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This study investigated the direct and indirect effects of general intelligence and 7
broad cognitive abilities on mathematics achievement. Structural equation modeling
was used to investigate the simultaneous effects of both general and broad cognitive
abilities on students’ mathematics achievement. A hierarchical model of intelligence
derived from the Cattell–Horn–Carroll (CHC) taxonomy of intelligence was used for
all analyses. The participants consisted of 4 age-differentiated subsamples (ranging
from ages 5 to 19) from the standardization sample of the Woodcock–Johnson III (WJ
III; Woodcock, McGrew, & Mather, 2001). Data from each of the 4 age-differentiated
subsamples were divided into 2 data sets. At each age level, one data set was used for
model testing and modification, and a second data set was used for model validation.
The following CHC broad cognitive ability factors demonstrated statistically significant
direct effects on the mathematics achievement variables: Fluid Reasoning, Crystallized
Intelligence, and Processing Speed. In contrast, across all age levels, the general
intelligence factor demonstrated indirect effects on the mathematics achievement
variable.
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During the 20th century, research on the re-
lation between cognitive ability and academic
achievement focused predominately on the pre-
dictive utility of measures of general intelli-
gence (g) and to a lesser extent on specific
cognitive abilities that may account for addi-
tional achievement variance beyond g. The con-
clusions from most of this research were that
measures of general intelligence are the most
powerful predictors of academic achievement

and that g accounts for more variance than any
other variable (or combination of variables ex-
clusive of g) in the prediction of success across
a wide array of outcomes (Cronbach & Snow,
1977; Hunter & Hunter, 1984; Jensen, 1984,
1998). Based, in part, on this body of research,
many scholars adopted a “just say no” stance to
the interpretation of specific measures of cog-
nitive abilities (clusters, indexes, or individual
subtest scores) from intelligence test batteries
(McDermott, Fantuzzo, & Glutting, 1990). Mc-
Nemar’s (1964) presidential address to the
American Psychological Association is often
cited as the key event leading to the termination
of attempts to develop multifactor test batteries
that could differentially predict academic
achievement.

A number of researchers have suggested that
the “just say no” mantra needs a critical reex-
amination in the light of recent developments in
intelligence theory, measurement, and research
methodology (e.g., McGrew, Flanagan, Keith,
& Vanderwood, 1997). Collectively, a series of
recent studies based on the Cattell–Horn–
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Carroll (CHC) theory of intelligence have sug-
gested that specific cognitive abilities may
make important contributions to understanding
academic achievement above and beyond the
effect of g (Floyd, Keith, Taub, & McGrew,
2007; Hale, Fiorello, Kavanagh, Hoeppner, &
Gaither, 2001; McGrew et al., 1997; Vander-
wood, McGrew, Flanagan, & Keith, 2002). Col-
lectively, these “just say maybe” studies indi-
cated that specific cognitive abilities may be
important in understanding and explaining aca-
demic achievement, above and beyond g, and
that specific cognitive abilities may help to ex-
plain why some students experience difficulties
in specific areas of the academic curriculum.

Under girding the optimism of the just say
maybe contingent of researchers are advances in
research methodology. Much of the extant just
say no research used multiple-regression analy-
sis (MR). A significant limitation of MR is that
composite scores (g) and components that com-
pose the composite scores (clusters, indexes, or
individual subtest scores) should not be simul-
taneously analyzed in a MR equation
(Thorndike, Hagen, & Sattler, 1986) because
multicollinearity and the likelihood of singular
matrices would threaten conclusions from that
research. Because MR will not allow the pre-
diction of a criterion from both a composite
score and the components that contribute to the
composite score, creative uses of MR have been
employed to conduct most of the just say no
analyses. However, use of MR has not allowed
for the direct comparison of the effects of gen-
eral abilities and specific abilities in a single
model (McGrew et al., 1997). In addition,
most of the research employing MR has fo-
cused exclusively on partitioning sources of
explained variance, a practice that can mask
the relative importance of different variables
on a criterion and that may result in the un-
derestimation of important specific effects of
one variable on another (e.g., Abelson, 1995;
Keith, 2006; Pedhazur, 1997).

According to most just say maybe research-
ers, the other reason for optimism about the
benefits of measures of specific cognitive
abilities is the recent convergence of theories
yielding CHC theory. This taxonomy of hu-
man cognitive abilities is a synthesis of two
models of intelligence based on more than a
half a century of factor analytic, developmen-
tal, heritability, external outcome validity,

and neurocognitive research evidence
(McGrew, 2005; McGrew & Flanagan, 1998).
The first model is Cattell and Horn’s extended
Gf–Gc theory (Horn & Blankson, 2005). The
second model is Carroll’s three-stratum the-
ory of cognitive abilities (Carroll, 1993).
Both the Cattell–Horn model and the Carroll
model are hierarchical in nature—with one
fundamental difference. Carroll’s model in-
cludes three levels. At the top of the Carroll
hierarchy is g (Stratum III), at the second
level are broad cognitive abilities (Stratum
II), and at the first level are over 70 narrow
cognitive abilities (Stratum I). In contrast, the
Cattell–Horn model contains only two hierar-
chical levels, the level containing the broad
cognitive abilities (Stratum II) and the level con-
taining the narrow cognitive abilities (Stratum I).
The general factor of intelligence, g, is excluded in
the Cattell-Horn model.

The Cattell–Horn model and the Carroll
model also differ in the categorization and
placement of a small number of narrow cog-
nitive abilities under the broad cognitive abil-
ity domains, and they occasionally use differ-
ent ability terminology. In an attempt to pro-
vide a common nomenclature for these
models, McGrew (1997) integrated them into
a single model (see McGrew, 2005). Accord-
ing to the integrated CHC model, there ap-
pears to be some consensus that there are 10
broad cognitive abilities. These abilities in-
clude Fluid Reasoning, Crystallized Intelli-
gence, Short-Term Memory, Visual Process-
ing, Auditory Processing, Long-Term Storage and
Retrieval, Processing Speed, Reading and Writing
Ability, Quantitative Knowledge, and Reaction
Time/Decision Speed. These CHC broad cogni-
tive abilities subsume approximately 70 narrow
cognitive abilities. Based on the accumulated ev-
idence supporting the Cattell–Horn model and the
Carroll model, as well as the integrated CHC
model from recent research and test validation, the
CHC theory provides a well-supported theoretical
framework for research examining the cognitive
influences on the development and maintenance
of academic skills.

Mathematics and Cattell–Horn–Carroll-
Based Research

Using CHC theory, McGrew et al. (1997)
investigated the relative contribution of seven
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CHC broad cognitive abilities and g on mathe-
matics achievement. McGrew et al. identified
the CHC broad cognitive abilities Crystallized
Intelligence, Fluid Reasoning, and Processing
Speed as influences on mathematics reasoning
beyond the effects of g. Keith (1999) also re-
ported mathematics reasoning was strongly in-
fluenced by g and a number of other CHC broad
ability factors including Crystallized Intelli-
gence, Fluid Reasoning, and Processing Speed.

Both McGrew et al. (1997) and Keith (1999)
used structural equation modeling (SEM) to in-
vestigate the relative contribution of individual
CHC broad cognitive abilities, beyond g, on
mathematics achievement. The benefits of using
SEM to identify the relative contribution of
broad cognitive abilities and g on academic
achievement and mathematics achievement
were demonstrated in earlier research (Gustafs-
son & Balke, 1993). Together, these studies
provided a foundation for understanding the
influence of CHC broad cognitive ability fac-
tors on mathematics achievement beyond the
acknowledged large effect of g. However,
these studies do not explain fully how cogni-
tive abilities affect mathematics achievement
because the broad cognitive abilities were not
specified to “compete” equally with g in ex-
plaining mathematics achievement (Floyd et
al., in press).

Purpose of the Study

The purpose of this study was twofold. The
first purpose was to identify which factors rep-
resenting g and CHC broad cognitive abilities
explain mathematics achievement from early
kindergarten through high school. The second
purpose was to identify how these effects
change during this period of academic develop-
ment. To extend the research in this area, a
hierarchical model was developed using the
CHC theory as a blueprint and tested using
SEM. This model included a second-order gen-
eral factor and seven CHC broad cognitive abil-
ity first-order factors as influences on mathe-
matics achievement. Although previous re-
search indicated the CHC broad ability factors
Crystallized Intelligence, Fluid Reasoning, and
Processing Speed were statistically significant
influences on mathematics achievement (e.g.,
McGrew et al., 1997; Keith, 1999), four addi-

tional broad ability factors were also specified
in the explanatory models.

Method

Participants

The participants for this investigation were a
subsample of the nationally representative WJ
III standardization sample used by McGrew and
Woodcock (2001) in their structural analyses.
The standardization sample was stratified ac-
cording to race, sex, geographic region, educa-
tion, and age to ensure that the sample mirrored
the population characteristics of children, ado-
lescents, and adults in the United States, as
described by the United States Census projec-
tions for the year 2000. Participants in the cur-
rent study consisted of that portion of the stan-
dardization sample between 5 years old and 19
years old. Four age-differentiated subsamples
included children ages 5 to 6 (n � 639), 7 to 8
(n � 720), 9 to 13 (n � 1,995), and 14 to 19
(n � 1,615). Each age-based sample was ran-
domly split into a calibration sample and vali-
dation sample.

Instruments

This study used 18 tests from the WJ III Tests
of Cognitive Abilities (WJ COG), 4 tests from
the WJ III Tests of Achievement (WJ ACH),
and 5 tests and 1 special composite from the WJ
III Diagnostic Supplement (Woodcock,
McGrew, Mather, & Schrank, 2003) as indica-
tors of CHC cognitive abilities. The special
composite was Numerical Reasoning, which
represents a combination of Number Series and
Number Matrices tests. Together, these 28 mea-
sures provided indicators of the seven CHC
broad ability cognitive factors. Table 1 contains
a description of each of the 28 cognitive tests
and the broad ability and narrow abilities asso-
ciated with each test.

Mathematics achievement was measured by
two tests from the WJ III ACH (Mather &
Woodcock, 2001), Applied Problems and Cal-
culation. The Applied Problems test required
comprehending the nature of a problem, identi-
fying relevant information, performing calcula-
tions, and stating solutions. The Calculation test
required calculation of problems ranging from
simple addition facts to calculus. These two

189CHC MATHEMATICS



Table 1
Descriptions of Woodcock Johnson III Tests Included in the Cognitive Ability Measurement Models

Test
Broad
Ability Narrow Ability Test Description

Numerical
Reasoning

Gf Quantitative
reasoning

Examinees must determine numerical sequences and
determine a two-dimensional numerical pattern

Concept Formation Gf Induction Examinees must identify rules governing the
organization of colored geometric figures when
shown instances and noninstances of concepts

Analysis-Synthesis Gf General sequential
reasoning

Examinees must analyze the components of an
incomplete logic puzzle and to determine the
missing components

Block Rotation Gv Visualization Examinees must identify geometric designs that
match a target design but have been rotated to a
different visual perspective

Spatial Relations Gv Spatial relations Examinees must select the component parts of
whole shape

Picture Recognition Gv Visual memory Examinees must study images for 5 s and identify
images within a larger array after the initial
images have been removed

Visual Matching Gs Perceptual speed Examinees must quickly locate and circle the two
identical numbers in a row of six numbers during
a 3-minute period

Decision Speed Gs Mental comparison
speed

Examinees must rapidly scan a row of images and
mark two images are the most closely related
during a 3-minute period

Cross Out Gs Perceptual speed,
rate-of-test-
taking

Examinees must mark drawings that are identical to
the first drawing in the row during a 3-minute
period

Rapid Picture
Naming

Gs Naming facility Examinees must quickly name a series of stimulus
pictures

Retrieval Fluency Glr Ideational fluency Examinees must state as many words from specified
categories as possible in 1 minute

Visual-Auditory
Learning: Delayed

Glr Associative
memory

Examinees must recall and relearn (after a 30-
minute to 8-day delay) symbols presented in
Visual-Auditory Learning

Visual-Auditory
Learning

Glr Associative
memory

Examinees must associate new visual symbols with
orally presented words in order to translate the
series of symbols

Memory for Names Glr Associative
memory

Examinees must remember an increasingly large
number of names of novel cartoon characters

Memory for Names:
Delayed

Glr Associative
memory

Examinees must recall and relearn (after a 30-
minute to 8-day delay) names of novel cartoon
characters presented in Memory for Names

Sound Blending Ga Phonetic coding:
Synthesis

Examinees must listen to a series of individual
syllables, individual phonemes, or both that form
words and name the complete words

Incomplete Words Ga Phonetic coding:
Analysis

Examinees must listen to words with one or more
phonemes missing and name the complete words

Sound Patterns Ga Speech-sound
discrimination

Examinees must indicate whether pairs of complex
sound patterns are the same or different. The
patterns may differ in pitch, rhythm, or sound
content

Auditory Working
Memory

Gsm Working memory Examinees must listen to a mixed series of words
and digits and then to rearrange them by first
saying the words in order and then the numbers

Numbers Reversed Gsm Working memory Examinees must repeat a series of random numbers
backward

Memory for Words Gsm Memory span Examinees must repeat lists of unrelated words in
the correct sequence

Memory for
Sentences

Gsm Memory span Examinees must repeat complete sentences
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tests provided indicators of the Quantitative
Knowledge factor, the mathematics achieve-
ment dependent variable.

Analysis

All analyses were conducted using SEM via
the Amos program (Arbuckle & Wothke, 1999).
Correlations and standard deviations for both
the calibration sample and the validation sample
were converted into covariance matrices for all
analyses. (Matrices are available from the first
author, by request.)

Models

Figure 1 presents the CHC-based measurement
and structural model. This model is hierarchical in
nature and contains a second-order general factor
of intelligence (g) at the apex. The left side of
Figure 1 presents the measured variables—scores
on the WJ III tests—that are represented by rect-
angles. The seven broad cognitive ability factors
are represented as ellipses to the immediate right
of their measured variables. The arrows leading
from each factor to the measured variables repre-
sent the first-order factor structure of the WJ tests.
The circles to the right of each rectangle represent
the unique and error variance associated with each

test. As can be seen in Figure 1, each CHC broad
cognitive factor was measured by at least three
tests, and each factor measures a number of nar-
row abilities subsumed by the broad cognitive
factor (see McGrew & Woodcock, 2001).1 Sup-
port for portions of the measurement model has
been previously published (Floyd et al., in press;
Keith, Kranzler, & Flanagan, 2001; McGrew &
Woodcock, 2001; Taub & McGrew, 2004). The
second-order g factor is represented by a single

1 The WJ III includes many additional tests that could
have been specified to be additional indicators of each latent
CHC cognitive factor. A decision to limit the number of
manifest indicators for each CHC cognitive factor was
based on two primary considerations. First, to ensure the
purest possible latent factors, an attempt was made to min-
imize the use of WJ III tests that had previously been
demonstrated to be factorally complex (loading on more
than one factor). Second, to ensure that each latent CHC
ognitive factor was “broad” in breadth of coverage, tests
were selected that are considered to be measures of different
narrow CHC abilities (see McGrew & Woodcock, 2001).
Finally, as a test of this “less (3 indicators)-rather-than-more
(4 to 5 indicators)” per CHC latent factor approach, a series
of preliminary analyses were run on the measurement
model. The magnitude of the intercorrelations among the
seven CHC cognitive latent factors, when defined by 3 versus
4 or 5 indicators, indicated that the magnitude and pattern of
latent factor intercorrelations for the 3-indicator factors were
indistinguishable from 4 and 5 indicator factors.

Table 1 (continued)

Test
Broad
Ability Narrow Ability Test Description

Picture Vocabulary Gc Lexical knowledge Examinees must name familiar and unfamiliar
pictured objects

Verbal
Comprehension

Gc Language
development,
lexical
knowledge

Examinees must name familiar and unfamiliar
pictured objects, say words similar in meaning to
word presented, say words that are opposites in
meaning to the word presented, and complete
phrases with words that complete analogies

General Information Gc General
information

Examinees must provide common or typical
characteristics of objects by responding to
questions, such as “Where you would find . . .?”
and “What you would do with . . .?‘

Academic
Knowledge

Gc General
information

Examinees must provide information about the
biological and physical sciences; history,
geography, government, and economics; and art,
music, and literature.

Oral Comprehension Gc Listening ability Examinees must listen to a short passage and orally
supply the word missing at the end of the passage

Story Recall Gc Listening ability Examinees must listen to a short passage and
describe the gist of what they heard

Note. Gf � Fluid Reasoning; Gv � Visual-Spatial Thinking; Gs � Processing Speed; Glr � Long-Term Retrieval; Ga �
Auditory Processing; Gsm � Short-Term Memory; Gc � Comprehension-Knowledge.
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ellipse near the middle of the figure. The bottom
right side of the figure presents the measurement
model for the Quantitative Knowledge factor with
the same interpretation associated with rectangles,
circles, and ellipses. The structural portions of the
models are represented by single-headed arrows
between the factors (ellipses).

Analysis
The purpose of the first analyses was to iden-

tify which CHC general or broad cognitive abil-

ity factors displayed significant effects on math-
ematics achievement. Analyses were conducted
in phases. In the first phase (Phase 1), a model
was specified that included the direct effect of
all seven broad cognitive ability factors and g
on the Quantitative Knowledge factor using the
calibration sample for each age group. After a
model was estimated, the highest negative path
was removed, the model was re-estimated until
all negative paths were eliminated. Following
the elimination of negative paths, nonsignificant
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Figure 1. The validation model for the 5- to 6-year-old age group, which accounts for the
indirect effects of the general factor and identifies the first-order CHC broad cognitive ability
factors that have a direct effect on Quantitative Knowledge. Gf � Fluid Reasoning, Gv �
Visual Processing, Gs � Processing Speed, Glr � Long-Term Storage and Retrieval, Ga �
Auditory Processing, Gsm � Short-Term Memory, Gc � Crystallized Intelligence Intelli-
gence, g � General Intelligence, and Gq � Quantitative Knowledge.
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paths (paths with critical values less than 1.96,
p. � .05) were eliminated from the model one at
a time, and the model was re-estimated until all
nonsignificant paths were eliminated. Finally,
modification indexes were examined to deter-
mine if any eliminated paths should be added.
The same procedures were followed for all age
groups. Through this process of iterative model
generation, the final models were those contain-
ing only significant positive structural paths at
each age group.

The purpose of Phase 2 was to validate the
final models developed during Phase 1. This
phase involved estimating the final model from
the calibration sample using the data from in-
dependent validation sample at each age level
(MacCallum et al., 1994). Structural paths that
were not statistically significant were deleted,
and modification indexes were examined to de-
termine if deleted structural paths should be
added. Results from the final models using the
validation samples are reported.

Results

The structural paths contained within the fi-
nal models derived from the calibration samples
were all statistically significant when tested us-
ing the data from the validation samples. No
structural paths were added based on modifica-
tion indexes. An example of the final model for
ages five to six is provided in Figure 1. Table 2
presents the goodness-of-fit indexes for the final
models for the validation samples for the four
age groups. The Tucker-Lewis index (TLI),
comparative fit index (CFI), root mean square
error of approximation (RMSEA), and the stan-
dardized root mean square residual (SRMR)
were used to evaluate each model’s fit to the
data. The RMSEA and SRMR served as the
primary fit indexes to evaluate the fit of single

models at each age level. Current rules of thumb
and empirical research indicate that RMSEA
values below .06 and SRMR values below .08
suggest a good fit of the model to the data (Hu
& Bentler, 1998, 1999). Of the two indexes, the
SRMR may be the preferred index because it is
easily interpreted as the average difference be-
tween the correlation matrix used to estimate
the model and the matrix implied by the model.
As can be seen in the Table 2, all fit indexes
suggest the models provided a good fit the ob-
served data across all age groups. The TLI and
CFI are also reported; however, these indexes
tend to worsen when models contain many dif-
ferent variables, as in the current study (Kenny
& McCoach, 2003).

Table 3 presents the standardized path coef-
ficients between the CHC cognitive ability fac-
tors and the Quantitative Knowledge factor for
all age groups. One of the most thought-
provoking findings from the study was that gen-
eral intelligence, g, had large but only indirect
effects on the Quantitative Knowledge factor

Table 2
Fit Statistics for Final Models Across Four Age Groups

Sample Ages �2 df TLI CFI
RMSEA

(90% Interval) SRMR

Ages 5 to 6 725.07 422 .899 .908 .046 (.04–.051) .050
Ages 7 to 8 912.15 423 .872 .884 .054 (.05–.059) .055
Ages 9 to 13 1323.50 421 .887 .898 .052 (.049–.056) .046
Ages 14 to 19 1328.45 422 .873 .885 .059 (.055–.062) .052

Note. TLI � Tucker Lewis Index; CFI � comparative fit index; RMSEA � root mean square error of approximation;
SRMR � standardized root mean square residual.

Table 3
Standardized Indirect Effects of g and Standardized
Direct Effects of CHC Broad Cognitive Abilities on
Quantitative Knowledge Across Four Age Groups

Standardized
Effects

Age Groups

5 to 6 7 to 8 9 to 13 14 to 19

From g .85 .73 .68 .72
From Gc — — .17 .43
From Gs .38 — .15 —
From Gf .58 .75 .49 .37

Note. Direct effects are underlined. g � general intelli-
gence; Gf � Fluid Reasoning; Gs � Processing Speed;
Gc � Crystallized Intelligence; Glr � Long-Term Storage
and Retrieval.
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across all age groups.2 This set of findings
means that between ages 5 and 19, g had a
direct effect on the broad CHC factors, which in
turn, had a direct effect on the mathematics
dependent variable, Quantitative Knowledge.

Results presented in Table 3 demonstrate
how the direct effects of the CHC broad cogni-
tive ability factors on Quantitative Knowledge
change as a function of age. Fluid Reasoning
demonstrated large direct effects on Quantita-
tive Knowledge across all ages. Crystallized
Intelligence also demonstrated moderate effects
on Quantitative Knowledge for ages 9 to 13 and
strong effects for ages 14 to 19. Processing
Speed demonstrated strong effects on Quantita-
tive Knowledge for ages 5 to 6 and moderate
effects for ages 9 to 13. Thus, Fluid Reasoning
was the only broad cognitive ability factor to
have a statistically significant direct effect on
Quantitative Knowledge for ages 7 to 8. The
indirect effect of g on Quantitative Knowledge
was primarily via Gf; g had a large direct effect
on Gf at every age level.

Discussion

During much of the 20th century research in
cognitive abilities and academic achievement
focused on the predictive utility of general in-
telligence, g, on achievement. The results from
much of this research found that the inclusion of
specific cognitive abilities in the prediction of
achievement violated the rule of parsimony be-
cause they tended to add very little predictive
variance. More recent advances in intellectual
theory (CHC theory) and data analysis methods
(SEM) have assisted researchers in quantifying
the portion of variance accounted for by specific
cognitive factors on academic achievement. The
purpose of this study was to employ SEM to
identify the influences of general intelligence
and seven CHC broad cognitive abilities on
mathematics achievement. To accomplish this
goal, a hierarchical model based on contempo-
rary CHC theory was analyzed. The CHC
model contained two levels of cognitive factors.
At the apex of the model was a second-order
general factor of intelligence. At the first-order
factor level were seven CHC broad cognitive
ability factors.

Direct Effects

The results from this study revealed that first-
order CHC broad cognitive factors do in fact
have statistically significant direct effects on
mathematics achievement across all four age
groups. These factors included Fluid Reason-
ing, Crystallized Intelligence, and Processing
Speed. Fluid Reasoning demonstrated consis-
tent large direct effects on the Quantitative
Knowledge dependent variable across all four
age-differentiated samples included in the anal-
ysis. The finding of a significant direct effect of
Fluid Reasoning on mathematics achievement
was not unexpected. The robust effect of Fluid
Reasoning was consistent with earlier CHC-
based studies that investigated the relations be-
tween measures of Fluid Reasoning and math-
ematics achievement (e.g., Floyd, Evans, &
McGrew, 2003; Keith, 1999; McGrew et al.,
1997; McGrew & Hessler, 1995; Proctor,
Floyd, & Shaver, 2005; Williams, McCallum,
& Reed, 1996) as well as other research (Fuchs
et al., 2005, 2006; Rourke, 1993; Swanson &
Beebe-Frankenberger, 2004). Fluid Reasoning
seems to account for some of the prominent
problem-solving constructs and strategies im-
plicated in mathematics performance (Cum-
mins, 1991; Fuchs et al., 2006; Lemaire &
Siegler, 1995; Swanson & Beebe-Franken-
berger, 2004).

Crystallized Intelligence demonstrated mod-
erate to large direct effects on Quantitative
Knowledge with two age groups. Previous re-
search investigating the role of CHC cognitive
abilities in mathematics achievement also found
a strong and consistent relation between Crys-
tallized Intelligence and mathematics achieve-
ment (e.g., Floyd et al., 2003; Hale et al., 2001;
Keith, 1999; McGrew et al., 1997; McGrew &
Hessler, 1995; Proctor et al., 2005; Williams et
al., 1996). Fuchs et al. (2006) also found that a
similar broad ability factor was a significant
predictor of completion of arithmetic word
problems. It is logical that completion of arith-
metic word problems, like those from the WJ III
Applied Problems test, would require receptive

2 Standardized coefficient effect sizes of .05 and above
can be considered small effects, effect sizes around .15 can
be considered moderate effects, and effect sizes above .25
can be considered large effects (cf. Keith, 1999, 2006;
Pedhazur, 1997).
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language abilities and that completion of math-
related tasks require declarative and procedural
knowledge learned from formal schooling.
However, other researchers have not demon-
strated significant effects for similar measures
in explaining mathematics performance (Fuchs
et al., 2005; Swanson & Beebe-Frankenberger,
2004).

Processing Speed was significantly related to
Quantitative Knowledge at the earliest age level
and for ages 9 to 13. These cross-age effects
corroborate the findings of a number of studies
focusing on CHC theory (e.g., Floyd et al.,
2003; Keith, 1999; McGrew et al., 1997;
McGrew & Hessler, 1995), as well as others
studies (Bull & Johnston, 1997; Fuchs et al.,
2006; Kirby & Becker, 1988) that suggest that
the ability to process and make decisions
quickly about visual stimuli (without verbaliza-
tions) is related to the ability to complete math-
ematics computations and other early academic
tasks (Fry & Hale, 2001).

In contrast to previous research that included
a higher order g factor in SEM models predict-
ing mathematics performance that were guided
by CHC theory (Keith, 1999; McGrew et al.,
1997) and supporting the factor structure of a
test battery (Oh, Glutting, Watkins, Young-
strom, & McDermott, 2004), general intelli-
gence did not have a direct effect on the Quan-
titative Knowledge dependent variable. This
finding means that g had indirect, rather than
direct, effects on mathematics achievement,
through the CHC broad cognitive ability fac-
tors. The indirect effects of g on mathematics
achievement is at odds with previous research
(Keith, 1999; McGrew et al., 1997; Oh et al.,
2004) because it is likely that the path from g to
the math achievement dependent variable was
purposefully retained in prior studies, whereas
in the present investigation, g was allowed to
compete equally with the specific abilities in the
prediction of mathematics achievement. It is
also the case, however, that there was a large
and consistent effect of g on fluid reasoning
across all four age groups in the present re-
search. The path coefficients between these two
constructs from the youngest to the oldest age
group were .999, .980, .913, and .948, respec-
tively. Thus, although g affected mathematics
achievement via Gf, it was not always possible
to separate g and Gf. Nevertheless, it is also
important to note that this finding (indirect

rather than direct effects for g) is consistent with
a recent study using the same CHC model in
which general intelligence and the seven CHC
broad ability factors influenced reading decod-
ing skills (Floyd et al., in press). In this study,
general intelligence did not have a direct effect
on reading decoding skills between the ages of
5 through 39.

Other Abilities

Based on much previous research, it was not
unexpected that Auditory Processing did not
demonstrate significant effects on mathematics
performance (e.g., Floyd et al., 2003; Swanson
& Beebe-Frankenberger, 2004, cf. Fuchs et al.,
2005). It was also not unexpected that Visual
Processing did not demonstrate significant ef-
fects, although perhaps Visual Processing con-
tributes to the earliest stages of mathematics
skill development (Geary, 1993). Such effects
have not been consistently demonstrated in re-
search guided by CHC theory or in other re-
search (see Friedman, 1995). However, in some
instances in which measures of Visual Process-
ing were combined with measures of Fluid Rea-
soning, the resulting composite score demon-
strated significant relations with measures of
mathematics (e.g., Fuchs et al., 2005).

It was unexpected to find the absence of
significant effects for Short-Term Memory on
mathematics achievement. This result is at odds
with some previous research guided by CHC
theory (e.g., Floyd et al., 2003; McGrew &
Hessler, 1995) and with a rather large body of
research indicating the importance of the con-
struct system dealing with the limited capacity
and management of information in immediate
memory (i.e., working memory) during mathe-
matics performance in general, and especially
during completion of mathematics word prob-
lems (Fuchs et al., 2005; Passolunghi & Seigel,
2001; Swanson & Beebe-Frankenberger, 2004).
However, like evident in Fuchs et al. (2006), it
is possible that most of the variance attributable
to working memory may be accounted for by
cognitive abilities measures simultaneously en-
tered in the model.

Limitations

The interpretation of these findings should be
tempered by some limitations. First, all mea-
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sures used in this research came from a single
battery of tests completed within a brief period
of time. Future research should determine if
similar effects are found using other measures
and across time. Second, this study used CHC
theory as the blueprint for all analyses. It is
possible that future research employing a dif-
ferent theoretical framework would yield differ-
ent results with these same data. Third, mathe-
matics achievement latent variable represents a
purposely general measure of mathematics
skills, so it may not accurately reflect the math-
ematics performance across the varied areas of
mathematics achievement, such as arithmetic,
algorithmic computation, arithmetic word prob-
lems, and geometry (Fuchs et al., 2006).

There were also several advantages to the
present study. This research used a calibration–
validation approach to model development and
testing. Models were developed using data from
one sample and validated on a second sample.
This method of calibration and validation pro-
vides more stable findings, which should be
more easily replicated when compared to using
a single data set that do not guard against the
dangers of specification searches. Finally, the
mathematics achievement dependent variable,
the seven CHC broad cognitive ability factors,
and in turn the general factor of intelligence
were measured by tests from a well-validated
instrument that was standardized on a nationally
represented sample of children.

Implications

The implications from the results of this
study are threefold. First, in contrast to earlier
studies, general intelligence appears to have an
indirect effect on mathematics achievement.
Thus, the large but indirect effect of g on math-
ematics achievement can be observed through
its direct effect on the CHC broad cognitive
ability factors. Second, there is a direct effect of
the CHC broad cognitive ability factors Fluid
Reasoning, Crystallized Intelligence, and Pro-
cessing Speed on mathematics achievement.
For practicing school psychologists, these find-
ings indicate that measures of these factors
should be included when conducting cognitive
ability testing with an individual experiencing
difficulty in mathematics. These results also are
important for future research in understanding
the cognitive influences on mathematic achieve-

ment. Specifically, explanatory models that do
not include measures of these three cognitive
factors may not provide a comprehensive expla-
nation of the cognitive components responsible
for mathematics achievement. Finally, the re-
sults provide support for the “just say maybe”
mantra by providing evidence that there is a
need to look beyond g when explaining chil-
dren’s mathematics achievement. These results
may lead us to recognize that underdeveloped
broad cognitive abilities may interfere with an
individual’s ability to acquire academic skills in
mathematics problem-solving and accurate nu-
merical calculation and that well-developed
broad cognitive abilities may facilitate ad-
vanced performance in these academic areas.
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