
The contribution of general and specific cognitive abilities

to reading achievement

Michael L. Vanderwooda,*, Kevin S. McGrewb,
Dawn P. Flanaganc, Timothy Z. Keithd

aUniversity of California, Graduate School of Education, Riverside, CA 92521, USA
bUniversity of Minnesota, Minneapolis, MN, USA

cSt. John’s University, Jamaica, NY, USA
dUniversity of Texas at Austin, Austin, TX, USA

Received 9 September 2002; accepted 9 September 2002

Abstract

Since the development of the Weschler scales, significant advances have been made in intelligence

theory and testing technology that have the potential to provide a more comprehensive understanding

of cognitive abilities than currently exists. For this study, the standardization sample of the

Woodcock–Johnson Psychoeducational Battery-Revised (WJ-R)—an empirically supported measure

of several constructs within the Cattell–Horn–Carroll (CHC) theory of cognitive abilities—was used

to analyze the contribution of specific cognitive abilities to reading achievement at five developmental

levels. Structural equation modeling (SEM), with calibration and cross-validation samples, of four

different models of the hypothesized relations among the variables was conducted to determine if

specific abilities can provide relevant information regarding the development of reading skills. The

results of this study clearly indicate that Gc (comprehension knowledge or crystallized intelligence)

and Ga (auditory processing) play an important role in the development of reading skills.
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1. Introduction

A cursory review of the cognitive abilities research literature reveals that attempts to move

‘‘beyond g’’ (i.e., the addition of specific abilities to g in the prediction and explanation of

educational and occupational outcomes) have not been successful. In his APA presidential

address, McNemar (1964, p. 875) concluded, ‘‘the worth of the multitest batteries as

differential predictors of achievement in school has not been demonstrated.’’ Cronbach and

Snow (1977) reached a similar conclusion in their seminal review of the aptitude–treatment

interaction (ATI) research, which demonstrated that interventions interact primarily with

general level of intelligence, and that few, if any, meaningful specific ability–treatment

interactions exist. Jensen (1984, p. 101) also reinforced this conclusion when he stated that ‘‘g

accounts for all of the significantly predicted variance; other testable ability factors,

independently of g, add practically nothing to the predictive validity.’’ In the area of applied

intellectual assessment, the failure to establish the importance of specific abilities has resulted

in the warning to ‘‘just say no’’ to the practice of interpreting subtest scores in individual

intelligence batteries (McDermott, Fantuzzo, & Glutting, 1990; McDermott & Glutting,

1997). The inability to move beyond g has provided little optimism for the development of

interventions designed according to an individual’s profile of specific ability strengths and

weaknesses.

Despite the failure to demonstrate the importance of specific cognitive abilities, some

intelligence scholars have suggested that now is not the time to give up hope. In his seminal

review of the cognitive abilities factor analytic research literature, Carroll (1993, p. 676)

concluded, ‘‘there is no reason to cease efforts to search for special abilities that may be

relevant for predicting learning.’’ In the school psychology literature, Flanagan (1999), Keith

(1999a), and McGrew, Flanagan, Keith, and Vanderwood (1997) have suggested that recent

advances in theories of intelligence (see Flanagan & McGrew, 1997), applied theory-driven

measurement of intelligence, and research methodology (e.g., structural equation modeling,

SEM) argue for continued efforts to investigate the effects of general and specific abilities on

general and specific achievements.

Empirical support for this position was recently provided by Gustafsson and Balke (1993)

who reported that some specific cognitive abilities may be important in explaining school

performance beyond the robust influence of g when: (a) both the predictor (i.e., cognitive)

and criterion (i.e., school performance) domains are viewed from multidimensional hierarch-

ical frameworks, (b) the intelligence framework used reflects contemporary knowledge on the

structure of cognitive abilities (viz., the hierarchical Cattell–Horn–Carroll theory of

cognitive abilities [CHC theory])1, and (c) research methods (viz., SEM) particularly suited

1 Recently, it has come to our attention that Drs. John Horn and John Carroll would like to have ‘‘modern Gf–

Gc theory’’—an integration of the Cattell–Horn Gf–Gc and three-stratum theories—referred to as the ‘‘Cattell–

Horn–Carroll Theory of Cognitive Abilities’’ or ‘‘CHC theory’’ (R. Woodcock, personal communication, July 16,

1999). In this paper, we have adopted this new terminology and have replaced Gf–Gc with ‘‘CHC’’ in reference to

modern Gf–Gc theory, Gf–Gc abilities, Gf–Gc cross-battery assessment, and the like to be consistent with the

request of these theorists.
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to understanding and explaining (versus simply predicting) phenomena are employed. The

positive results of Gustafsson and Balke (1993) suggest that research that incorporates

advances in intelligence theory, measurement, and research methodology is needed to

determine if specific cognitive abilities can be identified that provide explanatory information

above and beyond g.

1.1. Advances in theory

A variety of intelligence theories grounded in markedly different research traditions have

received increased attention in recent years (e.g., CHC theory of cognitive abilities, Gardner’s

Theory of Multiple Intelligences, the Luria–Das Model of Information Processing, Stern-

berg’s Triarchic Theory of Intelligence; see Flanagan, Genshaft, & Harrison, 1997 for a

review). Of these theories, the psychometrically based CHC theory has been viewed by some

intelligence scholars as having the greatest potential for examining the importance of general

and specific cognitive abilities.

CHC theory represents an integration of Carroll’s (1993) three-stratum theory and the

Cattell–Horn Gf–Gc theory (Horn, 1994) (see Flanagan, McGrew, & Ortiz, 2000; McGrew,

1997; McGrew & Flanagan, 1998). The CHC conception of intelligence is supported

extensively by factor analytic (i.e., structural) evidence as well as developmental, neuro-

cognitive, and heritability evidence (see Horn & Noll, 1997 for a summary). In addition, there

is a mounting body of research available on the relations between the broad CHC abilities and

many academic and occupational achievements (see McGrew & Flanagan, 1998 for a review

of this literature). Furthermore, studies have shown that the CHC structure of intelligence is

invariant across the lifespan (e.g., Bickley, Keith, & Wolfe, 1995) and across gender, ethnic,

and cultural groups (e.g., Carroll, 1993; Gustafsson & Balke, 1993; Keith, 1997, 1999a). In

general, the CHC theory is based on a more thorough network of validity evidence than other

contemporary multidimensional ability models of intelligence (see McGrew & Flanagan,

1998; Messick, 1992).

According to Daniel (1997, p. 1042–1043), the strength of the CHC model of cognitive

abilities is that it was arrived at ‘‘by synthesizing hundreds of factor analyses conducted over

decades by independent researchers using many different collections of tests. Never before

has a psychometric ability model been so firmly grounded in data.’’ The convergence on the

CHC model provides a validated framework from which to examine the importance of

general and specific cognitive abilities.

In the CHC model, cognitive abilities are classified at three strata that differ in degree of

generality (Carroll, 1993). General cognitive ability or g is located at stratum III and

subsumes several broad cognitive abilities (located at stratum II), which, in turn, subsume

approximately 70 narrow abilities (located at stratum I). Several of the broad cognitive

abilities in the CHC model are: fluid Intelligence (Gf), crystallized intelligence (Gc), short-

term acquisition and retrieval (Gsm), visual intelligence (Gv), auditory intelligence (Ga),

long-term storage and retrieval (Glr), cognitive processing speed (Gs), correct decision speed

(CDS), and quantitative knowledge (Gq). A brief description of these abilities is provided in

Table 1.
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The reader is referred to Carroll (1993, 1997), Flanagan et al. (2000), Horn (1991, 1994),

Horn and Noll (1997), and McGrew and Flanagan (1998) for a comprehensive description of

CHC theory, and for supporting evidence and limitations of the theory.

1.2. Advances in applied measurement

Recent joint factor analyses research (Flanagan & McGrew, 1998; McGhee, 1993; Stone,

1992; Woodcock, 1990), as well as expert consensus task analysis of the major individually

administered intelligence batteries (Flanagan et al., 2000; McGrew, 1997; McGrew &

Flanagan, 1998), have suggested that none of the current intelligence batteries assess the

broad range of cognitive abilities included in CHC theory. Furthermore, no intelligence

battery includes enough qualitatively different CHC narrow stratum I ability indicators (i.e.,

subtests) to warrant the generation of hypotheses about all the broad abilities.

Of the current collection of individually administered intelligence batteries, the Wood-

cock–Johnson Psychoeducational Battery-Revised (WJ-R) comes closest to measuring the

complete breadth of broad cognitive abilities included in the CHC theory. The WJ-R was

developed deliberately to operationalize contemporary theory, and as such, measures validly

eight CHC abilities (Keith, 1997; McGrew, Werder, & Woodcock, 1991; Woodcock, 1990;

Ysseldyke, 1990). Despite its breadth of coverage, the WJ-R has not often been used in the g/

specific abilities research. Given the recent development of an individually administered

battery of cognitive and achievement tests specifically designed to operationalize CHC theory

Table 1

A description of nine broad CHC cognitive abilities

Fluid reasoning or intelligence (Gf) is measured by tests that require inductive, deductive, conjunctive, and

disjunctive reasoning to understand relations among stimuli, comprehend implications, and draw inferences.

Acculturation knowledge (Gc) is also called comprehension knowledge, it is measured by tests that indicate the

breadth and depth of the knowledge of the dominant culture.

Quantitative reasoning (Gq) is measured by tests that require understanding and application of the concepts and

skills of mathematics.

Short-term apprehension-retention (Gsm) is also called short-term memory and is measured with a variety of tests

that require maintaining awareness of and recalling elements of immediate stimulation—i.e., events of the last

minute or so.

Fluency of retrieval from long-term storage (Glr) is also called long-term memory and is measured by tests that

indicate consolidation for storage and require retrieval, through association, of information stored minutes,

hours, weeks, and years before.

Visual processing (Gv) is measured by tests that involve visual closure and constancy and fluency in ‘‘image-ing’’

the way objects appear in space as they are rotated and flip-flopped in various ways.

Auditory processing (Ga) is measured by tests that involve the perception of sound patterns under distraction or

distortion, maintaining awareness of order and rhythm among sounds, and comprehending groups of sounds,

such as chords, and the relationships among such groups.

Processing speed (Gs) is part of almost all intellectual tasks and is measured most purely by tests that require rapid

scanning and responding to intellectually simple tasks that almost all people would get right if the task were not

highly speeded.

Correct decision speed (CDS) is measured by tests that require quick answers based on thinking.

Adapted from Horn (1991).
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(viz., WJ-R), we believe that new g/specific ability research is warranted. Progress has been

made in both theories and measurement of intelligence. This progress requires a continued

examination of the general versus specific abilities research question.

1.3. Advances in research methodology

Multiple regression analysis (MR) has been the primary method used to determine whether

specific cognitive abilities improve on the prediction of achievements beyond the prediction

provided by g. Since MR will not allow the prediction of a criterion from both a composite

score and the components that comprise the composite score (i.e., the correlation matrix will

be singular), creative ‘‘tricks’’ have been used to conduct such analyses. For example,

McDermott et al. (1990) subtracted the average Weschler subtest score from each individual

subtest (in effect removing g from each subtest). They then used these ‘‘ipsatized’’ scores to

predict achievement, and compared the variance explained by the ipsatized subtest scores to

the variance explained by the original subtest scores in a separate regression. Thorndike,

Hagen, and Sattler (1986) compared the variance explained by all subtests to that explained,

in a separate regression, by a general, or g, factor. These procedures have not allowed for the

direct comparison of the effects of general and specific abilities in a single model. A more

suitable approach would be to analyze the effects of general and specific abilities simulta-

neously (McGrew et al., 1997).

In addition, most of the prior MR based research has attempted to partition variance into

that accounted for by g and that accounted for by specific abilities, a practice that is not well

suited to determining the relative importance of the effects of different variables on a criterion

(Kenny, 1979, Chap. 4; Pedhazur, 1997, Chap. 9). The partitioning of variance provides a

‘‘highly stingy. . .measure of the relationship between two variables’’ (Abelson, 1995, p. 7;

see also Rosenthal & Rubin, 1979), and at times can underestimate severely the effects of one

variable on another (Pedhazur, 1997). Finally, most of the MR-based g/specific ability

research has focused on whether specific abilities improve the prediction of some criterion

beyond that predicted by g. Although important, predictive findings do not easily translate

into practice. We believe that an explanatory approach is more appropriate. It is not enough to

know that ability ‘‘x’’ predicts ‘‘y’’; in order to translate research into practice, it is necessary

to know whether or not ability ‘‘x’’ affects ‘‘y.’’

Latent variable SEM methods (see Hoyle, 1995; Keith, 1999b; Loehlin, 1998 for further

information) have a number of advantages over MR procedures. First, SEM allows for the

specification and evaluation of complex theories and models, such as those present when a

hierarchical structural model of intelligence (CHC theory) and a multidimensional hierarch-

ical achievement model are on the predictor and criterion sides, respectively, of a complex

causal model. Second, SEM allows for the significance testing of specific effects of individual

abilities rather than the blanket, blind prediction of achievements. Third, SEM reduces the

confounding effects of measurement error by estimating and removing this source of variation

from the consideration of the effects of one variable on another. As a result, SEM gets closer

to the constructs of primary interest in research. By removing error (unreliability) and unique

variance (invalidity) from a structural causal model, SEM provides for more accurate
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estimates of the effects of one construct on another. Finally, SEM focuses on understanding

(analysis of effects) rather than mere prediction (partitioning of variance).

1.4. Purpose of study

We believe that research that is (a) based on contemporary CHC theory; (b) utilizes

measures specifically designed to operationalize CHC constructs (viz., the WJ-R); and (c)

uses SEM methods obviates a number of the methodological difficulties that have

confounded prior g/specific abilities research. In the present study, validated measures

of seven CHC abilities were used to define a hierarchical model of intelligence that

includes g and multiple CHC cognitive abilities. Thus, the cognitive theory used to model

the predictor side of the causal model is up-to-date and empirically supported. SEM

procedures were applied to data from large nationally representative grade-based samples

from the WJ-R in order to simultaneously estimate the effects of g and specific CHC

abilities on both general (broad reading) and specific (e.g., word attack and comprehen-

sion) reading achievement. Based on a review of relevant literature (e.g., Mather, 1991;

McGrew, 1993; McGrew & Flanagan, 1998), causal models were specified that included

both the direct and indirect effects of g and specific cognitive abilities on reading

achievement. The final calibration models were cross-validated and compared to deter-

mine if specific cognitive abilities were important in understanding general and specific

reading above and beyond the explanation provided by g.

2. Method

2.1. Instrument

Secondary analysis of the nationally representative standardization sample of the WJ-R

(Woodcock & Johnson, 1989) was used to examine the relations between specific cognitive

abilities and reading achievement. The WJ-R is a norm-referenced set of individually

administered tests, which consists of 21 measures of cognitive ability and 14 measures of

academic achievement. Fourteen of the cognitive and four of the achievement measures were

used in the current study (see Woodcock & Mather, 1989 for a more detailed description of

each measure). The WJ-R is considered to be a good operationalization of the CHC theory

(Horn, 1991; McGrew et al., 1997, 1991). The test authors used a rigorous test development

procedure which included devising a CHC test blueprint, conducting preliminary exploratory

and confirmatory factor analyses, test revision, and final confirmatory analyses (McGrew,

1994).

Independent reviewers have been impressed with the comprehensive and theory driven

process that was used to develop the WJ-R (Kamphaus, 1993; Kaufman, 1990; Reschly,

1990; Ysseldyke, 1990). Reschly (1990, p. 260) proposed that research with instruments

such as the WJ-R that are based upon a comprehensive theory ‘‘provide far greater

opportunities to generate predictions, test hypotheses, understand basic phenomena, and
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revise theoretical constructs’’ than with instruments based on a dichotomous or limited

set of abilities. Horn (1991, p. 197) stated: ‘‘The revision of the Woodcock–Johnson in

1989 extended the match between new advances in intelligence theory and the

measurement of intelligence.’’ Thus, the WJ-R provides researchers and practitioners

with a psychometrically sound and empirically and theoretically grounded instrument,

which can be used to examine the structure of human intelligence and individual

differences from a multidimensional perspective.

2.2. Sample

The WJ-R standardization sample of 6359 subjects ranged in age from 24 months to 95

years and was selected from over 100 communities using a three-stage stratified sampling

design based on the 1980 US Census. The 3 stages of sampling were by community, schools,

and then by subjects, and included 5 person and 15 community variables to ensure national

representativeness of the sample. Some groups with low percentages (e.g., Asian and Pacific

Islanders) were oversampled to ensure accurate contributions to the norming sample. Also to

ensure representativeness of the sample, individual subjects were weighted to produce a

distribution that was an exact match to the variables included in the sampling design. See

McGrew et al. (1991) for a more detailed description of the sample and data collection

methods.

The kindergarten to twelfth grade sample was used for the present study and included

3425 subjects. (The remaining 3114 subjects were part of the preschool or adult

samples.) Subjects were deleted if they did not have data for each of the 18 subtests

used in the study, which produced a sample of 2312 subjects for this study. Adjacent

grade-based samples were combined and then randomly split to produce calibration and

cross-validation samples (n = 222–255) at five levels: Grades 1–2, 3–4, 5–6, 7–9, and

10–12. After splitting the sample, correlation matrices and standard deviations for the 18

subtests were produced at each level for both samples. Covariance matrices, recovered

from the correlations and standard deviations, were used in the structural equation

models.

2.3. Data analysis

Maximum-likelihood estimation using the Amos SEM program was used to examine

the effect of general and specific latent CHC factors on reading achievement factors.

Maximum-likelihood estimation is considered the standard approach for estimating free

parameters with SEM and has been found to be very robust (Hoyle & Panter, 1995).

Model modification, cross-validation, and model comparison approaches were used as

suggested by MacCallum (1995) to reduce the chance that the relations found were a

product of chance. Model estimation at each developmental level was conducted in a

two-stage process.

During the calibration stage, the initial theoretically and research-based structural models

(described later) were specified, evaluated, and when appropriate, modified using the
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calibration sample. The first step of this stage was estimating the model and then eliminating

structural paths with critical values (estimate/standard error) less than 1.96 (P>.05) and

structural paths with negative values. Paths were eliminated one at a time and then the model

was re-estimated. The second step in model modification consisted of examining modifica-

tion indices to determine if adding additional paths would create a better model fit. Paths were

only added if they made logical and theoretical sense, and they were only kept if they

improved overall model fit based on c2.

Based on previous research which indicated that the cognitive measurement model and

factor structure of the WJ-R operationalized appropriately CHC theory (Bickley et al., 1995),

the decision was made a priori not to modify the cognitive measurement model or the

relations between g and the specific abilities. To ensure that any changes that occurred in

model fit were a product of structural model changes and not a product of measurement

model changes, modification of the relations between the reading composite and the four

reading achievement variables also was not conducted. The structure of the reading

measurement model was based on the work of McGrew (1993, 1994). The focus of this

study was the relationship between the specific abilities and the reading variables that

comprised the structural model.

The second stage of analysis involved estimating the final modified models from the

calibration sample in the cross-validation sample without modification. The results of the

second-stage analysis were used for answering the research questions of the study by

examining the fit indices, and then the structural paths.

2.4. Models

Based on the results of the confirmatory factor analyses that were conducted during the

development of the WJ-R and based on a review of the WJ-R technical manual (McGrew et

al., 1991), the target model in Fig. 1 was specified. This model was the starting point during

the calibration phase at each of the five developmental levels. Each of the seven CHC

cognitive abilities (Gq, quantitative ability, was not used in this study) measured by the WJ-

R Cognitive Battery were represented by two subtests. Four subtests (viz., letter–word

identification, word attack, reading vocabulary, and passage comprehension) were selected

from the WJ-R Achievement Battery to represent reading achievement. The four achieve-

ment battery subtests were used to produce latent variables that were subordinates of a

general reading factor. Due to previous research that indicated a relationship between the

four types of reading achievement measured by the WJ-R and specific abilities (McGrew,

1993, 1994), single indicators for each of the reading variables were used. (The limitations

of this decision are presented later.) Letter–word identification and word attack are

generally considered measures of basic reading skills, and reading vocabulary and passage

comprehension are generally viewed as measures of reading comprehension (McGrew et al.,

1991).

The target model included direct relations between specific cognitive abilities and

specific reading achievement variables. As indicated in Fig. 1, Gc, Gs, and Ga were

hypothesized to influence several reading achievement variables. Based on the research
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that indicates auditory processing and phonemic awareness are related to reading

achievement, paths between Ga (auditory processing) and letter–word identification

and word attack were added (Mather, 1991; McGrew, 1993; Torgesen, Wagner, &

Rashotte, 1994). Gc (comprehension knowledge) is highly related to reading comprehen-

sion (Lohman, 1989; Mather, 1991; Snow & Swanson, 1992), and McGrew (1993)

reported an increase in the strength of this relation with age. In this model, the two

measures of reading comprehension (viz., passage comprehension and reading vocabu-

lary) were hypothesized to be directly affected by Gc. The final specific ability, Gs

(processing speed), is considered an important factor in understanding developmental

changes in reading and other forms of achievement (Kail, 1991; Lohman, 1989) and was

found by McGrew to have a strong relations with basic reading skills. Therefore, paths

between Gs and the two measures of basic reading skills (viz., letter–word identification

and word attack) were included in the target model.

To test the contribution of the specific abilities, an alternative model was specified that

did not include the relations between the reading achievement variables and Gc, Gs, and

Ga. The only path between the achievement and cognitive components of the model was

the path between g and the reading composite variable. This model was tested at each

developmental level during the cross-validation phase. Because paths were not specified

between specific cognitive and achievement variables, this model was not tested during the

calibration phase.

Fig. 1. Initial target model used at all developmental levels.
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As recommended by methodologists, multiple indices were used to judge the fit of the

models tested in this research. The Root Mean Square Error of Approximation (RMSEA) was

used to judge the fit of a single model; RMSEAs at or below .05 suggest a close fit of the

model to the data and RMSEAs below .08 suggest a marginal fit (Browne & Cudeck, 1993;

Hu & Bentler, 1999). The Goodness-of-Fit Index (GFI; Jöreskog and Sörbom, 1981),

Tucker–Lewis Index (TLI; Bentler & Bonett, 1980), and Comparative Fit Index (CFI;

Bentler, 1989) were also used to judge the fit of a single model. For each of these indices,

values above .95 were taken to suggest a good fit, with values above .90 interpreted as

suggesting an adequate fit.

Of more direct interest in this research were comparisons among competing models. To

compare competing models, the change in chi-squared (Dc2) from the target to the

alternative model, in relation to the degrees of freedom, was computed at each devel-

opmental level. When two models are nested, as these models are, Dc2 is also distributed as

c2 and the size of the difference between the two models may be compared to c2(df) to

assess the statistical significance of changes to the model. In the present case, a significant

increase in c2 when going from the target to the alternative models would suggest the

superiority of the target model, whereas a nonsignificant increase would suggest the

superiority of the more parsimonious alternative (g only) model. A comparison of the

RMSEAs was also used to assess fit of these competing models. These fit indices are

explained in detail in most introductions to SEM (e.g., Hoyle, 1995; Keith, 1999b; Loehlin,

1998). For empirical evaluations of the rules of thumb for judging models, see Hu and

Bentler (1999).

3. Results

The results of the calibration phase will be presented first, followed by an examination of

the cross-validation model comparison and fit statistics. The standardized path coefficients for

the target models will also be presented.

3.1. Calibration phase

Several modifications were made to the target model at each developmental level

during the calibration phase. The model in Fig. 1 was used at each developmental level

as a starting point for model modification. At Grades 1–2, both paths from Gs were

eliminated. The path from Ga to letter–word identification and both Gs paths were

removed at Grades 3–4. At the next developmental level, Grades 5–6, Ga to letter–

word Identification, and both original Gs paths were eliminated, and paths from Gs to

reading vocabulary and passage comprehension were added. The only change that

occurred at Grades 7–9 was the elimination of the Gs paths. The only specific ability

paths remaining at Grades 10–12 were from Gc to reading vocabulary and passage

comprehension. The modifications made at each developmental level were tested with

the cross-validation sample, which was used to produce the fit statistics described in
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Section 3.2. For all the target models, diagnostic fit information (e.g., modification

indices and standardized residuals) suggested that changes to the measurement portions

of the CHC and reading models to improve the fit of the models. To provide

consistency in models across grades, however, an a priori decision was made not to

modify the measurement portions of the models.

3.2. Cross-validation phase

As shown in Table 2, most of the target (specific abilities) models showed an adequate fit

to the data as judged by the RMSEA, GFI, TLI, and CFI, although a few such models showed

a good fit. Of more direct interest are the comparisons between the target (specific abilities)

and the alternative (g only) models. At each grade level, the g only model resulted in a

statistically significant increase in c2. This means that, for each grade level, a model, which

excludes paths from specific abilities to reading skills, fit worse than did models that included

Table 2

Comparison of cross-validation fit indices across models and developmental levels

Models c2(df) P GFI TLI CFI RMSEA

Grades 1–2

Target 206.80(123) < .001 .91 .95 .96 .04– .07

Alternative 243.96(127) < .001 .89 .94 .95 .05– .08

Dc2 = 37.17(4), P< .001

Grades 3–4

Target 228.84(125) < .001 .90 .93 .94 .05– .07

Alternative 295.83(127) < .001 .87 .88 .90 .06– .09

Dc2 = 134.422(3), P< .001

Grades 5–6

Target 234.99(123) < .001 .90 .90 .92 .05– .08

Alternative 292.09(127) < .001 .87 .85 .88 .07– .09

Dc2 = 143.29(5), P< .001

Grades 7–9

Target 236.20(124) < .001 .90 .92 .94 .05– .07

Alternative 328.55(127) < .001 .87 .86 .89 .07– .09

Dc2 = 231.18(4), P< .001

Grades 10–12

Target 243.11(126) < .001 .91 .93 .94 .05– .07

Alternative 295.90(129) < .001 .89 .90 .91 .06– .08

Dc2 = 149.76(2), P< .001

GFI =Goodness-of-Fit Index, TLI =Tucker-Lewis Index, CFI =Comparative Fit Index, RMSEA=Root Mean

Square Error of Approximation.
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such effects. In other words, the inclusion of paths from specific abilities to reading skills

provides a more complete explanation of those skills than does a model that assumes that only

general intelligence affects reading skills.

Additional support for the better fit of the target versus g only models was provided

by the results of the RMSEA statistic. Using a 90% confidence interval of the RMSEA

fit index, a traditional hypothesis test was conducted to determine if the models produced

a close fit. RMSEA confidence interval values that were at or below 0.05 were

considered a close or good fit (Browne & Cudeck, 1993; MacCallum, Browne, &

Sugawara, 1996). The null hypothesis was not rejected for every grade of the target

model, which indicates these models fit or replicated the true relations of the variables

closely. For the alternative model, the null hypothesis was rejected at every grade except

Grades 1–2.

3.3. Path coefficients

As shown in Table 3, the standardized path coefficients from g to reading indicated a

strong effect at all grade levels. (When interpreting the strength of the standardized path

coefficients, the following guidelines suggested by McGrew (1994) were used: (a) path

values below .10 are considered weak or not important, (b) values from .10 to .29 suggest a

Table 3

Direct effects on reading variables for target and alternative models

Paths Grades

1–2 3–4 5–6 7–8 10–12

Target model

To reading

From g .63 .77 .68 .57 .88

To letter word identification

From Ga .33 – – .32 –

To word attack

From Ga .49 .24 .27 .50 –

To reading vocabulary

From Gc .56 .76 .71 .84 .98

From Gs – – .09 * – –

To passage comprehension

From Gc .47 .53 .49 .69 .90

From Gs – – .21 – –

Alternative model

To reading

From g .88 .93 .92 .99 1.00

All values are standardized direct effects and are significant at P< .05 unless otherwise noted.

* Not significant at P < .05.
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moderate relationship, and (c) path coefficients above .30 indicate a strong relationship.) Gc

maintained a strong effect on reading vocabulary and passage comprehension and had the

largest value of any specific ability across grade levels. The contribution of Ga fluctuated

from a strong influence on letter–word identification and word attack at Grades 1–2 and 7–

9, to a moderate effect on word attack at Grades 3–4 and 5–6. At Grades 5–6, the only level

that Gs was included in the cross-validation sample, the path from Gs to passage com-

prehension was of moderate strength and the path to reading vocabulary was nonsignificant

(P>.05).

4. Discussion

Theories of intelligence have developed significantly in the last two decades and moved far

beyond the atheoretical approach that was used to design the Weschler Scales (Weschler,

1939). CHC theory is considered a strong alternative to either an atheoretical or general

ability approach to intelligence testing (Carroll, 1993; Flanagan et al., 2000; Horn, 1994;

McGrew, 1997; McGrew & Flanagan, 1998; Reschly, 1990) and has been incorporated into

the WJ-R (Woodcock & Johnson, 1989). An underlying question of this study was given

recent advances in intelligence theory, applied measurement, and research methodology, to

what extent do constructs of a contemporary theory of intelligence (CHC theory) explain

reading achievement.

Three general conclusions are supported by the current research. First, models, which

contain specific cognitive ability/reading achievement relations, fit better than models

without those relations. Second, the relations between the CHC specific cognitive abilities

and reading achievement changed at each developmental level studied in this investiga-

tion. Third, Gc and Ga were related strongly to basic reading and reading comprehension

skills.

The data from this study support the belief that CHC specific cognitive abilities can be

used to explain and better understand academic achievement, above and beyond the

effects of g. First, the specific cognitive ability/achievement models outperformed the

general ability/achievement models as indicated by the significant (P< .001) decrease in

chi-square for the specific ability models in every case when they were compared to the

general ability/achievement models. Additional support was provided by the results of the

RMSEA fit statistic. Although only 20% of the general ability/achievement models

produced a close fit, 100% of the specific ability/achievement models met the standards

for a close fit.

The better fit of the specific ability/achievement models was expected and is consistent

with the theories proposed by Carroll (1993) and Horn (1991, 1994) and research conducted

by Gustafsson and Balke (1993). The addition of the three specific abilities that prior research

indicated influence reading achievement, did, in fact, account for a significant increase in fit

over a model that only contained g. These results are also in direct opposition to the belief that

specific abilities do not add anything useful to the explanation of school achievement

(McDermott et al., 1990; McNemar, 1964). Although Jensen (1984) argued that his review of
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the extant literature indicated that g accounts for almost all of the predicted variance, and

other factors add little or nothing, the studies he cited did not use tests that were based on a

theoretically supported multidimensional approach to intelligence. This research clearly

supports the idea that specific abilities do add relevant information above and beyond that

provided by g.

4.1. Contribution of Gc

The significant paths between Gc and reading comprehension are consistent with

previous research that indicated prior achievement affects future achievement and that

comprehension-knowledge influences reading achievement (Aaron, 1995; Felton &

Pepper, 1995; McBride-Chang, 1995; McGrew, 1994). It also seems logical that prior

exposure to the culture and language of the test should be of benefit to the test taker

when attempting to garner understanding from a reading passage or define vocabulary

words. And, the stronger relation of Gc to reading vocabulary versus Gc to passage

comprehension in every case suggests that previous exposure to language plays a bigger

role in providing a synonym or antonym than it does in providing a missing word in a

sentence. Another interesting point is that the aforementioned relationship has a general

positive linear trend from Grades 1–2 to 10–12, which indicates that, as acquired

knowledge (Gc) accumulates, it plays a bigger role in identifying words and compre-

hending sentences.

Although the previously mentioned findings provide support for the Gc construct, its

high loading on g in both models across all developmental levels could be interpreted as

meaning that Gc is not differentiated from g. The relation between Gc and g was very

strong, ranging from .89 to .96, which if interpreted without looking at previous research

suggests that Gc and g may be the same factor. But, when using the same WJ-R norm

data and factor structure, Bickley et al. (1995) tested the hypothesis that Gc was

indistinguishable from g by determining the change in chi-square between models that

had the Gc to g loading set at 1.0 and the model used in this study. These authors found

that the fit of the model with Gc set to 1.0 was significantly worse than with the two

factors separate, which provides support for the use of the model in this study and the

interpretation that Gc is distinct from g.

4.2. Contribution of Ga

The initial specifications between Ga and the basic reading skills variables were based on a

growing consensus that awareness of and ability to manipulate sounds (which is typically

defined as phonological awareness) is the best predictor of reading achievement in young

children (Morris et al., 1998; Stanovich, Cunningham, & Cramer, 1984; Torgesen et al.,

1994) and that fluent reading is made up of at least two independent components: reading

comprehension and word recognition (Aaron, 1995; Joshi, 1995). Therefore, the expected

result of the Ga to basic reading skills specifications was that Ga would have a strong

relationship with the basic reading skills variables (which measure word recognition) in the
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early elementary grades and that by the secondary grades the relationship would be

nonsignificant.

At Grades 1–2, Ga had a strong relationship to both basic reading skills variables and, at

Grades 3–4, the path to letter–word identification was eliminated and the path to word attack

was of moderate strength. Grades 5–6 maintained a moderate relationship between Ga and

word attack. The surprising result occurred at Grades 7–9, which had strong relationships

between Ga and both basic reading skills variables. This result is not supported by previous

research and does not fit the expected trend of the relationships between Ga and the reading

variables. The most plausible explanation for this result may be that for the upper grades the

reading measurement model was not adequate and spurious relationships were created. In

summary, the data support the belief that phonological awareness is related to reading

achievement for early elementary students and that the WJ-R is able to measure this

relationship.

4.3. Contribution of Gs

In contrast to Gc and Ga, the initial a priori specifications of Gs were not supported in any

case across the five models. During the calibration phase, the paths from Gs to basic reading

skills (letter–word identification and word attack) were eliminated in every case and paths

between Gs and the reading comprehension variables (passage comprehension and reading

vocabulary) were added at Grades 5–6. The paths between Gs and reading vocabulary were

either weak or not significant in the cross-validation sample.

Therefore, the only significant Gs path in the cross-validation sample was to passage

comprehension at Grades 5–6 (moderate strength), and this path was not initially specified to

have an effect. Although these results suggest that processing speed does not play a major

role in the development of reading skills, previous research clearly indicates that speed is

important for reading achievement (Aaron, 1995; Carroll, 1993; McGrew, 1993; Snow &

Swanson, 1992). A possible cause for the difference between previous research and this study

was the multivariate approach used here that included g may have eliminated the variance that

is usually accounted for by Gs.

4.4. Limitations

Two types of limitations are presented in this section. The first type is termed

technical and focuses on the design and data analysis of the study. The second area of

study limitations addresses the theoretical problems associated with the CHC theory and

SEM.

4.4.1. Technical

To ensure replicable results, a priori model development guidelines were used which

dictated that the CHC and reading measurement models could not be modified. By not

allowing changes in the reading construct, which were indicated by the modification indices

during the calibration phase, the specification of ability/achievement relationships may have
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been prevented and other spurious relationships may have been created. For example, for the

target model at Grades 10–12, the paths from the reading comprehension variables to reading

were nonsignificant and, at Grades 7–9, the path from reading to passage comprehension was

also nonsignificant, which indicates that the reading model is inadequately specified and

should be changed. Therefore, the decision to maintain the same reading model across grades

may have created spurious relationships or prevented genuine relationships from becoming

significant.

Another technical limitation of this study was the use of single indicators for the

reading achievement variables. Although reliability estimates were used for each subtest

to counter the effects of single indicators, Bollen (1989) suggests the use of at least three

indicators for each latent variable. Although the intent of only using one indicator was to

examine different aspects of reading achievement, the study would have been stronger,

and, possibly, clearer relationships between specific abilities and the subtypes of reading

achievement would have been found if more than one subtest was used to create the

latent variables.

4.4.2. Theoretical

One interpretation of these results is that they provide substantial support for the Gc

construct and its relationship to reading achievement. Carroll (1993) included reading

comprehension as a stratum level I factor of crystallized intelligence (Gc) and argued that

where the line is drawn between what is considered reading achievement and what is

considered ability is arbitrary. Therefore, the Gc to reading comprehension associations

supported by this study would be interpreted by Carroll as relationships between a factor and

its subfactor and not as a relationship between ability and achievement.

Humphreys (1973) provided a similar argument and suggested one alternative explanation

for the relationships between the cognitive abilities and reading achievement is that, in fact,

the tests that make up the cognitive variable and the achievement variable are actually

measures of the same construct, but at a different level. Humphreys argued that intelligence

and achievement tests are not distinct and are actually measuring the same skills at different

levels. When applied to this study, Humphreys’ argument suggests that in essence, when

relationships are found between cognitive abilities and achievement, the true relationship is

between a broad and narrow operationalization of a skill. This argument can be reworded to

say the tests are both measuring achievement, which is what several authors proposed about

the original Woodcock–Johnson Battery (Sattler, 1988; Shinn, Algozzine, Marston, &

Ysseldyke, 1982) but was not supported by further analyses (McGrew, 1993; Woodcock,

1990). Furthermore, joint confirmatory factor analyses indicated that the WJ-R is only 14%

achievement like, while other intelligence tests have more than 50% of their content that is

achievement like (Woodcock, 1990).

4.5. Implications

One of the most critical implications of this research for applied psychologists is the use of

intelligence tests for the diagnosis and treatment of reading disabilities. Authors have
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cautioned against using the traditional intelligence tests (e.g., Weschler scales) to diagnose

reading disabilities because they are unable to differentiate types of reading problems and the

tests do not provide instructionally relevant information (Aaron, 1995; Joshi, 1995). Although

some authors promote attempting to gain instructionally relevant information from IQ tests

using subtest (i.e., ipsative) and profile analysis (e.g., Kaufman, 1994), the practice is not

supported by empirical research (McDermott et al., 1990). To address this problem, the

current study was designed to determine if a theoretically based and multidimensional IQ test

could provide information that is relevant for instructional planning and intervention

development. As a first step, a review of the literature indicated that the WJ-R measures at

least three specific abilities (viz., Gs, Ga, and Gc) that research indicated influences reading

achievement (Aaron, 1995).

The results of this study indicate that Ga, which is considered an essential component of

reading, was clearly related to basic reading skills, especially word attack skills in early

elementary grades. And, even when g was included as a construct in the analyses, relation-

ships between Ga and reading were significant. The results from this study also make it clear

that there are developmental changes in the role of some CHC specific abilities. While Ga is

clearly important for understanding reading achievement in the early elementary grades, the

relationship between Gc and reading comprehension became stronger while the effect of Ga

was reduced with age.

4.6. Future directions

An exciting aspect of this study is that additional support was provided for a theory that

has the potential of breaking some of the mirrors in Cronbach’s (1975) ‘‘hall of mirrors’’ that

is entered when conducting ATI research. Using CHC theory, it may be possible to determine,

for instance, that students with low Ga and high Gc scores benefit from instruction that

focuses on phonological awareness, while students with high Ga and low Gc scores benefit

from instruction in comprehension strategies.

Given the nonsignificant paths for the reading measurement model at the upper grade

levels, use of a more comprehensive reading assessment that has a well replicated factor

structure should help clarify the results obtained here. It is also important to further examine

the changing nature of the structure of CHC abilities by conducting a longitudinal study

versus the cross-sectional approach used here.

Clearly, the results of this study provide more support for the idea that the contribution of

specific abilities to achievement should be examined further. Although the results needs to be

replicated with other measures of reading achievement before more definitive statements can

be made, the following statement made by Gustafsson and Balke (1993, p. 432) is supported

by this study:

The conclusion that little is to be gained by differentiation of different factors of ability

may thus be challenged, and it seems differentiation among at least a limited number of

broad abilities would be worthwhile.
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Variable

1 2 3 4 5 6 7 8 9 10 11 12 13

1.000

.380 1.000

.282 .325 1.000

.299 .365 .304 1.000

.166 .196 .253 .251 1.000

.397 .540 .246 .479 .304 1.000

.270 .369 .313 .444 .108 .397 1.000

.473 .432 .350 .378 .209 .516 .456 1.000

.289 .521 .266 .259 .042 .261 .333 .275 1.000

.193 .212 .689 .345 .265 .331 .341 .356 .150 1.000

.320 .349 .313 .474 .102 .358 .398 .358 .382 .320 1.000

.140 .317 .328 .279 .322 .323 .244 .372 .187 .303 .220 1.000

.365 .602 .405 .519 .296 .638 .491 .495 .381 .386 .466 .403 1.000

.424 .432 .378 .446 .174 .445 .525 .418 .379 .353 .349 .339 .540

.232 .294 .477 .344 .120 .300 .416 .314 .291 .351 .374 .325 .403

.353 .417 .464 .346 .174 .417 .503 .440 .345 .381 .419 .417 .568

.245 .408 .497 .447 .168 .471 .515 .470 .327 .454 .468 .412 .628

.348 .500 .460 .432 .222 .429 .493 .479 .429 .387 .576 .351 .600

.346 .466 .421 .418 .199 .400 .467 .469 .410 .353 .626 .343 .577

.345 .579 .445 .459 .221 .493 .529 .542 .456 .372 .541 .408 .683

.368 .538 .462 .423 .268 .502 .458 .466 .355 .365 .502 .412 .638

.369 .448 .487 .449 .205 .413 .514 .504 .416 .381 .555 .344 .605

.365 .413 .446 .363 .194 .294 .505 .414 .446 .310 .468 .331 .503

.322 .364 .406 .412 .164 .306 .415 .462 .335 .378 .485 .310 .449

.258 .325 .447 .308 .115 .211 .436 .395 .382 .315 .418 .258 .431

S.D.

16.458 15.771 17.380 17.414 14.914 16.054 15.719 17.064 15.300 15.814 17.610 14.641 16.612

Variables: (1) Memory_for_Names, (2) Memory_for_Sentences, (3) Visual_Matching, (4) Incomplete_Words,

(5) Visual_Closure, (6) Picture_Vocabulary, (7) Analysis_Synthesis, (8) Visual_Auditory_Learn, (9) Memo-

ry_for_Words, (10) Cross_Out, (11) Sound_Blending, (12) Picture_Recognition, (13) Oral_Vocabulary, (14)

Concept_Formation, (15) Calculation, (16) Applied_Problems, (17) Quant_Concepts, (18) Letter_Word_ID, (19)

Word_Attack, (20) Reading_Vocab, (21) Passage_Comp, (22) Dictation, (23) Proofing, (24) Writing_Samples,

(25) Writing_Fluency.

Table A1. Correlations and standard deviations for Grades 1 and 2, cross-validation sample

Appendix A
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14 15 16 17 18 19 20 21 22 23 24 25

1.000

.427 1.000

.500 .621 1.000

.470 .557 .627 1.000

.458 .517 .558 .659 1.000

.429 .456 .479 .581 .803 1.000

.525 .462 .522 .609 .773 .743 1.000

.495 .518 .544 .628 .783 .647 .754 1.000

.469 .575 .623 .664 .760 .714 .689 .672 1.000

.434 .487 .515 .568 .699 .669 .697 .585 .696 1.000

.410 .473 .467 .506 .628 .592 .613 .566 .679 .566 1.000

.400 .411 .486 .543 .585 .603 .597 .540 .622 .617 .592 1.000

15.442 16.035 16.747 16.148 16.524 15.574 16.682 15.155 17.320 16.000 15.052 16.589
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Variable

1 2 3 4 5 6 7 8 9 10 11 12 13

1.000

.305 1.000

.144 .143 1.000

.232 .209 .128 1.000

� .007 .022 .191 .085 1.000

.366 .398 .079 .295 .149 1.000

.127 .177 .253 .099 .195 .212 1.000

.486 .286 .181 .202 .193 .281 .313 1.000

.248 .616 .087 .337 .013 .194 .076 .212 1.000

.027 .166 .578 .108 .275 .093 .303 .178 .124 1.000

.213 .461 .159 .375 .169 .332 .178 .270 .362 .204 1.000

.222 .270 .224 .129 .254 .162 .192 .326 .259 .287 .226 1.000

.315 .544 .246 .341 .224 .597 .321 .334 .359 .232 .453 .340 1.000

.293 .316 .307 .224 .182 .290 .468 .399 .202 .306 .306 .287 .437

.202 .224 .361 .179 .084 .243 .396 .188 .137 .276 .221 .159 .403

.368 .426 .402 .306 .212 .394 .425 .376 .309 .372 .431 .355 .618

.350 .357 .367 .289 .123 .414 .429 .374 .228 .275 .351 .221 .570

.411 .382 .322 .426 .155 .433 .303 .315 .309 .259 .448 .256 .616

.361 .343 .249 .358 .124 .349 .283 .378 .299 .190 .468 .240 .454

.281 .501 .252 .396 .154 .515 .317 .261 .334 .249 .464 .301 .747

.340 .453 .245 .333 .119 .447 .308 .258 .283 .243 .396 .210 .629

.379 .268 .393 .353 .160 .403 .312 .276 .221 .285 .412 .278 .477

.346 .349 .407 .288 .179 .309 .397 .343 .295 .298 .405 .317 .517

.293 .312 .344 .279 � .002 .241 .275 .227 .277 .216 .385 .196 .415

.269 .268 .440 .226 .182 .248 .268 .237 .123 .409 .344 .262 .411

S.D.

17.373 15.703 15.558 15.557 15.904 15.072 16.484 16.602 16.133 15.603 16.555 16.510 15.233

Variables: (1) Memory_for_Names, (2) Memory_for_Sentences, (3) Visual_Matching, (4) Incomplete_Words, (5)

Visual_Closure, (6) Picture_Vocabulary, (7) Analysis_Synthesis, (8) Visual_Auditory_Learn, (9) Memory_for_

Words, (10) Cross_Out, (11) Sound_Blending, (12) Picture_Recognition, (13) Oral_Vocabulary, (14)

Concept_Formation, (15) Calculation, (16) Applied_Problems, (17) Quant_Concepts, (18) Letter_Word_ID,

(19) Word_Attack, (20) Reading_Vocab, (21) Passage_Comp, (22) Dictation, (23) Proofing, (24) Writing_Sam-

ples, (25) Writing_Fluency.

Table A2. Correlations and standard deviations for Grades 3 and 4, cross-validation sample
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14 15 16 17 18 19 20 21 22 23 24 25

1.000

.341 1.000

.487 .527 1.000

.393 .523 .629 1.000

.379 .422 .551 .583 1.000

.357 .405 .510 .493 .724 1.000

.447 .470 .609 .614 .659 .487 1.000

.356 .464 .574 .593 .668 .532 .721 1.000

.384 .430 .592 .622 .693 .617 .535 .568 1.000

.467 .518 .643 .614 .621 .565 .558 .589 .694 1.000

.404 .417 .458 .492 .509 .492 .497 .547 .589 .658 1.000

.422 .255 .482 .501 .557 .458 .440 .472 .620 .524 .473 1.000

15.622 15.271 17.396 15.559 14.736 15.399 14.879 15.494 15.253 15.254 13.607 15.778
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Variable

1 2 3 4 5 6 7 8 9 10 11 12 13

1.000

.285 1.000

.176 .043 1.000

.148 .222 .121 1.000

.134 .003 .107 .133 1.000

.408 .443 .136 .255 .124 1.000

.304 .271 .146 .223 .129 .400 1.000

.549 .262 .150 .211 .129 .391 .303 1.000

.193 .515 .173 .346 .083 .222 .089 .178 1.000

.091 .111 .539 .130 .157 .165 .215 .210 .198 1.000

.165 .231 .151 .341 .121 .296 .147 .168 .387 .185 1.000

.228 .165 .186 .123 .383 .343 .277 .285 .093 .209 .178 1.000

.342 .542 .067 .334 .158 .634 .370 .312 .307 .141 .286 .286 1.000

.381 .182 .238 .166 .198 .296 .495 .340 .103 .265 .273 .241 .359

.114 .157 .327 .017 .083 .105 .311 .188 .100 .297 .090 .118 .237

.311 .359 .359 .228 .160 .378 .391 .301 .191 .281 .267 .255 .522

.199 .363 .289 .188 .010 .357 .361 .236 .256 .226 .215 .151 .469

.292 .462 .196 .242 .007 .414 .336 .198 .316 .193 .251 .215 .537

.267 .307 .182 .273 � .029 .179 .276 .202 .241 .110 .349 .123 .292

.302 .496 .203 .309 .083 .572 .405 .328 .267 .252 .255 .241 .727

.274 .410 .291 .323 .080 .474 .389 .333 .228 .242 .331 .229 .515

.264 .218 .360 .134 .083 .248 .324 .187 .169 .270 .241 .205 .343

.215 .183 .465 .170 .100 .211 .345 .152 .126 .331 .155 .137 .265

.192 .217 .250 .104 .030 .296 .333 .156 .094 .164 .131 .195 .309

.138 .203 .450 .223 .127 .185 .283 .187 .220 .391 .217 .106 .209

S.D.

15.763 14.738 15.430 16.891 14.719 14.005 16.147 16.617 14.559 15.461 16.067 14.622 14.787

Variables: (1) Memory_for_Names, (2) Memory_for_Sentences, (3) Visual_Matching, (4) Incomplete_Words, (5)

Visual_Closure, (6) Picture_Vocabulary, (7) Analysis_Synthesis, (8) Visual_Auditory_Learn, (9) Memory_for_

Words, (10) Cross_Out, (11) Sound_Blending, (12) Picture_Recognition, (13) Oral_Vocabulary, (14)

Concept_Formation, (15) Calculation, (16) Applied_Problems, (17) Quant_Concepts, (18) Letter_Word_ID,

(19) Word_Attack, (20) Reading_Vocab, (21) Passage_Comp, (22) Dictation, (23) Proofing, (24) Writing_Sam-

ples, (25) Writing_Fluency.

Table A3. Correlations and standard deviations for Grades 5 and 6, cross-validation sample
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14 15 16 17 18 19 20 21 22 23 24 25

1.000

.202 1.000

.399 .531 1.000

.297 .522 .636 1.000

.221 .306 .460 .472 1.000

.252 .260 .407 .391 .597 1.000

.285 .272 .547 .477 .596 .414 1.000

.406 .358 .552 .485 .532 .442 .607 1.000

.249 .385 .514 .435 .618 .477 .418 .464 1.000

.317 .396 .477 .413 .478 .429 .422 .475 .682 1.000

.244 .345 .388 .404 .434 .327 .389 .419 .519 .534 1.000

.310 .272 .314 .298 .339 .314 .256 .371 .371 .490 .264 1.000

14.815 17.465 14.754 14.837 17.565 15.412 16.390 14.984 14.794 14.162 14.973 15.904
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Variable

1 2 3 4 5 6 7 8 9 10 11 12 13

1.000

.351 1.000

.253 .162 1.000

.144 .228 .157 1.000

.245 .183 .240 .254 1.000

.458 .355 .087 .067 .304 1.000

.283 .308 .208 .136 .169 .317 1.000

.541 .329 .286 .207 .199 .311 .400 1.000

.267 .541 .208 .266 .092 .143 .168 .246 1.000

.284 .177 .621 .188 .319 .193 .266 .297 .156 1.000

.307 .373 .115 .383 .222 .310 .239 .280 .285 .175 1.000

.416 .262 .266 .087 .337 .335 .212 .255 .211 .318 .187 1.000

.443 .530 .154 .185 .334 .681 .389 .326 .280 .194 .401 .352 1.000

.335 .438 .201 .144 .215 .248 .443 .447 .226 .250 .228 .222 .358

.314 .360 .311 .146 .112 .244 .400 .383 .204 .225 .210 .117 .456

.286 .387 .237 .082 .236 .431 .457 .309 .256 .241 .255 .221 .524

.384 .401 .236 .038 .160 .431 .401 .395 .252 .210 .234 .176 .542

.413 .405 .265 .289 .190 .479 .296 .289 .314 .235 .490 .280 .564

.358 .391 .283 .299 .149 .279 .287 .295 .411 .205 .479 .272 .385

.390 .524 .196 .234 .290 .586 .387 .334 .277 .221 .404 .348 .777

.389 .460 .258 .184 .249 .515 .322 .344 .238 .275 .324 .316 .604

.413 .372 .377 .151 .200 .463 .252 .356 .268 .238 .349 .311 .564

.440 .402 .408 .203 .240 .392 .316 .428 .304 .307 .363 .379 .550

.344 .356 .371 .226 .248 .400 .320 .401 .213 .374 .377 .331 .566

.266 .277 .412 .170 .241 .295 .204 .233 .194 .348 .327 .232 .336

S.D.

14.891 14.861 16.247 15.438 15.275 14.931 15.312 16.661 15.482 15.412 14.900 14.957 14.461

Variables: (1) Memory_for_Names, (2) Memory_for_Sentences, (3) Visual_Matching, (4) Incomplete_Words, (5)

Visual_Closure, (6) Picture_Vocabulary, (7) Analysis_Synthesis, (8) Visual_Auditory_Learn, (9) Memory_for_

Words, (10) Cross_Out, (11) Sound_Blending, (12) Picture_Recognition, (13) Oral_Vocabulary, (14)

Concept_Formation, (15) Calculation, (16) Applied_Problems, (17) Quant_Concepts, (18) Letter_Word_ID,

(19) Word_Attack, (20) Reading_Vocab, (21) Passage_Comp, (22) Dictation, (23) Proofing, (24) Writing_Sam-

ples, (25) Writing_Fluency.

Table A4. Correlations and standard deviations for Grades 7 and 9, cross-validation sample
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14 15 16 17 18 19 20 21 22 23 24 25

1.000

.423 1.000

.422 .578 1.000

.437 .595 .664 1.000

.249 .376 .423 .414 1.000

.298 .349 .362 .366 .622 1.000

.460 .500 .560 .566 .578 .442 1.000

.338 .329 .481 .434 .483 .394 .619 1.000

.196 .480 .449 .496 .615 .530 .541 .469 1.000

.329 .459 .379 .502 .561 .559 .593 .520 .660 1.000

.365 .469 .488 .457 .529 .433 .609 .524 .542 .584 1.000

.186 .234 .240 .269 .394 .408 .376 .362 .389 .432 .361 1.000

16.915 16.631 16.039 16.061 15.836 17.510 15.665 14.455 17.282 15.329 15.367 16.226
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Variable

1 2 3 4 5 6 7 8 9 10 11 12 13

1.000

.215 1.000

.160 .152 1.000

.084 .206 .162 1.000

.208 .130 .189 .234 1.000

.268 .461 .078 .341 .324 1.000

.313 .348 .229 .142 .211 .435 1.000

.575 .215 .197 .188 .309 .260 .429 1.000

.221 .513 .212 .194 .128 .300 .337 .317 1.000

.132 .197 .616 .113 .200 .128 .220 .120 .194 1.000

.226 .269 .065 .288 .170 .276 .279 .255 .287 .102 1.000

.473 .224 .217 .104 .392 .380 .295 .403 .208 .299 .249 1.000

.277 .441 .192 .304 .298 .689 .472 .331 .395 .227 .418 .463 1.000

.291 .443 .273 .239 .277 .438 .484 .460 .270 .302 .323 .357 .461

.293 .220 .479 .191 .168 .270 .436 .373 .252 .384 .259 .261 .459

.263 .352 .452 .208 .219 .435 .438 .319 .268 .344 .282 .298 .584

.359 .369 .381 .274 .213 .532 .520 .421 .356 .297 .303 .415 .674

.321 .466 .229 .379 .346 .613 .457 .386 .459 .233 .463 .460 .722

.224 .329 .234 .334 .192 .385 .263 .339 .369 .160 .348 .270 .474

.333 .497 .214 .382 .359 .670 .521 .400 .447 .201 .450 .489 .819

.286 .458 .221 .312 .301 .523 .375 .404 .299 .169 .288 .385 .611

.315 .359 .360 .307 .157 .453 .388 .342 .418 .253 .310 .297 .586

.355 .395 .437 .238 .205 .373 .420 .422 .344 .339 .375 .329 .555

.294 .372 .332 .234 .172 .356 .327 .325 .331 .292 .381 .331 .573

.137 .242 .330 .270 .151 .165 .228 .218 .137 .266 .283 .205 .359

S.D.

15.067 15.797 14.874 15.319 15.916 18.078 17.494 16.354 16.332 15.465 14.982 16.170 16.587

Variables: (1) Memory_for_Names, (2) Memory_for_Sentences, (3) Visual_Matching, (4) Incomplete_Words, (5)

Visual_Closure, (6) Picture_Vocabulary, (7) Analysis_Synthesis, (8) Visual_Auditory_Learn, (9) Memory_for_

Words, (10) Cross_Out, (11) Sound_Blending, (12) Picture_Recognition, (13) Oral_Vocabulary, (14)

Concept_Formation, (15) Calculation, (16) Applied_Problems, (17) Quant_Concepts, (18) Letter_Word_ID,

(19) Word_Attack, (20) Reading_Vocab, (21) Passage_Comp, (22) Dictation, (23) Proofing, (24) Writing_Sam-

ples, (25) Writing_Fluency.

Table A5. Correlations and standard deviations for Grade 12, cross validation-sample
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14 15 16 17 18 19 20 21 22 23 24 25

1.000

.459 1.000

.531 .726 1.000

.531 .742 .760 1.000

.468 .456 .483 .603 1.000

.334 .426 .414 .479 .633 1.000

.503 .429 .565 .655 .720 .497 1.000

.434 .392 .521 .564 .496 .371 .629 1.000

.352 .491 .471 .560 .642 .592 .583 .442 1.000

.458 .579 .548 .612 .584 .556 .567 .461 .638 1.000

.393 .525 .529 .530 .569 .429 .505 .531 .575 .574 1.000

.305 .355 .348 .319 .369 .345 .377 .384 .381 .438 .424 1.000

16.511 16.978 17.503 17.444 16.328 15.847 17.524 16.491 15.299 16.417 15.596 16.922
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