.02
Reading Vocabulary B Grw, Gc .92 100.35 14.96
Retrieval Fluency B Glr, Gs .90 101.15 12.20
Sound Awareness B Ga .74 100.30 13.67
Sound Patterns B Ga .95 100.43 14.26
Spelling B Grw .93 100.81 12.47
Spelling of Sounds B Grw, Ga .71 102.06 12.01
Story Recall B Gc, Glr .89 100.33 13.75
Understanding Directions B Gc, Glr, Gsm .84 96.21 15.14
Visual Closure B Gv .94 100.13 14.11
Word Attack B Grw, Ga .88 100.66 12.92
Writing Fluency B Grw, Gs .85 100.22 13.96
Writing Samples B Grw .88 100.52 11.19

Note. P = Probe test entered one at a time into batteries. B = Test forming
batteries. Gc = Comprehension–Knowledge; Glr = Long-Term Storage and
Retrieval; Gv = Visual Processing; Ga = Auditory Processing; Gf = Fluid
Reasoning; Gs = Processing Speed; Gsm = Short-Term Memory; Gq =
Quantitative Knowledge; and Grw = Reading and Writing. Broad ability
classifications stem from the confirmatory factor analysis reported in
McGrew and Woodcock (2001), and labels for these factors stem from
McGrew (2009).
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between the extracted general factor and the estimated true
general factor, was calculated for each test battery.2

3.1. Independent batteries

For each analysis, Bartlett's test of sphericity was statis-
tically significant (pb .05). For 8-test batteries and 4-test
batteries, the Kaiser–Meyer–Olkin (KMO) measure of sam-
pling adequacy was .60 or higher for each analysis, M=.86,
SD=.04 and M=.77, SD=.04, respectively, but 10 analyses
(29%) produced a KMO measure less than .60 using 2-test
batteries (M=.62, SD=.03). The general factor accounted for
the following percentages of the variance, on average, for each
method: 44.70%, principal factors analysis; 45.03%, max-
imum-likelihood estimation; and 55.72%, principal compo-
nents analysis. The general factor accounted for an average of
46.13% of variance across 8-test batteries, 48.65% across 4-test
batteries, and 50.23% across 2-test batteries. The coefficients
of congruence were .93 on average (SD=.02, range=.89 to
.96) for 8-test batteries, .89 on average (SD=.04, range=.83
to 1.00) for 4-test batteries, and .82 on average (SD=.06,
range=.66 to .91) for 2-test batteries.

Table 4 presents the general-factor loadings for the probe
tests when entered into the five independent batteries of
varying sizes and analyzed using the varying factor-extraction
methods. In one instance, a general-factor loading was not
obtained due to its communality exceeding 1.0. Following
rules of thumb, general-factor loadings of .70 and higher
indicate high measures of the general factor, those .69 to .50
indicate medium measures of the general factor, and those
less than .50 indicate low measures of the general factor
(McGrew & Flanagan, 1998, cf. Kaufman, 1994). Across
conditions, the mean general-factor loadings for Verbal
Comprehension and Concept Formation were generally
high, whereas the mean general-factor loadings for Visual–

Auditory Learning, Spatial Relations, Sound Blending, Visual
Matching, and Numbers Reversed were medium.

Components for the main sources of variance in general-
factor loadings, their interactions, and unexplained influences
are presented in the second column of Table 5. In the primary
analysis using the independent batteries, variance attributable
to the probe tests constituted 33% of the total variance. When
facets of error variance were considered, the main effect of
factor-extraction method constituted 15% of variance. This
effect is evident in the difference in mean values across the
factor-extraction methods; principal components analysis
typically produced higher general-factor loadings than both
other methods. The interaction between the factor-extraction
method and the probe tests constituted only 2% of variance, its
interactionwith the test battery constitutednegligible variance,
and its interaction with the number of tests in the test battery
constituted only 2% of variance. The main effect of the test
battery constituted only 3% of variance, and its interactionwith
the number of tests in the battery constituted only 3% of
variance. However, its interaction with the probe tests
constituted 18% of variance, which was the highest of any
error variance component. This interaction is evident in the
varying standard deviation values for each test within batteries
of the same size. For example, Verbal Comprehension and
Visual Matching demonstrated the greatest variation across
these independent batteries, and Visual–Auditory Learning and
Concept Formation seemed to demonstrate the least. The main
effect of the number of tests in the battery constituted
negligible variance, but its interaction with the probe tests
contributed 5% of variance. The three-way interaction that
contributed themost variancewas the interaction between the
probe test, the test battery, and the number of tests—totaling
12% of variance. Other three-way interactions constituted 2% of
variance or less. The resulting dependability coefficientwas .72,
which indicates moderate dependability of general-factor
loadings across different batteries of tests, different methods
of factor analysis, and batteries of different sizes.

Based on consideration of the weaknesses inherent in
principal components analysis and considerationof the rangeof
reliability of the probe tests, we conducted a follow-up
Generalizability theory analysis in which the general-factor
loadings from this method were omitted. Thus, only general-
factor loadings from principal factors analysis and maximum-
likelihood estimation were included. The results are presented
in the center column of Table 5. As is evident, when general-
factor loadings from principal components analysis were
excluded, the variance attributed to the factor-extraction
method and its two-way interactions became negligible. As a

2 The formula for this coefficient of congruence (rst) is

rst =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n − 1ð Þ 1− 1
λ

� �� �s

where n represents the number of tests included in a principal component
analysis, and λ is the eigenvalue from the principal components analysis in
which a single factor is extracted. The correlation rst is the square root of the
reliability of the factor as indicated by coefficient alpha in Harman's (1976)
formula 11.29, p. 231. See also p. 236 of Jensen and Weng (1994). We
appreciate John Kranzler for providing us information about this formula.

Table 2
Independent batteries selected randomly from the Woodcock–Johnson III.

1 2 3 4 5

Auditory Working Memory Pair Cancellation Sound Awareness Memory for Names Analysis–Synthesis
Incomplete Words Memory for Words Rapid Picture Naming Numerical Reasoning Story Recall
Decision Speed Memory for Sentences Visual Closure General Information Picture Recognition
Cross Out Sound Patterns Block Rotation Picture Vocabulary Academic Knowledge
Passage Comprehension Auditory Attention Spelling Letter–Word Identification Oral Comprehension
Reading Fluency Retrieval Fluency Editing Word Attack Reading Vocabulary
Writing Samples Planning Applied Problems Quantitative Concepts Spelling of Sounds
Writing Fluency Understanding Directions Math Fluency Calculation

Note. Italics indicates tests included in the 4-test batteries, and underlining indicates tests included in the 2-test batteries.
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result, the variance attributable to the probe tests rose to 42%,
and the dependability coefficient rose to .84. Error variance
from the interaction between the test battery and the probe
tests rose to 22%, and the interaction between the probe test,
the test battery, and the number of tests rose to 20%.

3.2. Overlapping batteries

For each analysis, Bartlett's test of sphericity was statis-
tically significant (pb .05). For 8-test batteries and 4-test
batteries, the Kaiser–Meyer–Olkin (KMO) measure of

Table 3
Overlapping batteries selected randomly from the Woodcock–Johnson III.

1 2 3 4 5

Pair Cancellation Memory for Words Memory for Words Memory for Sentences Auditory Working Mem
Sound Awareness Memory for Sentences Analysis–Synthesis Auditory Attention Analysis–Synthesis
Incomplete Words Auditory Attention Decision Speed Numerical Reasoning Retrieval Fluency
Block Rotation Numerical Reasoning Visual Closure Rapid Picture Naming Cross Out
Understanding Directions Story Recall Block Rotation Letter–Word Identification Planning
Oral Comprehension Academic Knowledge Understanding Directions Spelling of Sounds Picture Vocabulary
Picture Vocabulary Letter–Word Identification Word Attack Calculation Letter–Word Identification
Passage Comprehension Editing Applied Problems Math Fluency Spelling of Sounds

6 7 8 9 10

Pair Cancellation Memory for Words Auditory Working Mem Auditory Attention Auditory Attention
Numerical Reasoning Retrieval Fluency Numerical Reasoning Numerical Reasoning Story Recall
Planning Rapid Picture Naming Rapid Picture Naming Analysis–Synthesis Picture Recognition
Academic Knowledge Cross Out Cross Out Rapid Picture Naming Oral Comprehension
Oral Comprehension Picture Recognition Picture Recognition Decision Speed Writing Fluency
Word Attack Letter–Word Identification Word Attack General Information Spelling of Sounds
Spelling of Sounds Reading Fluency Spelling of Sounds Word Attack Quantitative Concepts
Applied Problems Reading Vocabulary Math Fluency Calculation Math Fluency

11 12 13 14 15

Pair Cancellation Memory for Sentences Auditory Attention Pair Cancellation Memory for Words
Sound Awareness Incomplete Words Memory for Names Sound Awareness Rapid Picture Naming
Incomplete Words Retrieval Fluency Analysis–Synthesis Rapid Picture Naming Cross Out
General Information Cross Out Story Recall Planning Picture Recognition
Picture Vocabulary Block Rotation Cross Out Understanding Directions Block Rotation
Writing Fluency Oral Comprehension General Information Passage Comprehension Picture Vocabulary
Editing Letter–Word Identification Picture Vocabulary Applied Problems Passage Comprehension
Applied Problems Writing Samples Letter–Word Identification Calculation Calculation

16 17 18 19 20

Retrieval Fluency Rapid Picture Naming Auditory Attention Sound Awareness Memory for Sentences
Rapid Picture Naming Picture Recognition Incomplete Words Rapid Picture Naming Auditory Attention
Cross Out Academic Knowledge Memory for Names Understanding Directions Sound Awareness
Understanding Directions Passage Comprehension Planning Passage Comprehension Story Recall
Picture Vocabulary Word Attack Oral Comprehension Word Attack Understanding Directions
Letter–Word Identification Reading Fluency Picture Vocabulary Reading Fluency Reading Fluency
Word Attack Spelling of Sounds Word Attack Reading Vocabulary Reading Vocabulary
Reading Fluency Editing Spelling Applied Problems Spelling

21 22 23 24 25

Auditory Working Mem Auditory Working Mem Story Recall Pair Cancellation Memory for Words
Auditory Attention Sound Patterns Retrieval Fluency Auditory Attention Retrieval Fluency
Sound Awareness Auditory Attention Decision Speed Sound Awareness Rapid Picture Naming
Retrieval Fluency Numerical Reasoning Academic Knowledge Analysis–Synthesis Decision Speed
Cross Out Analysis–Synthesis Understanding Directions Visual Closure Visual Closure
Understanding Directions Picture Vocabulary Oral Comprehension Block Rotation Academic Knowledge
Oral Comprehension Reading Vocabulary Letter–Word Identification Picture Vocabulary General Information
Letter–Word Identification Editing Spelling of Sounds Calculation Calculation

26 27 28 29 30

Memory for Words Pair Cancellation Memory for Words Pair Cancellation Memory for Words
Sound Patterns Memory for Sentences Memory for Sentences Sound Awareness Memory for Sentences
Auditory Attention Auditory Working Mem Incomplete Words Numerical Reasoning Sound Patterns
Sound Awareness Incomplete Words Rapid Picture Naming Cross Out Retrieval Fluency
Memory for Names Cross Out Oral Comprehension Writing Samples Cross Out
Numerical Reasoning Visual Closure Reading Vocabulary Spelling of Sounds Passage Comprehension
Academic Knowledge Understanding Directions Writing Samples Editing Reading Fluency
Spelling of Sounds Spelling Quantitative Concepts Math Fluency Writing Samples

Note. Italics indicates tests included in the 4-test batteries, and underlining indicates tests included in the 2-test batteries.
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sampling adequacy was .60 or higher for each analysis,
M=.88, SD=.02 and M=.78, SD=.04, respectively, but 26
analyses (12%) produced a KMO measure less than .60 using
2-test batteries (M=.64, SD=.04). The general factor
accounted for the following percentages of the variance, on
average, for each method: 44.49%, principal factors analysis;
44.41%, maximum-likelihood estimation; and 55.34%, princi-
pal components analysis. The general factor accounted for an
average of 45.43% of variance across 8-test batteries, 47.26%
across 4-test batteries, and 51.56% across 2-test batteries. The
coefficients of congruence were .93 on average (SD=.01,
range=.90 to .95) for 8-test batteries, .88 on average
(SD=.03, range=.80 to .95) for 4-test batteries, and .83 on
average (SD=.05, range=.69 to .97) for 2-test batteries.

Tables 6–8 presents the general-factor loadings for the
probe tests inserted one at a time into each of the 30
overlapping batteries of varying sizes and analyzed using each
the factor-analytic method. As evident in Table 8, two general-
factor loadings were not obtained due to their communality
exceeding 1.0. Across the 8-test, 4-test, and 2-test batteries,
the mean general-factor loadings for the probe tests were
generally in the same ranges as those from the analysis using
independent batteries.

As evident on the fourth columnof Table 5, primary analysis
revealed that variance attributable to the probe tests con-
stituted 56% of the total variance. When facets of error variance
were considered, the main effect of factor-extraction method

constituted 13% of variance. Its interactionwith the probe tests
constituted 4% of variance, its interaction with the test battery
constituted negligible variance, and its interaction with the
number of tests in the test battery constituted 3% of variance.
These results are consistent with the primary analysis of the
independent batteries. The main effect of the test battery
constituted only 1% of variance, and its interaction with the
number of tests in the battery constituted 4% of variance.
Because of the broad sampling of tests in the batteries (as well
as their overlapping nature), the interaction between the test
battery and the probe tests constituted only 7% of variance,
which is approximately half of the proportion of variance
attributed to this interaction in the primary analysis of the
independent batteries. Themain effect of the number of tests in
the battery and its interaction with the probe tests constituted
generally negligible variance. Again, the three-way interaction
that contributed themost variancewas the interaction between
the probe test, the test battery, and the number of tests—now
totaling only 7% of variance. Other three-way interactions
constituted 2% of variance or less. The resulting dependability
coefficient was .89, which indicates strong dependability.

Results from follow-up analyses omitting the general-factor
loadings from principal components analysis are presented in
the far right column of Table 5. In a manner consistent with the
follow-up analysis of the independent batteries, the variance
attributed to the factor-extraction method and its interactions
was reduced to negligible levels. The variance attributable to

Table 4
General-factor loadings and summary statistics for each probe test when tests inserted one at a time into each independent test battery and varying factor-
extraction methods applied.

Test
battery

Probe test

VC VAL SR SB CF VM NR

PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC

8-test batteries
1 .79 .81 .81 .62 .61 .67 .56 .56 .62 .69 .69 .74 .69 .69 .73 .70 .71 .74 .61 .61 .67
2 .84 .84 .84 .65 .63 .71 .57 .54 .65 .72 .70 .77 .73 .72 .77 .57 .53 .65 .67 .66 .73
3 .86 .87 .86 .63 .62 .69 .57 .55 .64 .67 .67 .73 .70 .69 .75 .61 .59 .68 .65 .65 .71
4 .91 .97 .91 .64 .62 .69 .57 .56 .63 .63 .62 .68 .71 .70 .75 .47 .47 .53 .59 .59 .64
5 .93 .94 .92 .64 .59 .70 .53 .50 .60 .65 .63 .71 .69 .66 .75 .45 .42 .53 .56 .53 .64

M .87 .88 .87 .64 .61 .69 .56 .54 .63 .67 .66 .72 .70 .69 .75 .56 .54 .63 .62 .61 .68
SD .06 .07 .04 .01 .02 .02 .02 .03 .02 .03 .04 .03 .02 .02 .01 .10 .11 .09 .04 .05 .04

4-test batteries
1 .78 .83 .81 .65 .65 .73 .62 .61 .71 .67 .68 .74 .72 .73 .78 .78 .79 .82 .67 .69 .74
2 .78 .79 .83 .63 .60 .74 .58 .53 .71 .65 .63 .75 .72 .70 .80 .68 .69 .76 .61 .58 .73
3 .84 .85 .86 .66 .65 .75 .65 .63 .75 .67 .69 .76 .76 .75 .81 .63 .60 .73 .71 .70 .78
4 .89 .93 .90 .61 .60 .71 .56 .56 .67 .59 .61 .69 .70 .70 .77 .47 .46 .59 .59 .59 .69
5 .93 .93 .90 .66 .67 .74 .53 .53 .64 .67 .67 .75 .72 .74 .78 .46 .46 .58 .59 .59 .69

M .84 .87 .86 .64 .63 .73 .59 .57 .70 .65 .66 .74 .72 .72 .79 .60 .60 .70 .63 .63 .73
SD .07 .06 .04 .02 .03 .02 .05 .05 .04 .03 .03 .03 .02 .02 .02 .14 .14 .11 .05 .06 .04

2-test batteries
1 .86 .87 .88 .70 .70 .80 .69 .69 .79 .72 .72 .81 .78 .78 .83 .80 .80 .84 .65 .65 .78
2 .53 .53 .72 .69 .70 .77 .84 .86 .81 .64 .64 .76 .76 .78 .79 .81 .84 .85 .66 .67 .77
3 .78 .78 .87 .62 .62 .79 .54 .54 .75 .67 .67 .83 .72 .72 .82 .73 .73 .83 .77 .77 .84
4 – .66 .81 .54 .54 .74 .50 .50 .71 – .43 .64 .62 .62 .79 .43 .43 .65 .53 .53 .73
5 .94 .95 .92 .58 .58 .75 .47 .47 .69 .73 .73 .83 .63 .63 .78 .44 .44 .67 .59 .59 .76

M .78 .76 .84 .63 .63 .77 .61 .61 .75 .69 .64 .77 .70 .71 .80 .64 .65 .77 .64 .64 .78
SD .18 .17 .08 .07 .07 .03 .15 .16 .05 .04 .12 .08 .07 .08 .02 .19 .20 .10 .09 .09 .04

Note. VC = Verbal Comprehension, VAL = Visual–Auditory Learning, SR = Spatial Relations, SB = Sound Blending, CF = Concept Formation, VM = Visual
Matching, NR = Numbers Reversed. PF = principal factors analysis, ML = maximum-likelihood estimation, PC = principal components analysis.
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the probe tests rose to 71%, and the dependability coefficient
rose to .99, which indicates very strong dependability of
general-factor loadings across different batteries of tests,
batteries of different sizes, and different methods of factor
analysis. Variance from the interaction between the test battery
and the probe tests was 8%, which is consistent with the initial
analysis of the overlapping batteries, but the interaction
between the test battery and the number of tests in the battery
rose slightly to 7%. The interaction between the probe test, the
test battery, and the number of tests rose slightly to 11%.

4. Discussion

We examined the strength of and interactions between
the effects of the factor-extraction method, the composition
of the battery, and the number of tests in the battery on the
identification of the general factor via testing a number of
“worse-case scenarios” in which tests were randomly chosen
to form batteries, decomposed into diminutive batteries,
and analyzed using the most dubious factor-extraction
method, principal components analysis. Results demon-
strated that characteristics of the tests, per se, accounted for
the greatest percentage of variance (i.e., at least one-third to
more than two-thirds of variance) across the variety of
influences on the general-factor loadings we investigated.
Thus, the results are consistent with Thorndike's (1987)
conclusion that “the g-loading of a type of test task has
substantial stability and is to a considerable extent determined
by the characteristics of the test itself, rather than the context in
which is appears” (p. 586). The results support a sizeable body
of research that indicates that the characteristics of tests that
determine their general-factor loadings are (a) their reliability
and (b) their degree of complexity (Jensen, 1982, 1998). For
example, it is well known that unreliability in scores limits their
correlations with other variables; consequentially, those tests
with higher reliabilities tend to have higher general-factor
loadings, as is demonstrated in this study (see Table 1).
Furthermore, tests that require more conscious mental manip-
ulation correlatemore highlywith the general factor. Thus, tests

with thehighest reliability and that require the greatest number
of mental manipulations, such as theWJ III Verbal Comprehen-
sion and Concept Formation probe tests, yielded scores that
consistently demonstrated the highest general-factor loadings.

4.1. Factor-extraction method

Some have argued that the construct validity of the
general factor is diminished substantially due to the variation
found across methods used to extract it. Our results indicate
that the factor-analytic method employed does not contribute
overwhelming error variance across general-factor loadings,
but across our initial analyses of the independent batteries
and overlapping batteries, the factor-extraction method con-
tributed to more than 10% of the variance across general-
factor loadings. When its interactions were considered, it
contributed an additional 7% to 9% of variance. It is clear from
reviewing (a) statistics from varied factor-extractionmethods
(e.g., the percentage of variance accounted for by the general
factor) as well as (b) the patterns of general-factor loadings
(and associated descriptive statistics) across these methods
that principal components analysis produces results that
seem to inflate the influence of the general factor on test
scores. As a test of these effects, when the results from
principal components analysis were omitted from the Gen-
eralizability theory analyses, variance due to the factor-
extraction method (using principal factors analysis and
maximum-likelihood estimation alone) and its interactions
contributed negligible variance (i.e., 1% or less of total
variance).

These results may seen contradictory with Ree and Earles
(1991) and Jensen andWeng (1994), who demonstrated very
strong correlations between component scores derived from
principal components analysis, factor scores derived from
principal factors analysis, and other measures of the general
factor. Like this prior research, our results also yield high to
very high correlations between the general-factor loadings
from our three factor-extraction methods. For example, for
the independent batteries analysis, the Spearman rho

Table 5
Variance component estimates and dependability coefficients for general-factor loadings by type of battery.

Facet Independent batteries Independent batteries
(without PC)

Overlapping batteries Overlapping batteries
(without PC)

Probe Test 0.00470 (33%) 0.00621 (42%) 0.00911 (56%) 0.01224 (71%)
Factor-Extraction Method 0.00221 (15%) 0.00000 (0%) 0.00214 (13%) 0.00000 (0%)
Probe Test⁎Factor-Extraction Method 0.00027 (2%) 0.00000 a (0%) 0.00062 (4%) 0.00003 (0%)
Test Battery 0.00046 (3%) 0.00048 (3%) 0.00015 (1%) 0.00017 (1%)
Probe Test⁎Test Battery 0.00263 (18%) 0.00329 (22%) 0.00109 (7%) 0.00140 (8%)
Number of Tests 0.00000 a (0%) 0.00000 a (0%) 0.00006 (0%) 0.00000 a (0%)
Probe Test⁎Number of Tests 0.00066 (5%) 0.00048 (3%) 0.00008 (1%) 0.00003 (0%)
Factor-Extraction Method⁎Test Battery 0.00000 a (0%) 0.00000 a (0%) 0.00000 (0%) 0.00000 (0%)
Factor-Extraction Method⁎Number of Tests 0.00028 (2%) 0.00000 a (0%) 0.00042 (3%) 0.00001 (0%)
Test Battery⁎Number of Tests 0.00047 (3%) 0.000048 (3%) 0.00069 (4%) 0.00127 (7%)
Probe Test⁎Factor-Extraction Method⁎Test Battery 0.00007 (1%) 0.00000 a (0%) 0.00006 (0%) 0.00001 (0%)
Probe Test⁎Factor-Extraction Method⁎Number of Tests 0.00000 a (0%) 0.00006 (0%) 0.00006 (0%) 0.00004 (0%)
Probe Test⁎Test Battery⁎Number of Tests 0.00171 (12%) 0.00296 (20%) 0.00117 (7%) 0.00180 (11%)
Factor-Extraction Method⁎Test Battery⁎Number of Tests 0.00034 (2%) 0.00010 (1%) 0.00025 (2%) 0.00005 (0%)
Residual 0.00049 (3%) 0.00007 (0%) 0.00026 (2%) 0.00007 (0%)
Total 0.01429 0.01462 0.01617 0.01712
ϕ .72 .84 .89 .99

Note. Proportion of total variance in parentheses. PC = principal components analysis. ϕ=dependability coefficient.
a Negative estimated variance components were set to zero (Brennan, 2001; Cronbach et al., 1972).
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correlation coefficients between general-factor loadings from
each factor-extraction method ranged between .99 and 1.0 for
the 8-test battery and the 4-test battery and .86 in both cases
for the 2-test battery. However, because the Generalizability
theory analysis takes into account both relative and absolute
differences in general-factor loadings, and not relative
differences alone, principal components analysis appears
notably discrepant from the other two methods in our
analysis due to its inflation of the general-factor loadings.

4.2. Test battery composition and test battery size

Some have argued that the general factor and its related
scores are conglomerates, mixtures measures, and hodge-
podges of distinct abilities that are determined primarily by
the specific tests that contribute to such variables. Others
have acknowledged that general factors estimates can be
colored or flavored by the types of tests included in the
analysis and tainted by psychometric sampling error. Our
analysis of general-factor loadings from independent bat-
teries and overlapping batteries revealed that variance
attributable to the test battery used to form the general
factor was minimal (consisting of 3% of total variance for
independent batteries and only 1% for overlapping batteries).

Thus, it was not apparent that some test batteries produced
uniformly higher general-factor loadings and others pro-
duced uniformly lower general-factor loadings. It is in many
ways counterintuitive that, although the test batteries may
contain what appear to be tests that vary greatly in their
content, operations, stimulus input, and modes of response,
these variations seem to fade away as the essence underlying
performance across all such tests, the general factor, is
extracted in factor analysis.

Despite minimal evidence for a main effect of the test
battery, our results demonstrate that the interaction between
the test battery and the probe tests contributes the largest
amount of error variance in general-factor loadings (18% to
22% for the independent batteries and 7% to 8% for the
overlapping batteries). That is, general-factor loadings for
some tests (e.g., Verbal Comprehension and Visual Matching
probe tests) are inflated or deflated when there is such error,
whereas general-factor loadings for other tests (e.g., Visual–
Auditory Learning and Concept Formation probe tests) are
more stable. For example, Visual Matching, a measure of the
broad ability Processing Speed, demonstrated the greatest
variability across general-factor loadings and its analysis
using independent test batteries forming the general factor
indicated clear evidence of psychometric sampling error.

Table 6
General-factor loadings and summary statistics for each probe test when tests inserted one at a time into each of the 30 8-test batteries and varying factor-
extraction methods applied.

Test
battery

Probe test

VC VAL SR SB CF VM NR

PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC

1 .93 .98 .92 .62 .60 .68 .59 .56 .65 .74 .72 .78 .71 .70 .75 .51 .48 .58 .60 .59 .66
2 .90 .92 .90 .62 .60 .67 .52 .51 .58 .66 .64 .71 .68 .67 .73 .47 .46 .54 .62 .60 .68
3 .86 .87 .86 .70 .70 .74 .68 .66 .72 .70 .69 .74 .80 .81 .82 .59 .57 .65 .66 .66 .71
4 .83 .85 .85 .61 .60 .68 .53 .52 .60 .62 .62 .68 .69 .67 .74 .60 .56 .66 .64 .62 .70
5 .92 .99 .90 .65 .63 .71 .58 .56 .65 .71 .70 .75 .73 .72 .77 .58 .54 .64 .64 .63 .69
6 .89 .91 .89 .63 .61 .69 .58 .56 .65 .64 .62 .70 .72 .71 .77 .54 .51 .61 .61 .60 .68
7 .86 .90 .86 .64 .62 .69 .52 .52 .59 .68 .68 .73 .66 .66 .71 .65 .65 .70 .61 .61 .67
8 .78 .80 .80 .65 .64 .70 .57 .56 .63 .64 .63 .69 .71 .71 .75 .69 .67 .74 .66 .66 .71
9 .87 .92 .87 .66 .66 .72 .61 .60 .67 .65 .63 .71 .75 .76 .79 .58 .54 .65 .62 .62 .68
10 .85 .87 .85 .65 .64 .70 .54 .54 .61 .63 .62 .68 .70 .70 .74 .62 .61 .68 .61 .61 .67
11 .95 .98 .93 .61 .57 .67 .56 .53 .63 .71 .68 .76 .70 .66 .74 .52 .44 .59 .61 .56 .67
12 .90 .91 .89 .64 .62 .69 .57 .55 .64 .73 .71 .76 .69 .68 .74 .56 .53 .63 .62 .61 .68
13 .95 .99 .93 .68 .60 .73 .58 .54 .65 .67 .65 .72 .72 .67 .76 .53 .44 .60 .58 .53 .64
14 .82 .86 .83 .62 .62 .68 .56 .55 .63 .69 .70 .73 .71 .71 .75 .65 .61 .71 .64 .65 .70
15 .92 1.0 .89 .70 .70 .74 .67 .66 .72 .72 .72 .75 .76 .75 .78 .63 .62 .69 .65 .64 .70
16 .89 .98 .88 .60 .60 .66 .53 .53 .59 .69 .69 .73 .68 .68 .72 .60 .58 .66 .57 .57 .63
17 .88 .91 .88 .60 .58 .66 .52 .51 .59 .68 .67 .73 .66 .66 .72 .54 .51 .61 .57 .56 .63
18 .94 .99 .91 .65 .62 .70 .56 .54 .63 .72 .71 .76 .67 .66 .72 .51 .50 .58 .57 .57 .64
19 .89 .90 .88 .61 .61 .66 .53 .54 .59 .69 .69 .73 .70 .70 .74 .53 .51 .59 .61 .62 .66
20 .91 .91 .90 .62 .62 .67 .50 .50 .57 .68 .69 .73 .68 .69 .73 .53 .52 .59 .62 .63 .68
21 .88 .89 .88 .63 .62 .68 .54 .54 .61 .71 .71 .75 .70 .70 .75 .58 .55 .64 .65 .65 .70
22 .93 .99 .91 .63 .62 .68 .54 .54 .61 .66 .65 .71 .72 .72 .76 .49 .48 .56 .62 .61 .67
23 .92 .93 .91 .61 .59 .67 .51 .51 .58 .67 .67 .72 .68 .68 .73 .52 .48 .58 .58 .57 .64
24 .92 1.0 .90 .69 .68 .74 .68 .66 .73 .71 .71 .75 .77 .77 .80 .56 .53 .63 .64 .65 .70
25 .92 .94 .90 .62 .56 .69 .56 .52 .63 .67 .62 .73 .69 .64 .74 .55 .43 .63 .59 .52 .66
26 .88 .91 .88 .68 .66 .73 .58 .57 .65 .73 .71 .77 .72 .72 .76 .50 .49 .57 .66 .66 .71
27 .83 .85 .84 .65 .64 .70 .58 .56 .65 .72 .71 .76 .72 .72 .76 .65 .62 .70 .66 .66 .71
28 .91 .92 .90 .62 .61 .67 .53 .53 .59 .71 .70 .75 .69 .68 .73 .49 .48 .56 .63 .62 .68
29 .81 .83 .82 .63 .62 .68 .58 .57 .64 .68 .69 .73 .71 .71 .75 .67 .63 .72 .67 .67 .72
30 .85 .86 .86 .63 .62 .69 .55 .54 .61 .70 .70 .74 .70 .69 .74 .60 .60 .66 .64 .63 .69

M .89 .92 .88 .64 .62 .69 .57 .55 .63 .69 .68 .73 .71 .70 .75 .57 .54 .63 .62 .61 .68
SD .04 .06 .03 .03 .03 .02 .05 .04 .04 .03 .03 .03 .03 .04 .02 .06 .07 .05 .03 .04 .03

Note. VC = Verbal Comprehension, VAL = Visual–Auditory Learning, SR = Spatial Relations, SB = Sound Blending, CF = Concept Formation, VM = Visual
Matching, NR = Numbers Reversed. PF = principal factors analysis, ML = maximum-likelihood estimation, PC = principal components analysis.
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Observe the first independent test battery of 8 tests in Table 2.
It contains four tests that measure Processing Speed: Decision
Speed, Cross Out, Reading Fluency, and Writing Fluency. As a
result of overrepresentation of measures of this broad ability
in this test battery, the general-factor loadings from Visual
Matching were high, whereas its general-factor loadings from
analysis with the four other independent batteries were
moderate or low (see first row of values in Table 4). In
addition, other probe tests demonstrated some of their lowest
general-factor loadings when analyzed with the first inde-
pendent test battery that comprised so many tests of
Processing Speed. These results clearly reflect the effects of
psychometric sampling error.

Although decomposing the size of the test batteries
decreased the magnitude of the results of Bartlett's test, the
KMO measures, and the coefficients of congruence as well as
increased the percentage of variance attributable to the
general factor, the facet of the size of the test battery
contributed miniscule variance in only one Generalizability
theory analysis. However, the size of the test battery appeared
to magnify the effects of psychometric sampling error
through its interactions with the probe tests, with the
factor-extraction method, and with the test battery as well
as through its interactions with the probe tests and the test

battery. Evenwhen the effects of psychometric sampling error
were reduced through the employment of numerous over-
lapping batteries and when the effects of principal compo-
nents analysis were removed, interactions associated with the
number of tests contributed to more than a quarter of total
variance across general-factor loadings. Thus, as the number
of test scores included in the analysis diminishes, the greater
the effects psychometric sampling error has on the general
factor and resulting scores.

4.3. Dependability of general-factor loadings

Our results, obtained from analysis of data from a large
nationally representative sample of young adults, indicate
the remarkable dependability of the general-factor loadings
across different test batteries and factor-extraction methods
when the effects of psychometric sampling error are
controlled somewhat and when results from principal
components analysis are removed. The resulting depend-
ability coefficient was almost unity, .99. Even in our single
worst-case scenario, which was our first analysis with the
independent batteries that included principal components
analysis, the resulting dependability coefficients was .72,
which is below–but not far below–a reasonable standard for

Table 7
General-factor loadings and summary statistics for each probe test when tests inserted one at a time into each of the 30 4-test batteries and varying factor-
extraction methods applied.

Test
battery

Probe test

VC VAL SR SB CF VM NR

PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC

1 .90 .89 .90 .62 .59 .72 .59 .54 .70 .69 .69 .77 .74 .71 .80 .50 .48 .63 .59 .57 .70
2 .86 .86 .86 .62 .61 .72 .48 .46 .62 .68 .66 .76 .64 .63 .74 .51 .49 .64 .64 .62 .73
3 .87 .87 .87 .71 .72 .78 .65 .65 .74 .73 .73 .79 .79 .81 .82 .52 .52 .64 .67 .68 .75
4 .78 .76 .83 .61 .60 .72 .54 .54 .66 .55 .52 .67 .72 .71 .79 .60 .56 .70 .67 .64 .76
5 .97 1.0 .94 .62 .59 .71 .56 .53 .67 .70 .69 .78 .71 .69 .78 .47 .46 .59 .58 .57 .68
6 .91 .92 .91 .63 .61 .74 .61 .58 .72 .64 .62 .74 .73 .71 .80 .47 .45 .61 .59 .58 .71
7 .95 .98 .88 .79 .79 .81 .68 .69 .75 .76 .77 .80 .78 .78 .81 .74 .77 .78 .74 .74 .79
8 .81 .81 .84 .61 .59 .71 .50 .47 .63 .67 .65 .76 .66 .65 .75 .59 .56 .70 .63 .62 .73
9 .91 .94 .89 .66 .67 .75 .61 .61 .71 .63 .64 .73 .76 .77 .81 .52 .51 .64 .61 .61 .72
10 .64 .63 .73 .67 .67 .75 .56 .57 .68 .64 .63 .73 .73 .74 .79 .58 .57 .69 .60 .61 .71
11 .89 .89 .87 .64 .63 .75 .58 .55 .70 .80 .80 .84 .69 .68 .78 .61 .55 .73 .68 .67 .77
12 .90 .91 .90 .63 .61 .73 .58 .55 .69 .75 .73 .81 .68 .67 .77 .61 .54 .71 .61 .59 .71
13 .99 1.0 .92 .77 .79 .81 .62 .61 .71 .70 .70 .77 .74 .73 .79 .63 .73 .71 .59 .58 .69
14 .79 .84 .81 .64 .65 .73 .65 .66 .73 .71 .73 .77 .73 .76 .78 .74 .76 .79 .60 .62 .71
15 .72 .72 .78 .75 .76 .79 .67 .66 .75 .62 .61 .73 .75 .76 .79 .79 .79 .83 .63 .61 .73
16 .96 1.0 .92 .58 .58 .68 .48 .49 .60 .68 .68 .75 .68 .69 .76 .56 .56 .67 .56 .56 .67
17 .91 .93 .90 .58 .57 .68 .50 .49 .61 .68 .67 .76 .66 .65 .74 .56 .53 .67 .59 .57 .69
18 .84 .85 .84 .64 .64 .73 .63 .62 .73 .81 .82 .82 .66 .66 .75 .53 .52 .66 .59 .58 .70
19 .85 .87 .86 .60 .60 .70 .53 .54 .64 .70 .70 .77 .71 .72 .76 .52 .52 .64 .56 .57 .67
20 .92 .93 .90 .62 .61 .71 .48 .48 .60 .66 .66 .74 .69 .71 .77 .55 .55 .66 .58 .58 .68
21 .92 .92 .91 .64 .62 .74 .59 .56 .70 .73 .72 .80 .71 .69 .79 .60 .53 .71 .66 .64 .75
22 .88 .90 .89 .66 .66 .75 .56 .57 .67 .63 .61 .72 .76 .77 .82 .52 .51 .63 .67 .66 .75
23 .93 .94 .92 .59 .58 .69 .52 .52 .64 .70 .68 .77 .70 .69 .78 .47 .46 .59 .58 .56 .68
24 .84 .85 .86 .68 .68 .77 .63 .62 .73 .65 .68 .75 .77 .77 .82 .50 .50 .63 .65 .66 .75
25 .84 .84 .83 .64 .64 .74 .52 .51 .66 .65 .64 .74 .68 .69 .75 .58 .57 .70 .57 .55 .69
26 .83 .83 .86 .65 .64 .74 .58 .58 .70 .72 .70 .79 .72 .73 .79 .52 .50 .65 .72 .71 .79
27 .89 .90 .88 .65 .64 .75 .56 .54 .68 .76 .76 .81 .69 .68 .77 .63 .60 .73 .66 .66 .75
28 .94 .94 .92 .58 .58 .69 .49 .47 .60 .67 .67 .75 .66 .66 .74 .45 .45 .57 .59 .59 .69
29 .84 .85 .87 .63 .62 .74 .57 .53 .70 .69 .68 .77 .73 .72 .80 .62 .57 .74 .67 .66 .76
30 .83 .83 .85 .60 .59 .70 .47 .47 .59 .67 .67 .76 .65 .64 .74 .57 .59 .68 .66 .66 .74

M .87 .88 .87 .64 .64 .73 .57 .56 .68 .69 .68 .77 .71 .71 .78 .57 .56 .68 .62 .62 .72
SD .07 .08 .05 .05 .06 .03 .06 .06 .05 .05 .06 .03 .04 .05 .03 .08 .09 .06 .05 .05 .03

Note. VC = Verbal Comprehension, VAL = Visual–Auditory Learning, SR = Spatial Relations, SB = Sound Blending, CF = Concept Formation, VM = Visual
Matching, NR = Numbers Reversed. PF = principal factors analysis, ML = maximum-likelihood estimation, PC = principal components analysis.
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dependability coefficients (.80; R. J. Shavelson, personal
communication, April 5, 2007). However, this coefficient is
higher than any of the dependability coefficients stemming
from analysis of teacher ratings of externalizing behaviors
across time, rater, and instrument (ϕ=.47 to .68; Bergeron,
Floyd, McCormack, & Farmer, 2008) as well as higher than
the vast majority of coefficients stemming from analysis of
blood pressure metrics taken twice in the same day within a
setting (ϕ=.30 to .84; Llabre et al., 1988). Thus, we concur
with Jensen (1998) who stated, “The g is always influenced,
more or less, by both the nature and the variety of the tests
from which it is extracted.… But the fact is that g remains
quite invariant across many different collections of tests”
(p. 85). We can now amend this quote by offering, “But the
fact is that g remains quite invariant across many different
collections of tests, across the factor-extraction methods of
principal factors analysis and maximum-likelihood estima-
tion, and across batteries of varying sizes.” Because of this
invariance, it appears that the relatively minimal differences
across the hundreds of general factors we extracted (as
represented in changes in general-factor loadings) can be
attributable to experimental imprecision (Detterman, 2002;
Jensen, 1998).

4.4. Limitations

Although this study drew data from large, nationally
representative samples of young adults and enacted several
innovations in design and analysis, it is not without its
limitations. First, some may argue that our test batteries
contained a preponderance of measures of the broad (stra-
tum II) ability Comprehension–Knowledge. Some, such as
Carroll (1993), have asserted that measures of reading and
writing abilities are abilities subsumed by this ability,
whereas others (e.g., McGrew & Woodcock, 2001; Wood-
cock, 1998) have asserted that they form a distinct ability
at the broad (stratum II) ability level called Reading and
Writing. Thus, based on our classifications presented in
Table 1, 20 of the tests (43%) included across the test
batteries we created could be considered as measures of
Comprehension–Knowledge. Perhaps this preponderance of
tests of this type led to the probe test, Verbal Comprehen-
sion, to have consistently high general-factor loadings, some
values of 1.0, and some out-of-bound values across analyses
(see also Gignac, 2006). In a related vein, some may argue
that, despite our efforts to sample broadly from awide range
of cognitive ability measures, our sampling was insufficient

Table 8
General-factor loadings and summary statistics for each probe test when tests inserted one at a time into each of the 30 2-test batteries and varying factor-
extraction methods applied.

Test
battery

Probe test

VC VAL SR SB CF VM NR

PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC PF ML PC

1 .91 .92 .91 .62 .62 .78 .55 .55 .74 .70 .70 .82 .76 .76 .85 .51 .51 .71 .61 .61 .77
2 .97 .98 .88 .79 .79 .82 .59 .59 .75 .79 .80 .83 .80 .80 .82 .53 .53 .72 .76 .77 .82
3 .88 .89 .88 .72 .72 .82 .65 .65 .79 .69 .69 .81 .81 .81 .86 .52 .52 .72 .62 .62 .77
4 .96 .96 .91 .71 .71 .82 .60 .60 .77 .70 .70 .81 .81 .82 .86 .51 .51 .72 .75 .75 .83
5 – 1.0 .95 .56 .56 .74 .53 .53 .73 .76 .76 .84 .65 .65 .79 .42 .42 .66 .55 .55 .74
6 .76 .76 .86 .68 .68 .80 .76 .76 .82 .61 .61 .77 .78 .79 .85 .56 .56 .75 .66 .65 .80
7 .98 .99 .92 .66 .67 .79 .54 .54 .73 .78 .78 .83 .71 .71 .81 .47 .47 .69 .73 .73 .82
8 .78 .78 .85 .62 .62 .77 .50 .50 .74 .78 .78 .83 .66 .66 .79 .62 .62 .76 .53 .53 .74
9 .89 .88 .92 .56 .56 .76 .54 .53 .75 .69 .69 .82 .61 .60 .80 .50 .50 .71 .55 .54 .75
10 .78 .78 .84 .59 .59 .77 .46 .46 .68 .62 .62 .76 .57 .57 .76 .47 .47 .69 .51 .51 .71
11 .89 .89 .89 .59 .59 .76 .49 .49 .70 .77 .77 .84 .61 .61 .77 .50 .50 .71 .59 .59 .76
12 .88 .89 .90 .58 .58 .75 .51 .51 .72 .77 .77 .85 .61 .61 .78 .46 .46 .68 .55 .55 .74
13 – 1.0 .96 .80 .80 .85 .63 .63 .77 .74 .74 .83 .75 .75 .82 .48 .48 .70 .57 .57 .75
14 .94 .98 .90 .81 .83 .82 .88 .91 .83 .82 .85 .84 .90 .95 .85 .67 .68 .78 .76 .77 .81
15 .65 .66 .78 .81 .81 .83 .74 .74 .81 .58 .57 .76 .73 .73 .81 .79 .79 .86 .59 .59 .76
16 .86 .87 .88 .60 .59 .76 .42 .41 .67 .64 .64 .79 .67 .66 .82 .52 .52 .72 .57 .57 .76
17 .91 .91 .93 .54 .54 .73 .45 .45 .68 .59 .59 .77 .61 .61 .78 .44 .44 .66 .53 .53 .73
18 .78 .79 .83 .56 .56 .75 .52 .51 .72 .79 .79 .84 .55 .55 .74 .52 .52 .72 .54 .54 .73
19 .91 .91 .91 .62 .62 .78 .55 .55 .74 .70 .70 .82 .76 .76 .85 .52 .52 .64 .61 .61 .77
20 .79 .79 .86 .56 .56 .75 .49 .48 .70 .65 .65 .79 .69 .69 .82 .64 .64 .80 .58 .58 .76
21 .87 .86 .89 .73 .73 .82 .70 .70 .81 .75 .75 .83 .79 .79 .84 .79 .79 .86 .70 .70 .81
22 .81 .81 .87 .67 .67 .80 .57 .57 .76 .64 .64 .79 .78 .78 .85 .58 .58 .76 .75 .75 .84
23 .95 .95 .94 .55 .55 .74 .50 .50 .71 .63 .63 .79 .65 .65 .80 .42 .42 .65 .52 .52 .72
24 .83 .83 .88 .66 .66 .80 .60 .60 .77 .62 .62 .81 .74 .74 .83 .51 .51 .71 .70 .70 .82
25 .97 1.0 .86 .82 .84 .82 .82 .84 .81 .74 .75 .79 .85 .88 .83 .59 .59 .76 .68 .69 .80
26 .83 .83 .89 .64 .64 .79 .48 .58 .76 .66 .66 .81 .73 .73 .84 .48 .48 .70 .68 .68 .82
27 .75 .72 .87 .75 .76 .81 .71 .72 .79 .76 .76 .82 .83 .83 .84 .78 .79 .83 .79 .79 .83
28 .92 .92 .91 .64 .63 .78 .54 .54 .73 .71 .71 .82 .71 .71 .82 .49 .49 .71 .66 .66 .80
29 .86 .87 .88 .57 .56 .75 .47 .47 .69 .71 .71 .82 .63 .63 .78 .52 .52 .72 .62 .61 .77
30 .86 .86 .88 .60 .60 .77 .49 .49 .70 .68 .68 .81 .68 .67 .80 .59 .58 .78 .64 .64 .79

M .86 .87 .89 .65 .65 .78 .58 .58 .75 .70 .70 .81 .71 .72 .82 .55 .55 .73 .63 .63 .78
SD .08 .08 .04 .09 .09 .03 .11 .12 .04 .07 .07 .02 .09 .10 .03 .10 .10 .06 .08 .09 .04

Note. Two general-factor loadingswere not reported because their communality exceeded 1.0. VC=Verbal Comprehension, VAL=Visual–Auditory Learning, SR=
Spatial Relations, SB=SoundBlending, CF=Concept Formation, VM=VisualMatching, NR=Numbers Reversed. PF=principal factors analysis,ML=maximum-
likelihood estimation, PC = principal components analysis.
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in breadth. For example, we included no measures targeting
lower-order processes, such as those targeting kinesthetic
abilities, reaction time, and decision speed (see, for example,
Stankov, 2002 and McGrew, 2009). It is possible that the
effects of the test battery and its interactions would have
been more substantial with broader sampling, but it is
unlikely the general findings from this study would have
varied greatly.

Second, some may argue that our use of exploratory factor
analysis is inappropriate whenmore controlled analyses, such
as confirmatory factor analysis, can be used. We agree that
control is needed for studies focusing on extracting general
factors, and in fact, we believe that we used exploratory factor
analysis methods in a confirmatory manner. Thus, we did not
consider methods to extract multiple factors (see Thompson,
2004). However, we used the method for determining
general-factor loadings that is commonly by structural
equation modeling (SEM) software to determine parameter
estimates—maximum-likelihood estimation. In fact, when a
single-factor model was specified using SEM software and
maximum-likelihood estimation was used, results matched
ours exactly. In addition, based on our random selection of
only 8 tests forming each independent and semi-independent
battery, we are unable to specify consistently higher-order
general factors from first-order broad (stratum II) factors that
are adequately identified (i.e., with two or more indicators).
Based on research by Ree and Earles (1991) and Jensen and
Weng (1994), we do not believe that the general factor from a
well-constructed hierarchical model would differ substan-
tially from the general factors exacted in across our factor-
extraction methods.

4.5. Conclusion

These results add to the body of evidence supporting the
construct validity of the general factor, and they limit some
criticisms of the general factor and relatedmemes that pervade
minds ofmanyprofessionals and consumers of tests results. It is
apparent that researchers, test authors and publishers, and
other professionals involved in measuring the general factor
should avoid using principal components analysis when
computinggeneral-factor loadingsorwhenobtainingmeasures
of the general factor. In addition, psychometric sampling error
should be targeted as a problem and attempts at representative
sampling of specific cognitive abilities should be made when
constructing measures representing the general factor.
Thoughtfully constructed batteries of cognitive ability tests
should yield general factors and general-factor scores that are
largely invariant across batteries.
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