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One hundred, forty-eight randomly selected children (grades three—five) were adminis-
tered the WISC-III, WJ III Tests of Cognitive Abilities, WJ III Tests of Achievement, and
seven research tests selected from the WJ III Diagnostic Supplement. The validity of the
existing WISC-III and WJ III broad Cattell-Horn-Carroll (CHC) test classifications was
investigated via the application of CHC-organized, broad-factor, cross-battery confirma-
tory factor analyses (CFA). Likewise, the validity of the WISC-III and WJ III narrow
CHC ability classifications was investigated via the evaluation of a three-stratum hierar-
chical (narrow+broad+g) CHC CFA cross-battery model. The Tucker-Lewis Index, the
Comparison Fit Index, and the Root Mean Square Error of Approximation evaluated the
fit for the resulting models. All statistical values indicated good to excellent fit.

Theories of intelligence have been proposed and investigated since the 19th cen-
tury (Cattell, 1998). For example, Francis Galton (1822-1911) was one of the
first to suggest a theory of human ability and the measurement thereof
(Thorndike, 1997). In 1904, Spearman proposed a two-factor theory of intelli-
gence consisting of g (general) and s (specific) abilitics. Cattell (1941, 1957) re-
fined Spearman’s concept of g by identifying two types of general abilities: fluid
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(G{) and crystallized (Gc). As further research results accumulated, the Cattell-
Horn theory developed when Horn recognized additional broad cognitive abili-
ties: visual perception or processing (Gv), short-term acquisition and retrieval
(SAR or Gsm), tertiary storage and retrieval (TSR or GIr), speed of processing
(Gs), auditory processing (Ga), quantitative ability or knowledge (Gq), facility
with reading and writing (Grw), and correct decision speed (CDS; Horn, 1988,
1989; Horn & Noll, 1997; Hom & Stankov, 1982).

Although other theorists had suggested hierarchical models of intelligence
(e.g., Eysenck, 1939, Vernon, 1950), Carroll (1993, 1997, 1998) was the first to
complete systematic and exhaustive exploratory factory analyses of over 460
data sets that supported a three-stratum model. At the highest level (Stratum IIT)
is a general factor commonly referred to as general intelligence or g. The middle
level (Stratum II) consists of broad factors including: fluid (Gf) and crystallized
(Gc) intelligence, general memory and learning (Gy), visual perception (Gv), au-
ditory perception (Ga), retrieval ability (Gr), cognitive speediness (Gs), and pro-
cessing speed (Gt). The bottom level (Stratum I) consists of over 60 first-order
narrow abilities grouped under their respective Stratum II abilities. (To assist the
reader, Table 1 lists all factors and related abbreviations and Appendix A identi-
fies common terms utilized in CHC research).

Although the Cattell-Horn and Carroll models are remarkably similar in struc-
ture and organization, notable differences are present. In order to create a single
Gf-Gc taxonomy to evaluate and interpret intelligence tests, McGrew (1997)
proposed an integration of the two models that integrated g (general), ten broad
abilities (i.e., short-term memory [Gsm], crystallized intelligence [Gc], quantita-
tive knowledge [Gq], reading/writing [Grw], visual processing [Gv], auditory
processing [Ga], long-term storage and retrieval [Glr], fluid intelligence [Gf],
processing speed [Gs], and decision/reaction time or speed [Gt; McGrew &
Flanagan, 1998; Woodcock, 1998]), and 73 narrow abilities. The integrated Cat-
tell-Horn-Carroll (CHC) framework provides a common theoretical nomencla-
ture by which to identify and understand the ability constructs measured by
major intelligence batteries.

Currently there are two primary methods for conducting CHC-based intellec-
tual assessments. The first is to use the WJ I1I (Woodcock, McGrew, & Mather,
2001), a battery of cognitive and achievement tests that were normed simultane-
ously and used the CHC theory as the theoretical blueprint. The second option is
to utilize the CHC-based Cross Battery (CB) assessment procedures (McGrew &
Flanagan, 1998). Both the WJ III and CB approaches focus on sampling selec-
tively from all ten of the broad CHC factors.

The validity of CHC inferences drawn from the tests used in the WJ III or
CB methods hinges on a series of joint confirmatory factor analytic (CFA)
studies. Collectively these empirically based broad CHC CFA studies are re-
ferred to as the CHC Broad Confirmatory Factor Analyses (CHC BCFA;
Flanagan, McGrew & Ortiz, 2000; McGrew & Flanagan, 1998). All CHC
BCFA studies have focused on the classification of individual intelligence tests
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TABLE 1. Factors and Abbreviations

CHC CHC
Abbreviation  Factor Represented Broad Abilities Narrow Abilities
CDS Correct Decision Speed Horn
Ga Auditory Processing Horn, Carroll X
Ge Crystallized Intelligence Cattell X
Gf Fluid Intelligence Cattell X
Gir Long-term Storage and Retrieval Horn X
Gq Quantitative Knowledge Hom X
Grw Facility with Reading and Writing Horn X
Gr Retrieval Ability Carroll
Gs Processing Speed Horn X
Gs Cognitive Speediness Carroll
Gsm Short-term Memory Horn X
Gt Decision/Reaction time or Speed Carroll X
Gv Visual Processing Horn, Carroll X
Gy General Memory and Learning Carroll
KO General Information X
LD Language Development X
LS Listening Ability X
MA Associative Memory X
MS Memory Span X
MW Working Memory X
NA Naming Facility X
PC Phonetic Coding X
RQ Quantitative Knowledge X
SR Spatial Relations X
SAR Short-term Acquisition/Retrieval Horn
TSR Tertiary Storage and Retrieval Horn
us Speech Discrimination X
VL Lexical Knowledge X
VvZ Visualization X
R3 Rate of Speech Discrimination X

Note. CHC = Integrated Cattell-Horn-Carroll model (McGrew, 1997). Authors refer to Carroll (1993, 1997, 1998),
Cattell (1941, 1957), Horn (1988, 1989), and Spearman (1904).

at the broad CHC ability stratum. Conversely, the narrow ability classifications
underlying both assessment approaches rest on content validity (Flanagan et al.,
2000; McGrew & Flanagan, 1998; McGrew & Woodcock, 2001). Collectively,
these studies are referred to as the CHC Narrow Ability Classification (CHC
NAC). The lack of CHC-designed exploratory or confirmatory factor analytic
studies that focus on both the broad and narrow classifications of tests is cur-
rently a weak link in the validity argument proposed by the authors of the WJ
III and CB methods.

One exception to this weak link is the presentation of a tentative and illustra-
tive hierarchical three-stratum (narrow, broad, general) factor model in the WJ
Il norm sample (McGrew & Woodcock, 2001). Although McGrew and Wood-
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cock’s three-stratum CFA model provided evidence in support of some narrow
WIJ III ability test classifications, the hierarchical model could not resolve all
narrow ability test classifications. For example, in the broad Gc domain, the
three narrow factors all displayed Ge factor loadings that approached 1.0 (Lis-
tening Ability [LS] = .96, General Information [K0/K2] = .97, Language Devel-
opment/Lexical Knowledge [LD/VL] = .98). McGrew and Woodcock concluded
that CFA methods, although extremely useful in establishing the construct valid-
ity of individual tests, are limited and may be unable to mathematically differen-
tiate highly correlated, yet different, narrow abilities within certain domains.
McGrew and Woodcock suggested that other forms of nonfactor analytic evi-
dence must be examined to support the plausibility of complex hierarchical CHC
models. For example, McGrew and Woodcock noted that the tests contributing
to the narrow Listening Ability (LS) factor demonstrated a distinctly different
pattern of growth than the tests that defined the General Information (K0/K2)
and Language Development/Lexical Knowledge (LD/VL) factors. Thus, Mc-
Grew and Woodcock concluded that despite high Gce factor loadings (.96~.98),
the developmental evidence could be viewed as supporting the conclusion that
these three highly correlated narrow Ge abilities are not necessarily measuring
the same construct. This use of different types of validity evidence (e.g., content,
developmental, internal structure) is consistent with recent recommendations
that a coherent integration of multiple sources of validity be used to evaluate the
validity of interpretations from a test or test battery (AERA, 1999). Neverthe-
less, McGrew and Woodcock suggested that additional research is needed to
support the WJ III narrow+broad+g hierarchical model presented in the WJ III
technical manual.

In fairness to the authors of the WJ III and CB assessment methods, the sheer
number of test indicators required to conduct a proper multivariate study of both
narrow and broad characteristics of all tests would be a daunting task. A single
definitive study is impractical. Instead, a series of joint test-battery studies, much
like those that served as the foundation for the current broad CHC classifications
of tests, is needed with an eye toward greater factor specification. The current
study represents one step toward this end as it embodies the cross-battery analy-
ses of the WJ III and WISC-IIL

The purposes of the current study are threefold. First, the validity of the exist-
ing WISC-III and WJ III broad CHC test classifications is investigated via the
application of CHC-organized, broad-factor, cross-battery CFA. Second, the va-
lidity of the current logically based WISC-III and WJ III narrow CHC ability
classifications is investigated via the specification and evaluation of a three-stra-
tum hierarchical (narrow+broad+g) CHC CFA cross-battery model. This repre-
sents the first-ever three-stratum, CFA CHC-based analyses of a Wechsler/
Woodcock data set and should augment the McGrew and Woodcock (2001)
three-stratum WJ III model vis-a-vis the inclusion of additional external ability
indicators or markers. Finally, a secondary focus of this study, which is possible
due to the inclusion of seven of the ten WI III Diagnostic Supplement tests
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(Woodcock, Mather, & Schrank, 2003) in the dataset, is to provide independent
evidence bearing on the validity of these measures.

METHOD

Participants

All participants were children who comprised a portion of the third- through
fifth-grade samples of the nationally representative standardization sample of the
WIJ 111, which included 8,818 individuals ranging in age from 24 months to more
than 95 years of age (McGrew & Woodcock, 2001). A description of the study,
supporting letter by the school district superintendent, and a permission form
were sent home with all children in grades three through five in three elementary
schools in a suburban school district in western New York State. Approximately
90% of the parents consented in writing to allow their children to participate.
From these permission forms, 148 children were randomly selected for testing.

The children ranged in age from 8 years, 3 months to 12 years, 4 months (M =
117.5 months, SD = 10.7 months) and consisted of 65 males (43.9%) and 83 fe-
males (56.1 %). The final sample was predominately Caucasian (White = 98.6%,
American Indian = 0.7%, Asian/Pacific Islander = 0.7%, Hispanic = 2.0%), pri-
marily of middle socioeconomic status (23% high school graduates, 44% one to
three years college, 30% bachelors degree of higher), and residing in a suburban
area (54% of populations lived in non-urbanized areas)'.

Chi-square comparisons between the 148 children and all other grade three
through five WJ III norm participants revealed no difference by gender (x? =
0.72, df = 1, p. = 0.40).2 The predominance of Caucasian (98.6%) and non-His-
panic (98.0%) participants differed significantly (Race x> =45.5.,df =3, p. =
0.001; Hispanic origin x*> = 8.20., df = 1, p. = 0.004) from the remaining WJ III
grade three through five norm group that were, collectively, more ethnically di-
verse (Race = 73.1 % Caucasian, 17.5% black, 3.1% Indian, 6.3% Asian/Pacific
Islander; Hispanic origin = 9.0 % Hispanic). The education level of the partici-
pants’ parents was significantly higher (Father Education 2 =253.,df=4,p. =
0.001; Mother Education, x> = 21.48., df = 4, p. = 0.001) than the remaining
norm group (e.g., 11.5/11.6% of fathers and mothers in the remaining sample
were classified as having less than a fifth-grade education or high school
diploma, while the research sample had 2.6/3.4%, respectively). Finally, the res-
idence of the research sample participants (as described above) differed signifi-
cantly (Census location size x2 = 202.70., df = 5, p. = 0.001) from the remaining
third- through fifth-grade norm group (e.g., only 12.4% and 17.5 % of the re-
maining norm sample subjects lived in nonurbanized areas populated by less

'All sample demographic variables reported for the current sample are based on the U.S. Census cat-
egory variables employed in the standardization of the WJ IIl (McGrew & Woodcock, 2001)

2The final WJ 11l grade three through five norm sample was weighted to provide a close approxima-
tion to the time period relevant U.S. Census gender figures (see McGrew & Woodcock, 2001).
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than 49,000 people). In summary, the current sample was biased primarily to-
ward Caucasian students living in suburban areas with parents having above av-
erage levels of education.

Instruments and Procedures

The children in this study were administered: (a) 12 subtests (excluding Mazes)
of the Wechsler Intelligence Scale of Children-Third Edition (WISC-111; Wech-
sler, 1991); (b) 18 tests of the WJ III Tests of Cognitive Abilities (WJ III COG),
14 of which produce the General Intellectual Ability Extended (GIA-Ext) score
and four of which are clinical tests; (c) seven WI III Diagnostic Supplement
tests; and, (d) the sixth Oral Language and Math tests from the WJ III Tests of
Achievement (WJ [il ACH). Given that (a) at least two variables (preferably
three or more) are required to properly identify a factor (Tinsley & Tinsley,
1987), and (b) the WISC-III includes the Arithmetic test as its only apparent
math-related measure, the WJ III Calculation, Math Fluency, and Applied Prob-
lems achievement tests were included in the analyses to allow proper identifica-
tion of the abilities measured by the WISC—III Arithmetic subtest. Furthermore,
given that the WJ III ACH Oral Language tests are Gc markers (McGrew &
Woodcock, 2001), these tests were included to gain a better understanding of the
nature of the WISC-II1 Verbal and WJ III Comprehension and Knowledge tests.
Finally, because neither the WISC-III nor the WJ III COG includes tests that re-
quire reading or writing, the W] III Reading and Writing tests were not included
in these analyses.

The WISC-IIT and WJ III were administered in counter-balanced order over a
one-month period. Advanced school psychology graduate students who were su-
pervised by a certified school psychologist employed by the school district com-
pleted all testing.

Data Analyses

Prior to the cross-battery analyses, multiple regression analyses were com-
pleted to estimate each test’s shared variance with the complete set of remain-
ing tests (commonly referred to as a test’s communality). These screening pro-
cedures were completed because of the acknowledged small subject-to-variable
ratio (3.1 to 1) in the current study. As per MacCallum, Wideman, Zhang, and
Hong’s (1999) conclusion that sample size is less of an issue if the variables in
the analyses have relatively high communalities, the communalities for the 44
tests were inspected. Two WJ III tests (Picture Recognition and Visual Clo-
sure) had communalities noticeably lower (<.40) than the remaining variables,
and were thus deleted from the analyses. In addition, the WJ III Understanding
Directions test had a communality approaching unity (.99), a condition that can
result in nonconvergence and improper solutions; hence, the Understanding Di-
rections test was also eliminated from the analyses. The final set of 41 tests is
listed in Table 2.
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TABLE 2. Test Means and Standard Deviations

Test Mean SD
WISC-II1
Picture Completion 10.36 2.85
Information 11.95 2.51
Coding 11.29 2.68
Similarities 11.59 2.75
Picture Arrangement 10.67 3.56
Arithmetic 10.99 2.88
Block Design 11.02 3.39
Vocabulary 10.56 3.20
Object Assembly 10.18 275
Comprehension 11.20 3.20
Symbol Search 11.95 3.30
Digit Span 11.09 3.02

WJ 11 Tests of Cognitive Abilities

Verbal Comprehension 107.18 13.03
Visual-Auditory Learning 102.64 12.82
Spatial Relations 100.20 14.29
Sound Blending 98.82 13.81
Concept Formation 101.95 10.84
Visual Matching 103.12 14.71
Numbers Reversed 103.46 12.42
Incomplete Words 96.94 16.17
Auditory Working Memory 102.51 11.85
General Information 104.66 11.22
Retrieval Fluency 101.15 12.57
Auditory Attention 100.26 12.70
Analysis- Synthesis 105.67 11.50
Decision Speed 102.59 13.51
Memory for Words 101.21 13.67
Rapid Picture Naming 100.41 10.23
Planning 97.86 12.64

WJ 111 Diagnostic Supplement Tests

Memory for Names 98.65 15.61
Sound Patterns-Voice 105.65 13.56
Number Series 103.19 13.86
Number Matrices 104.97 14.40
Memory for Sentences 104.47 13.41
Block Rotation 103.70 16.71

WI I Tests of Achievement

Story Recall 107.95 17.92
Calculation 106.99 12.26
Applied Problems 112.08 14.85
Oral Comprehension 106.48 12.22
Math Fluency 104.06 11.48
Academic Knowledge 104.56 11.04
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The relatively small subject-to-variable ratio in the current investigation (3.1
to 1) warrants additional comment. Although the common lore surrounding
recommended subject-to-variable ratios reveals values ranging from 5:1 to
10:1, a considerable amount of unrecognized diversity of contradictory opin-
ions and evidence exists (Floyd & Widaman, 1995; Guadagnoli & Velicer,
1988; Kenny & McCoach, 2003; MacCallum, Browne & Sugawara,1996;
MacCallum, et al.,1999). The wide range of recommendations regarding sam-
ple size has typically been stated in terms of minimum necessary sample size
(N) or the minimum ratio N to the number of variables (p) in the analyses
(MacCallum et al., 1999).3 It is important to recognize, however, that explicit
subject-to-variable sample size guidelines have *... always been in flux,
passed down from generations of factor analysts in an oral tradition” (Floyd &
Widaman, 1995, p. 289). A recommended ratio of as low as 5:1 (Streiner,
1994) has been suggested as adequate for sample sizes of 100 or more. Ac-
cording to Kenny and McCoach (2003) “. .. the effect of number of variables
in the model depends on a host of factors such as the type of model being es-
timated, the type and degree of misspecification, distributions of the variables,
the sample size, the estimation method, and the specific measure of fit” (p.
349).

Guadagnoli and Velicer (1988) and Raykov and Widaman (1995) have sug-
gested that the issue is more complex than a simple fixed subject-to-variable
ratio and that there is no clear theoretical and/or empirical foundation for most
subject-to-variable rules of thumb. Raykov and Widaman (1995) have indi-
cated that other, often overlooked study characteristics, may be even more im-
portant than the n:p ratio. For example, their research suggests that “variable
saturation” with the factors (as indicated by the size of the factor loadings), fo-
gether with sample size and the number of variables is more important.
Raykov and Widaman (1995) have reported that when most factor loadings are
relatively high (e.g., .80 or above), highly stable factor analysis solutions can
be found in samples as small as 50, regardless of the number of manifest vari-
ables. In addition, MacCallum et al. (1996) presented a useful framework for
conducting power analyses for close, not close, and exact model fits in covari-
ance structure models. Briefly, MacCallum et al.’s (1996) power analysis
framework indicated that statistical power in structural equation modeling is
consistently low when degrees of freedom (df) are small, even when sample
size (N) is relatively large. In contrast, reasonable power is attained in studies
with moderate to large df and moderate sample sizes, while very high power is
achieved in large samples. For instance, MacCallum et al. (1996) reported that
power is well above .90 with a sample » = 200 and a model with df = 100. Ex-
trapolating from the power estimates for select df and N columns presented in

3Space does not allow for a thorough review of the recommended sample size literature in factor
analysis. The reader is encouraged to review Kenny and McCoach (2003), MacCallum, Browne and
Sugawara (1996), and MacCallum, Widaman, Zangh and Hong (1999).
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MacCallum et al.’s (1996) Table 2, the current studies df (>750) and n(148)
produce power estimates >.99.4

We concur with MacCallum et al. (1996) that standard subject-to-variable
rules of thumb need to be replaced with contemporary and sophisticated methods
given that more studies with larger numbers of variables are likely to become the
norm with the widespread adoption of structural equation modeling and the in-
creasing speed and memory of computers. Subject response burden will likely
result in the deliberate design of studies that will require various constraint trade-
offs (time, money, etc.) and will, thus, push the limits of subject-to-variable rules
of thumb. “Satisficing” designs®, rather than perfect designs, will require the
presentation of the rationale (as presented above for the current investigation) for
the adequacy of a study’s sample size and number of variables employed.

The Amos 4.0 computer program was used to specify and evaluate all CFA
models (see Keith, 1997 for an overview of the use of CFA and AMOS in the
evaluation of the internal structural validity of psychoeducational test batteries).
Maximum-likelihood estimation of age-based standard scores was used for all
analyses. The two primary a priori models (broad+g and narrow+broad+g) were
specified and evaluated.

The a priori broad+g factor-to-test specifications for the WISC-III and WJ III
tests were based primarily on the most recent CHC BCFA and NCA literature
summaries (Flanagan et al., 2000; Flanagan & Ortiz, 2001) and WJ III CHC in-
sights provided more recently by McGrew (2002) as well as McGrew and Evans
(2002). Due to space limitations, copies of both the fully specified a priori mod-
els and the subsequent final models are not presented. Figure 1 (broad+g model)
and Figure 2 (narrow+broad+g model) present the final result of the complete
modeling process described in the body of this article. The exact a priori model
specified for Figure 1 also included the following additional factor-to-test paths:
Gf—Similarities; Ge—Picture Arrangement; Gs— Arithmetic; Gf—Block De-
sign; Glr—Retrieval Fluency (instead of Ge—Retrieval Fluency); Glr—Rapid
Picture Naming (instead of Gs—Rapid Picture Naming); Ge—Memory for Sen-
tences. The additional Wechsler paths, in particular, were added in light of dis-
crepancies between the historical clinical lore regarding the interpretation of the

“Power estimates were obtained from the MacCallum et al.’s (1996) tabled values for close, not
close, and exact fits for sample sizes (1) of 100 and 200. All tabled values were entered into a poly-
nomial curve fitting program, and the best fitting polynomial equation (to the tabled values) was then
used to generate extrapolated power estimates for the df and » in the current study. All estimates
were well beyond .999.

SEconomist Herbert Simon first introduced the term satisficing (Simon, 1957, 2003), a word that is a
combination of the words satisfying and sufficing. To satisfice is to seek solutions and designs that
are “good or satisfactory solutions instead of optimal ones” (Petroski, 2003, p. 8). According to
Simon, decision makers (in the current context, researchers) must make choices between optimal de-
cisions for an imaginary simplified world or decisions that are “good enough” (that satisfice) in that
they allow a reasonable approximation of the complexity of reality within given constraints (Pet-
roski, 2003).
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Similarities, Picture Arrangement, Arithmetic, and Block Design (see Kaufman,
1994) and contemporary CHC-based confirmatory factor studies (refer to Flana-
gan et al., 2000). The reasons for the changes from these initial specifications to
the final models presented in Figures 1 and 2 are discussed below in the Results
section.

RESULTS

Broad+g Model

The a priori broad+g model was first reviewed for non-significant parameters (p.
> .05). Factor loadings with critical values (estimate/standard error) less than
1.96 (p. > .05) were eliminated (e.g., Glr—W1J III Retrieval Fluency). The sec-
ond model “tweaking” step focused on the possibility of adding new test-to-fac-
tor paths, but only if a new parameter path made logical or theoretical sense. For
example, adding a Gc—Retrieval Fluency was judged consistent with the fact
that Retrieval Fluency is a task that requires rapid access and retrieval from a
person’s lexicon (e.g., vocabulary). The model was then re-estimated and again
submitted to another round of review for possible model re-specification. In ad-
dition, of interest in the final broad +g model was the deletion of non-significant
paths from Gf—>WISC-III Block Design and Similarities, Gs—WISC-III Arith-
metic, Ge—WISC-III Picture Arrangement and WJ III Memory for Sentences,
Glr— W] III Retrieval Fluency and Rapid Picture Naming, and Gv—W]J III
Planning. Significant additional paths included Ge—W]J III Retrieval Fluency
and Gs— W] III Rapid Picture Naming. The final broad-+g post hoc test-to-factor
specifications are summarized in Figure 1.

A review of all test-to-factor specifications reveals the measurement model
for each broad CHC factor. For example, the latent Ge factor was defined by the
WISC-III Information, Vocabulary, Similarities, Comprehension, and Picture
Completion tests, as well as the WJ III Story Recall, Oral Comprehension, Gen-
eral Information, Academic Knowledge, and Verbal Comprehension tests. The
latent Gq factor was defined by four tests (WISC-III Arithmetic, W] III Calcula-
tion, Applied Problems, and Math Fluency). All first-order broad CHC factors
were in turn specified to be indicators of a second-order general intelligence g
factor.

Narrow+broad+g Model

Given the complexity of the mathematical estimation involved in a hierarchical
three-stratum model, a decision was made not to start with the specification of a
complex model with numerous factorially complex tests (i.c., tests that load on
more than one broad factor). Instead, the final results of the broad +g model pre-
sented in Figure 1| were used to inform the specification of the initial
narrowtbroad +g model. With the exception of the WJ III Retrieval Fluency
and Rapid Picture Naming tests, all WJ III and WISC-III tests were specified as




76 PHELPS ET AL.

Bold font designates WJ Ill tests.
Regular font designates WISC-Il! tests.

Verbal Comp 82
Oral Comp R Et
41
General Info 78 63

9
Story Recall 66 @ 98
o6
NA]
Acad Knowledge @
7 Spatial Relations

47
©
78 @ 48 Block Rotation

Similarities @
imilarities / Picture Completion
84 3

=N
]

A nalysis-Synthesis|

Number Matrices

37
37 . @
Vocabulary
g R T O
63 Object Assembly @

‘ @

i i
81 Visual Matching

h ‘ A48 @ @
/ b

79 fi D, ‘ 60
Applied Problems ' o

N :

27

0 5 Aud Wrkng Mem
Rapid Pi¢c Naming
70 2

>

Vis-Aud Learning
6 LMem for Words
59
Mem for Names 2
o

& v o

FIGURE 1. Broad+g Model.

o
=

CROSS-BATTERY CHC ANALYSIS 77

Bold font designates WJ Il tests.
Regular font designates WISC-Il| tests.

5
@)
Verbal Comp "
82 .62
@
)

Analysis-Synthesis
a8 b

42 m
92
@ % Number Matrices
<\ ® w @ .
&

_()rdl Comp
General Info §

80
N S
_/\cad Knowledge 76
@ 47 Spatial Relations
7%\ .‘
0C otation
4 ®) 24 @
79 97 Piuurc(‘umplclinn
85

Vocabulury @ Pic Arrangement

i Block Design @

Story Recall
@ Object Assembly @
@ "

7
‘ @
Applied Problems 7 9

24

e\
5 (o)

Math Fluency Symbol Search

54

@ 1.00

. ()
2 82 | Visual Matchin

50 @ Ry ’ L
D ()
l o Decision Speed
- s @

6

(
82
56

33
@ 9% Aud Working Mem|
Rapid Pic Naming ‘ y
84 Mem for Sent
69
Vis-Aud Learning 9 Mem for Words

_[)igll Span

(
- 60
Retrieval Fluency

() IS
OS5
@
59
64 -
5
(1) 6 AR T Words
59 0
3 —
70 ML Spa
_Sound Blending @
Incomplete Words

.70

63
@ 70
.5

:
@ 57

FIGURE 2. Narrow+Broad+ g Model



78 PHELPS ET AL.

indicators of narrow abilities only in the broad domains where they were signifi-
cant in the broad+g final model. Based on the rarrow+broad+g model presented
by McGrew and Woodcock (2001), the first narrow+broad+g model specified
here included WJ III Retrieval Fluency and Rapid Picture Naming as indicators
of Naming Facility (NA) under Glr.

Because of an insufficient number of indicators for some narrow abilities be-
lieved to be measured by certain WISC-III and WJ III tests (based on logical
content analyses and expert opinion), special “placeholder” narrow factors were
constructed. These special factors are designated by lower case italic broad abil-
ity codes with a prime notation (e.g., gf’) in Figure 2. For example, under the
broad Gf factor a gf’ subfactor was specified that is comprised of the WJ III
Concept Formation and Analysis Synthesis tests. These placeholder narrow fac-
tors are factorially complex (and uninterpretable) mixtures of narrow abilities
within a broad domain.

Similar to the broad+g model, post hoc model refinement occurred via the
elimination of non-significant paths and the evaluation (and possible inclusion)
of alternative factor-to-test specifications. The resultant post hoc model was re-
estimated and again submitted to another round of review for possible model re-
specification. Four re-specified model iterations were necessary. Figure 2 pres-
ents the final narrow+broad+g model.

Another issue with the narrowtbroad+g model was the need to constrain a
number of parameters to unity (1.0). First, in the initial model the narrow P fac-
tor loading on Gs exceeded 1.0. When constrained to 1.0 (by fixing the residual
variance term to 0.0) in the next iteration, the Gs factor loading for gs” exceeded
1.0. These findings argued against the specification of separate narrow Gs fac-
tors, and thus, resulted in the specification of a single broad Gs factor in the sub-
sequent models. Three other model parameters exceeded unity (Gf and Glr fac-
tor loadings on g and SR/Vz factor loading on Gv). Thus they were constrained
to 1.0 (via the fixing of the respective factor residual error terms [f1, f6, f3a]) to
0.0 in the final model.

A comparison of the significant factor loadings in the final narrow+broad+g
post hoc model with the original a priori test-to-factor model specification indi-
cates that, similar to the final broad+g post hoc model, significant secondary fac-
tor loadings were found for Picture Completion (Ge-KO = .24), Arithmetic (Gs =
.20) and Math Fluency (Gs = .54). The W1I III Retrieval Fluency and Rapid Pic-
ture Naming tests remained significant indicators of the narrow ability of Nam-
ing Facility (NA; .60 and .56, respectively) under the broad Glr factor (not Gc or
Gs).

Model Evaluation

Multiple “goodness of fit indices” were used to judge the overall fit of the mod-
els. CFA fit statistics provide empirical evidence of the degree of correspon-
dence between the proposed theoretical model and the underlying structure of
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the sample data (Keith, 1997). The Tucker-Lewis Index (TLI, also called the
nonnormed fit index) and the Comparison Fit Index (CFI; Keith, 1997; Keith &
Witta, 1997) were used to evaluate the fit of the models. Values for these indices
can range from 0.00 to 1.00, with values of = .95 indicating an excellent fit and
fit indices = .90 indicating an adequate fit (Hu & Bentler, 1999).

A final fit index, the Root Mean Square Error of Approximation (RMSEA),
was also used to judge the fit of each model. The RMSEA has a number of dis-
tinct advantages over the other fit statistics. The RMSEA takes into account the
error of approximation in the population and indicates how well the model, with
unknown but optimally chosen parameter values, fits the population covariance
matrix (Browne & Cudeck, 1989). In addition, the RMSEA is sensitive to the
number of estimated model parameters (model complexity) and provides a 90%
confidence interval that allows for the evaluation of the precision of the RMSEA
estimates (Byrne, 2001). A wide 90% RMSEA confidence interval suggests that
the estimated RMSEA is imprecise, whereas a very narrow confidence interval
suggests a more precise RMSEA value. RMSEA values range from 0.00 to 1.00
with zero indicating no error (a perfect fit). Typically, RMSEA values = .05 in-
dicate good fit and values up to .10 suggest adequate or mediocre fit (Byrne,
2001).

The fit statistics for the final broad+g post hoc and narrow+broad-+g post hoc
models are presented in Table 3. For both models, the TLI and CFI indices were
.98, indicating a very good fit of the hypothesized models to the underlying
structure in the sample data. Similarly, for both models, the RMSEA values were
approximately .04, with the 90% confidence interval lower-bound values
slightly lower and upper-bound values of .054 and .055, again suggesting a good
fit to the data. The difference in respective AIC values does suggest that the ad-
dition of the narrow factors (i.e., narrow+broad+g post hoc model) does im-
prove the model fit.

DISCUSSION

The current study offers a research-based model for the hierarchical three-stra-
tum CHC-based, cross-battery interpretation of individual tests from the Wech-
sler (WISC-ITI) and Woodcock-Johnson (W] I11) assessment batteries. The im-
plications of the current results are primarily three-fold. First, these data provide
consistent validity evidence for the previously identified WISC-IIT and W] 111
broad CHC test classifications (see Flanagan et al., 2000). Second, the specifica-
tion and evaluation of the g+broad+narrow CHC model presents much needed
empirical information for evaluating the logically based narrow ability WISC-
III/WJ 11 test classifications. Finally, the results of the current study provide
new information regarding the narrow and broad CHC abilities measured by the
new WJ TII Diagnostic Supplemental tests. The implications of the results are
discussed below by shared and unshared WJ III/WISC-111 CHC domain cover-
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TABLE 3. Model Fit Statistics

RMSEA
Model X p TLI CFI AIC  RMSEA (Lo-Up)
Broad+g 1031.605 (768) <.001 0986 0987 1299.605 0.048 .040-.055

post hoc model
Narrow+tbroad+g 999.474 (758) <.001 0987 0988 1287474 0.046 .038-.054
post hoc model.

Note: TLI = Tucker-Lewis Index. Values of = .95 indicate excellent fit.
CF1 = Comparison Fit Index. Values of = .95 indicate excellent fit.
RMSEA = Root Mean Square Error of Approximation. Values of = indicate good fit.
RMSEA (Lo-Up) = 90% confidence interval. Narrow intervals indicate estimated RMSEA value is precise,

age. It is critical to note that all narrow ability interpretations that follow hinge
on accepting the plausibility of the model presented in Figure 2.

Shared W} 111I/WISC-IIl CHC Domain Measurement

This study documented five areas in which tests from both the WISC-III and the
WJ HI indicated factor loadings (Ge, Gq, Gs, Gsm, Gv). By comparison, Ga
(Auditory Processing), Gf (Fluid), and Glr (Long-term Storage and Retrieval)
had loadings from only WJ tests (see Figure 1). The CHC domains with shared
loadings will be discussed first.

Gc. Nine WISC-I1I and WJ 11 tests (WJ Il Verbal Comprehension, General
Information, Oral Comprehension, Story Recall, Academic Knowledge; WISC-
[IT Information, Similarities, Vocabulary, Comprehension) assessed Ge. Of
these, eight (all except Oral Comprehension) displayed strong loadings (above
.60) on the broad Gc factor. In this study, the only WJ III G test classification at
variance with prior CHC factor studies was Story Recall with a primary loading
on Ge (.61) and not Glr as previously reported (McGrew & Woodcock, 2001).

Regarding the interpretation of more narrow Gc abilities, three of the four
WISC-III Verbal tests (i.e., Similarities, Vocabulary, Comprehension) were
measures of the narrow abilities of language development (LD) and lexical
knowledge (VL; see Figure 2). The remaining WISC-III Gc test (Information),
together with WJ III General Information and Academic Knowledge, provided
strong indicators of general information (KO; see Figure 2). Hence, both of the
WISC-III and W] IlII COG primary Ge clusters (i.e., WISC-III Verbal Compre-
hension Index, WJ I1I Verbal Ability) appear to tap the same narrow Gc abilities,
namely, language development (LD), lexical knowledge (VL), and general in-
formation (KO0).

Nonetheless, the fact that the three narrow Ge factors (LS, KO, LD/VL) inter-
correlated at extremely high levels (.92-.97) suggests that the narrow ability hy-
pothesis offered here should be viewed with considerable caution. Additional
nonfactor analytic investigations (e.g., developmental growth curve analyses;
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neurocognitive studies) are recommended to evaluate the accuracy of the narrow
CHC ability interpretations suggested by the model in Figure 2.

Gv. The second CHC broad domain with the largest number of joint indicators
was Gv (see Figure 1). At the broad factor level, the WISC-III included a greater
proportion of Gv tests (Picture Completion, Picture Arrangement, Block Design,
Object Assembly) than the WI I1I (Spatial Relations and Block Rotation). In
both final models (Figures 1 and 2), the WISC-I1I Block Design test appeared to
be the strongest single indicator of both Gv (factor loading = .81) and the com-
bined narrow abilities of spatial relations and visualization (SR/VZ loading =
.81). WISC-III Object Assembly also appeared to be a strong indicator of Gv
(factor loading = .63), although its interpretation at the narrow ability level was
indeterminate in the current study.

Interestingly, the two WJ III tests hypothesized to measure SR/VZ (Spatial
Relations, Block Rotation) displayed moderate factor loadings (.47 or .48) in
both final models, suggesting that each test contributes unique ability variance
within the Gv domain, and they are not interchangeable. Also, these two W I1]
spatial tests appear to measure other sources of ability variance than those meas-
ured by the WISC-III Block Design test. Additional research, such as that de-
scribed in the case of Ge, is needed to further uncover the Gv narrow ability nu-
ances of the WISC-1II (Block Rotation) and WJ I (Spatial Relations; Block
Rotation) spatial tests.

Finally, the relatively low Gv loadings for WISC-III Picture Completion and
Picture Arrangement, plus the additional Gec loading for Picture Completion,
confirm the conclusion that these two tests are not strong or relatively pure indi-
cators of Gv abilities. In the context of CHC-defined assessments, the use of the
WISC-III Picture Arrangement and Picture Completion tests is discouraged as
their scores, when combined with other and better Gv indicators, may confound
ability profile interpretation of Gv (see McGrew & Flanagan, 1998 and Flanagan
et al., 2000).

Gsm. Five strong Gsm indicators (factor loadings from .59-.82) in both final
models (Figures 1 and 2) were present across the WISC-111 and W1 111, although
the WISC-III included only one measure (Digit Span). The results of the
narrow+broad+g model (see Figure 2) supported the interpretations of Flanagan
et al. (2000) and McGrew and Woodcock (2001) that WJ Il Numbers Reversed
and Auditory Working Memory Tests are measures of working memory (MW),
whereas Memory for Words and Memory for Sentences are measures of memory
span (MS). Likewise, the validity of the new WJ III Diagnostic Supplement clus-
ters of Auditory Memory Span (Memory for Words and Memory for Sentences)
and Working Memory (Numbers Reversed and Auditory Working Memory) was
supported by the final model in Figure 2. As was the case in the prior discussion
of the WISC-III and W1J 111 spatial tests, the fact that the respective factor load-
ings of each WJ 111 test of MW (.65 and .59) and MS (.64 and .82; see Figure 2)
were high yet sufficiently different indicates that each test contributes additional
unique ability variance.
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Despite different forward and backward digit recall components, which
argue for the logical classification of the WISC-III Digit Span test as a mixed
measure of MS and MW (see Flanagan et al., 2000), in the current study Digit
Span was found to be a strong indicator (.70) of MW. It is possible that this
finding is due to differential stimulus characteristics of the remaining MW and
MS factor indicators. The MS narrow factor tests require the repetition of lan-
guage (words or sentences), whereas the MW indicators primarily require the
processing of numerals. Further research on the possible influence of content
“facets” on Gsm test performance is recommended. The Berlin Intelligence
Structure Model (BIS; Beauducel, Brocke, Liepmann, 2001; Sii, Oberauer,
Wittman, Wilhelm, & Schulze, 2002) appears particularly relevant to this type
of analysis.

Gs. The presence of relatively strong Gs factor loadings for WJ 111 Visual
Matching and Decision Speed and WISC-III Coding and Symbol Search indi-
cated that both the WJ IIT and WISC-III processing speed composite measures
can be interpreted as valid measures of broad Gs abilities. However, the failure
to differentiate Gs at the narrow ability level (Figure 2) leaves unanswered the
question of the specific narrow abilities measured by each test. Because empiri-
cal evidence suggests that cognitive speed may be more complex than specified
by Carroll or Horn (Ackerman, Beier, & Boyle, 2002; O’Connor & Burns, 2003;
Stankov, 2000), additional research within the WJ 1II and WISC-III Gs tests,
possibly together with indicators of the broad domain of Gt (Decision/Reaction
Time or Speed), is recommended to determine if the respective narrow abilities
can be further differentiated.

Gg. Quantitative ability was the last shared CHC broad domain of the WJ III
and WISC-III. As with Gs, only a broad Gq model was viable in the current in-
vestigation. In both Figures 1 and 2, the WJ 11l Math Fluency test was found to
be a factorially complex measure of Gs (.54 and .56) and Gq (.23 and .24), a
finding consistent with prior empirical and logical analyses (Flanagan et al.,
2000). The WJ 111 Calculation test was found to be a strong indicator of Gq (.66
and .70).

The findings for the WJ II1 Applied Problems and WISC-III Arithmetic tests
were of particular interest. Depending on which model is embraced, the Applied
Problems test could be interpreted as a measure of quantitative ability (Gq load-
ing =.79) in the broad factor model (Figure 1), or, alternatively, as a strong indi-
cator (.75) of quantitative reasoning (RQ) within the Gf domain in the broad and
narrow model (Figure 2). We believe that the most accurate interpretation is
most likely similar to McGrew’s (1997) expert-based consensus interpretation of
Applied Problems as a blended measure of both Gq and RQ abilities. Additional
research is clearly warranted.

Finally, at variance with clinical interpretative lore was the finding that the
WISC-1IT Arithmetic test was not an indicator of quantitative reasoning (under
Gf). This finding is also at variance with Flanagan et al.’s (2000) classification
of Arithmetic as a mixed measure of Gq and Gf. Instead, the Arithmetic test ap-
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peared to be a mixed measure of Gq (.66 and .69) and Gs (.20 and .21). The Gs
variance may reflect the fact that up to two bonus points are awarded for quick
and perfect performance on items 19 through 24.

Unique W} Il CHC Domain Measurement: Gf, GIr, Ga

Consistent with the extant Wechsler CHC CFA research (Flanagan et al., 2000),
the W 11l provides valid measures of three additional broad CHC domains (Gf,
Glr, Ga) not covered by the WISC-III. These are now discussed.

Gf. The significant and strong Gf factor loadings (.60—.65 across the models in
Figures 1 and 2) for the WJ I1I Concept Formation and Analysis-Synthesis tests
continued to support the interpretation of these tests (and the WJ I1I Fluid Rea-
soning cluster) as strong measures of Gf. A unique contribution of the current
study is the support provided for the plausibility of a narrow quantitative reason-
ing (RQ) ability domain measured by the WJ 1II Diagnostic Supplement Number
Matrices (.66) and Number Series (.69) tests (see Figure 2). These four WJ III Gf
tests (Concept Formation, Analysis-Synthesis, Number Matrices, Number Se-
ries) provide a diverse array of different Gf indicators by which to supplement
the WISC-III vis-a-vis CHC CB procedures.

A potentially important new finding is the consistent significant loading (.41)
of the WJ III Planning test on the broad Gf factor (Figure 1), and on the narrow
RQ (.42; Figure 2) under Gf. In the WJ III norm-based CFA studies, the Plan-
ning test primarily loaded on Gv, but also displayed a tendency to load occasion-
ally on the Gf factor at some age levels (McGrew & Woodcock, 2001). It is hy-
pothesized that the presence of a broader array of Gf and Gv indicators in the
current joint data set has produced operational Gf and Gv latent factors with
greater breadth and construct validity. Thus, it appears possible that the WJ III
Planning test may require fewer Gv abilities (spatial scanning in particular), and
more Gf. One hypothesis, based on the consistent finding that working memory
may be closely related to Gf (Kyllonen, 1996; Kyllonen & Christal, 1990), is
that the WJ IIT Planning test requires working memory abilities because per-
formance is enhanced if an examinee mentally tries out and evaluates different
“forward thinking” solutions prior to implementation. In addition, Planning’s
loading on the RQ factor suggests that some form of mental counting of the line
segments may occur during performance on the test. However, the relatively
moderate (.41 and .42) loadings suggest that a significant portion of unexplained
Planning test variance remains to be discovered for proper interpretation of this
test.

Ga. The moderate to high (.39-.65) Ga factor loadings in Figure | provided
additional support for interpreting the WJ III Sound Blending, Incomplete
Words, Auditory Attention, and Sound Patterns tests as valid indicators of re-
lated, yet different, aspects of Ga. The hierarchical Ga structure in Figure 2 sug-
gests the plausibility that the four WJ III Ga tests measure two respective narrow
abilities: Phonetic Coding (PC) as indicated by Sound Blending and Incomplete
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Words, and Sound Discrimination/Resistance to Auditory Stimulus Distortion
(US/UR) with loadings from Auditory Attention and Sound Patterns. This sug-
gests that CB supplementation of the WISC-III should consider selecting one
test from each narrow Ga ability domain for adequate Ga construct representa-
tion. Although both the Auditory Attention and Sound Patterns tests display
moderate to strong US/UR factor loadings (.50 and .57), the Auditory Attention
and Sound Patterns tests still measure unique aspects of human functioning that
require further study.

Glr. The divergence of factor loadings for two of the W III Glr tests (Re-
trieval Fluency and Rapid Picture Naming) across the models in Figures 1 and 2
continues to suggest the need for further exploration of abilities measured by
these two tests. With the narrow+broad+g hierarchical model, support is pro-
vided for the interpretation of a common NA (naming facility) ability between
Retrieval Fluency (NA factor loading = .60) and Rapid Picture Naming (NA fac-
tor loading = .56), as both tests share the requirement to rapidly retrieve names
from memory (Figure 2). Conversely, the broad factor model (Figure 1) suggests
that Retrieval Fluency may be influenced by knowledge (Gc) whereas Rapid
Picture Naming is more influenced by processing speed (Gs). Consistent with
the WJ Il norm-based CFA studies, two WJ III tests (Visual-Auditory Learning
and Memory for Names) are strong indicators of Glr (factor loadings of .70 and
.59 in Figure 1, respectively), and associative memory (MA) in particular (factor
loadings of .69 and .59 in Figure 2, respectively).

Glr. The divergence of factor loadings for two of the WJ III Glr tests (Re-
trieval Fluency and Rapid Picture Naming) across the models in Figures 1 and 2
suggested the need for further exploration of abilities measured by these two
tests. When a theoretically driven hierarchical Glr structure is hypothesized (Fig-
ure 2: also see McGrew and Woodcock, 2001), support is provided for the inter-
pretation of a common NA (naming facility) ability between Retrieval Fluency
(NA factor loading = .60) and Rapid Picture Naming (NA factor loading = .56),
as both tests share the requirement to rapidly retrieve names from memory. Con-
versely, the broad factor model (Figure 1) suggests that Retrieval Fluency may
be influenced more by a person’s store of Ge knowledge, while Rapid Picture
Naming is more influenced by general cognitive processing speed (Gs). Consis-
tent with the WI 111 norm-based CFA studies, the WJ 111 Visual-Auditory Learn-
ing and Memory for Names tests are significant and strong indicators of Glr (Glr
factor loadings of .70 and .59 in Figure 1, respectively), and associative memory
(MA) in particular (MA factor loadings of .69 and .59 in Figure 2, respectively).

With regard to WISC-1II CB assessments, the Glr findings suggest that practi-
tioners should consider selecting either Visual-Auditory Learning or Memory
for Names, together with either Retrieval Fluency or Rapid Picture Naming, in
order to draw inferences about the broad ability of Glr, a domain that appears to
have both rate and level indicators (see Carroll, 1993). The specific combination
of tests selected should be guided by referral-specific questions (Flanagan et al.,
2001).
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Concluding Comments and Caveats

It is important to remember that, as is the case with all CFA research, the strong
fit statistics upon which this study’s conclusions are based suggest that the cur-
rent models are plausible—they do not prove that these are the correct models.
Other caveats regarding these findings are in order. Given the homogeneity (i.e.,
age, ethnicity, geographic) and number of participants (N = 148) in this sample,
cross validation is essential (DeVellis, 1991). Until such occurs, the broad gener-
alizability of these results should be made with caution. Likewise, there are no-
table subtest alterations with the recently published WISC-IV (Wechsler, 2003).
Confirmatory factor analyses with the WISC-IV subtests Letter-Number Se-
quencing, Matrix Reasoning, Picture Concepts, Word Reasoning, and Cancella-
tion will provide much needed refinement to the Wechsler/Woodcock cross-bat-
tery approach. It is hypothesized that the WISC-1V Word Reasoning subtest will
load on Ge, Matrix Reasoning and Picture Concepts on Gf, Cancellation on Gs,
and Number-Letter Sequencing on Gsm. Completing a new set of confirmatory
factor analyses with a large diverse population could test these hypotheses. Fi-
nally, the next step in CHC research and the cross-battery approach is the link-
age between assessment findings and intervention planning (McGrew, Flanagan,
Keith, & Vanderwood, 1997). As is true with the entire field of assessment, the
linkage of results to treatment utility is sorely lacking. We now need to deter-
mine if, and how, the use of the CHC model and CB assessment results in en-
hanced remedial interventions and possible aptitude-to-treatment interactions.
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APPENDIX A: COMMON TERMS AND ABBREVIATIONS
UTILIZED IN CHC STUDIES

Abbreviation Term

CB Cross-Battery assessment procedure

CHC BCFA Broad Confirmatory Factor Analyses of the Cattell-Horn-Carroll model
CHC NAC Narrow Ability Classifications based on the Cattell-Horn-Carroll model
CFA Confirmatory Factor Analysis

narrowtbroad+g McGrew and Woodcock (2001) three-stratum hierarchical model




