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Comparative Longitudinal Structural Analyses of the Growth and Decline
of Multiple Intellectual Abilities Over the Life Span

John J. McArdle, Emilio Ferrer-Caja, Fumiaki Hamagami, and Richard W. Woodcock

University of Virginia

Latent growth curve techniques and longitudinal data are used to examine predictions from the theory of
fluid and crystallized intelligence (Gf-Gc theory; J. L. Horn & R. B. Cattell, 1966, 1967). The data
examined are from a sample (N ~ 1,200) measured on the Woodcock-Johnson Psycho-Educational
Battery—Revised (WJ-R). The longitudinal structural equation models used are based on latent growth
models of age using two-occasion “accelerated” data (e.g., J. J. McArdle & R. Q. Bell, 2000; J. J.
McArdle & R. W. Woodcock, 1997). Nonlinear mixed-effects growth models based on a dual exponen-
tial rate yield a reasonable fit to all life span cognitive data. These results suggest that most broad
cognitive functions fit a generalized curve that rises and falls. Novel multilevel models directly
comparing growth curves show that broad fluid reasoning (Gf) and acculturated crystallized knowledge
(Gce) have different growth patterns. In all comparisons, any model of cognitive age changes with only
a single g factor yields an overly simplistic view of growth and change over age.

A great deal of prior substantive research on cognitive abilities
has provided information about the growth and decline of intel-
lectual abilities with data collected over the full life span. In this
study, we present theory about the growth and change over age in
different cognitive abilities (e.g., Cattell, 1941, 1998; Horn, 1988,
1998; Swanson, 1999). We examine these theories using contem-
porary statistical models of a few classical questions: How do
broad cognitive functions grow and change within an individual
over age and time? and Are these growth and change patterns
different from one variable to another? We fit several new models
to two-occasion longitudinal data from a relatively large sample of
persons (N ~ 1,200) measured on multiple cognitive tests from
the Woodcock-Johnson Psycho-Educational Battery—Revised
(WJ-R; McGrew, Werder, & Woodcock, 1991; Woodcock &
Johnson, 1989).

A great deal of prior methodological research has focused on
mixing cross-sectional and longitudinal data. In recent research,
McArdle and Woodcock (1997) used latent growth structural
equation models to examine cognitive test-retest data collected
over varying intervals of time—that is, a time-lag design. Because
age variation was not the focus of that study, age scores were
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partialed (using fourth-order polynomials) before the time-lag
model was fitted, and linear and nonlinear practice components
were used. These time-lag analyses showed that these intellectual
ability traits had high factor stability, that some traits exhibited
important trait changes, that all tests used had very small practice
components, and that no single general factor was evident in the
patterns over time.

In the current research, we extend these previous latent growth
models to describe the potential benefits of a mixture of age-based
and time-based models that use only two time points of data
collection—that is, an accelerated longitudinal design (Aber &
McArdle, 1991; Bell, 1954; McArdle & Anderson, 1990; McArdle
& Bell, 2000; McArdle & Woodcock, 1997)—especially for stud-
ies across the life span (e.g., S. C. Duncan & Duncan, 1995;
McArdle & Hamagami, 1992; cf. Swanson, 1999). This article
presents some practical ways to fit latent growth models of age
with incomplete data, using standard multilevel software (e.g.,
SAS PROC MIXED). We also expand these models to include
nonlinear growth patterns and comparisons of growth patterns of
difference (e.g., SAS PROC NLMIXED).

Substantive Predictions From the Theory of Fluid and
Crystallized Intelligence

The theory of fluid and crystallized intelligence (i.e., Gf-Gc
theory; Cattell, 1941, 1971, 1987; Horn, 1971, 1988, 1998; Horn &
Cattell, 1966, 1967) proposes that primary abilities are structured
into two principal dimensions, namely, fluid (Gf) and crystallized
(Go) intelligence. The first common factor, Gf, represents a mea-
surable outcome of the influence of biological factors on intellec-
tual development (i.e., heredity, injury to the central nervous
system), whereas the second common factor, G, is considered the
main manifestation of influence from education, experience, and
acculturation. Gf-Gc theory disputes the notion of a unitary struc-
ture, or general intelligence, as well as, especially in the origins of



116

the theory, the idea of a structure comprising many restricted,
slightly different abilities. From these substantive premises, Gf-G¢
theory makes a few explicit predictions about the complex nature
of human intellectual abilities in three related areas:

1. The first predictions are structural: A single general factor
(i.e., g from Spearman, 1904) will not account for the patterns of
variation seen among multiple abilities—at least two broad factors
are required for a reasonable level of fit to observations. One broad
factor, Gc, was thought to represent acculturated knowledge, and
the other broad factor, Gf, was thought to represent reasoning and
thinking in novel situations.

2. The second set of predictions of Gf-Gc theory concerns
kinematic trends: Over the early phases of the life span, there is an
expected rise of Gc together with an expected rise of Gf, but in
early adulthood, there is further growth of Gc while the Gf peaks
early and rapidly declines in older ages.

3. A third set of predictions is about dynamic processes and
interrelationships among factors: There is an “investment” of Gf
coupled with other lower order factors in the context of education-
ally relevant settings, and this investment leads to individual
differences in the development of Gc.

These general predictions have been examined by different
researchers using many different experimental methods (see An-
stey, Luszcz, & Sanchez, 2001; Carroll, 1993, 1998; Flanagan &
McGrew, 1996; Horn, 1988, Horn, 1998; McArdle, Hamagami,
Meredith, & Bradway, 2000; McArdle & Prescott, 1992; McGrew
& Flanagan, 1998; Woodcock, 1990). For example, regarding the
structural predictions, Carroll (1993) argued that the fluid—
crystallized structure is only a second stratum in a more complex
three-stratum structure. At the base of this hierarchy, or at the first
stratum, Carroll located many primary abilities, whereas he con-
sidered the third stratum a general factor, g, the result of the
common factor variance of the second-stratum factors. Of key
interest in this study are the age-curve predictions of Gf-Gc theory,
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and these have generally found support in a wide range of recent
cross-sectional studies (e.g., Horn & Cattell, 1967; Horn & Noll,
1997; Lindenberger & Baltes, 1997; McArdle & Prescott, 1992).
The prominent feature of a developmental separation of Gf and G¢
factors is depicted here in Figure 1 (from Cattell, 1987). This
theoretical plot has both Gf'and Gc functions rising through youth
until early adulthood, when Gf declines most rapidly while Gc is
continuously rising well into the 60s and 70s. Also illustrated here
is the classical problem of creating a composite of the two, termed
traditional intelligence. Key developmental information is lost
because of aggregation (i.e., averaging) over the two independent
constructs.

Empirical evidence in support of this broad separation of cog-
nitive functions over the life span predated the initial statements of
Gf-Gc theory (Cattell, 1971, pp. 186). In particular, researchers in
this area recognized Jones and Conrad’s (1933) seminal research,
a well-known and large-scale cross-sectional study of the Army
Alpha tests. Jones and Conrad (1933) concluded,

The chief characteristic of the curve may be summarized as involving
a linear growth to about 16 years, and a negative acceleration be-
yond 16 to a peak between the ages of 18 and 21. A decline follows,
which is much more gradual than the curve of growth, but which by
the age of 55 involves a recession to the 14-year level. (p. 239)

Jones and Conrad (1933) also recognized another key result:

Of special interest is the observation that the tests showing the most
rapid decline are Tests 7 (analogies), 3 (“common sense”), and 6
(numerical completion). These tests may perhaps be considered, at
least on a priori grounds, to be the best in the Army Alpha for the
measurement of basic intelligence, i.e., to be most free from the
influence of environmental variables, and from the accumulative
effects of differential experience. Our results here confirm
Thorndike’s conclusion that age exerts its most adverse influence
upon native capacity or “sheer modifiability.” (p. 253)
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Figure 1.
growth and action (p. 206) by R. B. Cattell, 1987,
Science Publishers. Reprinted with permission.
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In a summary of prior research, Botwinick (1977) referred to
this distinction in the growth patterns of different intellectual
abilities as the “classic aging pattern,” and others labeled it as the
“hold versus no-hold pattern” (e.g., Bayley, 1966; Eichorn,
Clausen, Haan, Honzik, & Mussen, 1981; Horn, 1970; W. L. Hunt,
1949; Wechsler, 1955). The empirical validity of the classic aging
pattern has been brought into question by the results of studies in
which abilities measured with the “hold” tests were found to
decline with age as well (e.g., Baltes & Schaie, 1976; Kangas &
Bradway, 1971; Wechsler, 1955). The separate age-curve predic-
tions of Gf-Gc theory have also been examined in detail in longi-
tudinal studies, and these have provided more recent empirical
support (e.g., Baltes & Mayer, 1999; Donaldson & Horn, 1992;
McArdle, Prescott, Hamagami, & Horn, 1998; Schaie, 1996).

The measurement basis of Gf-Gc theory has been expanded
considerably in work by Horn (1970, 1972, 1988, 1991, 1998).
Much of this work attempted to bring together relevant results
from experimental studies of cognition with results from studies of
individual differences. A path diagram summary of the broad
structural factors in the contemporary version of this cognitive
systems theory is presented here in Figure 2 and includes 8§ to 10
common factors (for details, see Horn, 1985), each measurable
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using multiple indicators. Some key broad cognitive abilities
within this system can be defined as follows:

Fluid reasoning (Gf)—the ability to reason, form concepts, and
solve problems that often involve unfamiliar information or pro-
cedures. Gf is manifested in the reorganization, transformation,
and extrapolation of information.

Comprehension—knowledge (Gc)—the breadth and depth of
knowledge, including verbal communication and information.
When previously learned procedures are used, reasoning is also
included.

Long-term retrieval (Glr)—the ability to store information ef-
ficiently and retrieve it later through association.

Short-term memory (Gsm)—the ability to hold information in
immediate awareness and then use it within a few seconds; also
related to working memory.

Visual processing (Gv)—spatial orientation, the ability to ana-
lyze and synthesize visual stimuli, and the ability to hold and
manipulate mental images.

Auditory processing (Ga)—the ability to discriminate, analyze,
and synthesize auditory stimuli. Ga is also related to phonological
awareness.
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reasoning, CFR = cognition of figural relations, R = quantitative reasoning; G, = Broad Visualization, Cs =
speed of closure, Cf = flexibility of closure, S = spatial orientation, P = perceptual speed; SAR = Short-Term

Acquisition Retrieval, Ma = associative memory, Ms

span immediate memory, Mm = meaning paired

associates immediate memory; vSD = Visual Sensory Detectors, SMT = sperling matrix awareness, VLA =
visual location address; G, = Crystallized Ability, V = verbal comprehension, EMS = evaluation of semantic
systems, CMR = cognition of semantic relations, N = number facility; G, = Broad Auditory Thinking, DAS =
discriminate patterns of sounds, MJR = maintaining and judging rhythms, Tc = temporal tracking of sounds;
TSR = Long-Term Storage Retrieval, Fi = ideational fluency, Fa = associational fluency, Fe = expressional
fluency, SM = semantic memory over minutes; aSD = Auditory Sensory Detectors, SPD = auditory immediate
memory, Ac = auditory acuity, Va = auditory valence recall; G, = Clerical Speed; CDS = Correct Decision
Speed. From “Remodeling Old Models of Intelligence: Gf-Gc Theory,” by J. L. Horn, 1985, in B. B. Wolman
(Ed.), Handbook of Intelligence (p. 294), New York: Wiley. Copyright 1985 by John Wiley & Sons, Inc. This
material is used by permission of John Wiley & Sons, Inc.
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Processing speed (Gs)—speed and efficiency in performing
automatic or very simple cognitive tasks.

Quantitative knowledge (Ggq)—the ability to comprehend quan-
titative concepts and relationships and to manipulate numerical
symbols.

Reading—writing (Grw)—the ability associated with reading and
writing; probably includes basic reading and writing skills and the
skills required for comprehension and expression.

Academic knowledge (Gak)—the attained level of information
and procedures related to scholastic achievements.

Although the broad Gf and Gc common factors are still prom-
inent aspects of this cognitive system, it is clear that other aspects
of cognitive functioning have broad impacts too, including visu-
alization (Gv) and audition (Ga) and independent aspects of mem-
ory (Glr, or tertiary storage and retrieval [7SR] and Gsm, or
short-term acquisition and retrieval [SAR]) and speediness (Gs).
These interdependent functions are thought to be important in an
understanding of individual differences in cognition over age. The
extension of the Gf-Gc kinematic-trend predictions is presented for
some of these broad factors in Figure 3 (from Horn, 1986). Again,
we expect that Gc rises over age (with 7SR) while Gf declines with
age (with Gs, SAR, and even Gv).

Although there seems to be a broad consensus about major
aspects of these age changes in cognitive variables, there is a lack
of precision in the descriptions of which cognitive functions
change over age. It is still unclear whether the patterns of growth
and change differ from one cognitive function to another. The
general shape or shapes of the age curves of cognitive functions
are still unclear. It is unclear at what chronological age or ages
these curves reach their peak and at what age or ages they start to
decline. It is also unclear whether the same age curves do, in fact,
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capture the variation both between persons and within persons. We
address these substantive questions in this research.

Recent Longitudinal Methodology

There are many ways to address these substantive questions
using empirical data and growth curve models (see McArdle, in
press, for a historical overview). Although cross-sectional age
studies of persons at one point in time can deal effectively with age
differences between groups, these studies are incapable of exam-
ining age changes within a group. For this and other reasons,
considerable attention has been directed toward collections of data
from persons at multiple points in time (e.g., Collins & Horn,
1991; Nesselroade & Baltes, 1979).

Prior longitudinal studies (e.g., Baltes & Mayer, 1999; Bayley,
1966; Botwinick, 1977; Schaie, 1996) have indicated several
methodological problems to keep in mind when interpreting re-
sults, including biases that are due to regression toward (and
egression away from) the mean, artificial relationships between
initial level and change, biases that are due to selective survival,
and training, or practice, effects. These studies have also indicated
psychological factors that may play a role in the results, including
individual differences in attitudes (e.g., about testing), the ease of
attending testing sessions, incentives (e.g., pay for volunteering),
the conditions under which testing was done (e.g., when in military
service, when hospitalized), factors determining attitudes (e.g., the
historical period in which participants were raised), ethnicity,
geographical region, and many others. Furthermore, the need to
make appropriate inferences from models with incomplete longi-
tudinal data is a particularly acute problem for studies of psycho-
logical constructs measured over the entire life span.
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Figure 3. An elaboration of the Gf-G¢ kinematic-trend hypotheses for the adult life span. From “Intellectual
Ability Concepts,” by J. L. Horn, 1986, in R. L. Sternberg (Ed.), Advances in the Psychology of Human
Intelligence (p. 52), Hillsdale, NJ: Erlbaum. Copyright 1986 by Lawrence Erlbaum Associates. Reprinted with
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Some of these methodological problems have been considered
in recent statistical techniques in latent change models (see
McArdle & Bell, 2000; McArdle & Hamagami, 2001; McArdle &
Nesselroade, 1994). These new latent-variable structural equation
models (SEMs) follow a traditional growth curve approach. In this
article, we write (a) a change model for the true scores or latent
variables and (b) an expected trajectory over all times of interest,
and (c) we fit the expected trajectories to the available raw score
information for each person. Assuming enough data are collected,
this approach allows us to (d) fit a model to a time series of
data on one or more variables; (e) write a structural model for the
means, deviations, and correlations; (f) assume separate
individual-difference components for curve characteristics such as
levels, slopes, and asymptotes; and, (g) represent growth curve
concepts as testable hypotheses.

These newer versions of latent growth models are flexible and
include provisions for missing and unbalanced data (McArdle &
Anderson, 1990; McArdle & Bell, 2000; McArdle & Hamagami,
1992; McArdle & Woodcock, 1997). Although it is not yet widely
recognized, these latent growth SEMs turn out to be mathemati-
cally and statistically equivalent to what are popularly known as
random coefficient, multilevel, or hierarchical linear models (Bryk
& Raudenbush, 1987, 1992; McArdle & Hamagami, 1991, 1992,
1996; Metha & West, 2000; Miyazaki & Raudenbush, 2000;
Wishart, 1938). These growth models recognize the multiple-level
structure of the data following classical analysis of variance
(ANOVA) models—as repeated observations “nested” within in-
dividuals, with both “between” and “within” estimation of inter-
cepts and slopes (Metha & West, 2000; Singer, 1998). We take
advantage of this parallel development by using some newly
available multilevel computer programs to fit some newly avail-
able latent growth models (for details, see McArdle & Woodcock,
2000).

Similar multilevel models for time lag have recently been used
for cognitive aging research. Sliwinski and Buschke (1999) used
longitudinal data to study the impacts of age and processing speed
as predictors of other cognitive changes. Wilson, Gilley, Bennett,
Beckett, and Evans (2000) used longitudinal time lags to examine
the relation of age and other variables to the onset of Alzheimer’s
disease. Because of the different initial ages of the participants,
both studies used longitudinal multilevel analyses of time lags and
considered age as a predictor variable in the equations. However,
these time-based multilevel analyses are not formally equivalent to
using age-based multilevel analyses. That is, these multilevel
analyses may provide an accurate representation of time changes
(as in McArdle & Woodcock, 1997) but may not be an adequate
representation of age changes (as in McArdle & Bell, 2000;
McArdle & Hamagami, 1992; McArdle & Woodcock, 2000; Nes-
selroade & Baltes, 1979; Wohlwill, 1973).

In the present research we use a mixture of age-based and
time-based models that employ two time points of data. This
accelerated longitudinal design (Aber & McArdle, 1991; Bell,
1954; McArdle & Anderson, 1990; McArdle & Bell, 2000;
McArdle & Woodcock, 1997) links all the different age cohorts as
they move throughout the two measurement occasions. Two-
occasion data permit an initial way to measure individual growth,
and data with a wide age spread permit a way to study develop-
ment over a long period of the life span (e.g., S. C. Duncan &

Duncan, 1995; McArdle & Hamagami, 1992; cf. Swanson, 1999).
In particular, this approach allows one to fit latent growth models
of age using multilevel models that estimate parameters of indi-
vidual trajectories including intercepts, age slopes, and individual
variation in such parameters. These models can also lead to other
alternatives, such as planned differences in time lags and incom-
plete and unbalanced data (see McArdle & Woodcock, 1997,
2000).

Overview of the Current Research

In this study we ask some basic questions such as How do broad
cognitive functions grow and change within an individual over
age? and Are these growth and change patterns different from one
variable to another? We examine two-occasion longitudinal data
from a relatively large sample of persons (N ~ 1,200) given WJ-R
tests (McGrew et al., 1991; Woodcock & Johnson, 1989). The
WIJ-R scales are a wide-range comprehensive set of individually
administered tests of intellectual ability, scholastic aptitude, and
achievement. At least four features of the WJ-R make it especially
valuable as an instrument for research in human development and
psychometric change. The WJ-R scales (a) are well-normed from
ages 2 to over 90 years, (b) are calibrated using a Rasch model,"
(c) include multiple ability measures, and (d) can be administered
quickly and easily. The equal interval feature of these Rasch-based
scales is useful in time-lag research. In theory, differences in the W
scale can be interpreted to have the same meaning at any perfor-
mance level, a critical feature of studies in which the change in a
score (i.e., a rate) is of primary concern (e.g., see Embretson, 1996;
McDonald, 1999; Woodcock, 1999). Despite such psychometric
features, the WJ-R has not yet been the focus of a great deal of
longitudinal research (McArdle & Woodcock, 1997; Shaywitz,
Escobar, Shaywitz, Fletcher, & Makuch, 1992).

The longitudinal structural equation models we use are all based
on the general theme of a latent growth model of age (see Browne
& Du Toit, 1991; McArdle, 1988; McArdle & Aber, 1990;
McArdle & Epstein, 1987; Meredith & Tisak, 1990). We show
how these longitudinal data can be effectively analyzed using
contemporary statistical techniques based on latent growth and
multilevel models. We emphasize the interpretation of results in
terms of developmental components of change, and we elaborate
on technical issues in footnotes and appendixes. Our initial models
are based on standard polynomial age changes, but we move

' W scores and Rasch scaling: All WJ-R scales use a constant of 500
arbitrarily set as the mean score of 10-year-olds, and this constant has been
removed in most analyses here. Score differences are based on a Rasch
model with a logit or log-odds transformation. An important characteristic
of any Rasch scale is that a given difference along the scale has the same
implication for change in performance at any level and in any area
measured. For example, if on retest a person has grown 10 W units from the
initial score, this person can now perform tasks with 75% success that were
performed with 50% success on the initial test (Woodcock, 1999). If the
person has declined by 10 units from the initial score, this means the person
now performs tasks with 25% success that were formerly performed with
50% success. This relationship is true for any 10-point difference on the W
scale, whether the test performance is a kindergartner’s ability to blend
speech sounds or a college student’s ability to solve calculus problems.
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quickly to nonstandard linear age segments (i.e., splines) models
and several nonlinear forms. One of these models, a dual expo-
nential model, has a reasonable substantive basis in aging (e.g.,
McArdle & Hamagami, 1996; McArdle & Woodcock, 2000).
These growth curves are compared across different variables and
across different demographic groups. In general, we show how
these kinds of longitudinal models are useful for analyses of life
span curves from multilevel longitudinal data, and we present
some broad substantive implications of these results.

Method

Participants

Between June 1988 and September 1996, we collected longitudinal
retest information on persons who had already been measured as part of the
norming sample of the WJ-R tests (see McGrew et al., 1991). The present
study is based on data from a sample of 1,193 participants who provided
WIJ-R data on at least two occasions of measurement (for up to 17 WJ-R
tests). This sample includes persons ranging in age from 2 to 95 years
(median age = 20.3 years, mean age = 26.9 years) who participated in
both relatively short-term test-retest (e.g., time lag less than 1 year) and in
longer term test—retest (Mdn = 2.2 years, M = 2.7 years). Characteristics
of these longitudinal participants are described in Table 1. To simplify this

Table 1
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description we separated the sample into five age groups—ages 2-5, 610,
11-19, 20-49, and 50-95 years—and into five time-lag groups—time lags
of 01, 1-2, 2-3, 3—4, and 4-10 years. The sample is not evenly distrib-
uted over these groups. The largest subset of people (n = 100) is in the
oldest age group (ages 50-95) and was measured over 3—4 years of time.
The smallest subset (n = 5) is in the youngest group (ages 2-5) and was
measured over the longest time lag (4—10 years). The relationship between
age at first test and time lag is relatively small (r = .10).

Table 2 lists the demographic characteristics of the WJ-R norming
sample and the retest sample studied here. We selected participants using
a randomly stratified sampling designed to create some spread in age and
time lag between measurements (based on studies by McArdle, 1994;
McArdle & Woodcock, 1997). We started with all persons who had
completed the initial testing as part of the norming study (N > 6,000), and
we randomly stratified these persons on age, sex, and geographical region
over most of the United States. To create the retest sample, we started
with a list of the entire norming sample and (a) randomly sorted persons
within each stratum into a within-cell list, (b) recontacted persons by mail
and phone according to their position on this sorted list, and (c) contin-
ued with these contacts until we reached a numerical quota of persons (25%
per cell) who agreed to testing. Selection for the second testing was not based
on the scores at the first testing. Noncontacts (< 23%) and refusals (< 15%)
were lower than the expected ranges for longitudinal studies (e.g., see
Schaie, 1996).

An Overall Description of the Persons, Ages, and Time Lags Sampled in the WJ-R Study

Age (in years) at first testing

Time lag between

test and retest 2-5 6-10 11-19 20-49 50-95 All ages
Less than 1 year
n 43 24 77 65 35 244
% of total 3.6 2.0 6.5 5.5 2.9 20.5
Median age (years) at Test 1 4.0 8.0 18.0 23.0 74.0 19.0
Median time lag (years) 0.6 0.8 0.8 0.7 0.6 0.7
1-2 years
n 43 82 101 68 40 334
% of total 3.6 6.7 8.5 5.7 3.4 28
Median age (years) at Test 1 4.0 8.0 14.0 31.0 67.5 14.0
Median time lag (years) 13 13 1.3 1.3 1.25 1.3
2-3 years
n 38 11 10 25 23 107
% of total 32 0.9 0.8 2.1 1.9 9
Median age (years) at Test 1 2.0 6.0 16.5 31.0 67.0 16.0
Median time lag (years) 2.6 2.6 2.7 2.7 2.8 2.7
3-4 years
n 34 46 57 95 100 332
% of total 2.8 3.9 4.8 8.0 8.4 27.8
Median age (years) at Test 1 4.0 7.5 14.0 36.0 65.0 31.0
Median time lag (years) 34 3.6 3.4 34 33 34
4-10 years
n 5 25 51 66 29 176
% of total 0.4 2.1 4.3 5.5 2.4 14.8
Median age (years) at Test 1 5.0 8.0 16.0 33.0 66.0 21.0
Median time lag (years) 4.2 42 8.0 7.0 7.0 7.0
All time lags
n 163 188 296 319 227 1,193
% of total 13.7 15.8 24.8 26.7 19 100
Median age (years) at Test 1 4.0 8.0 16.0 31.0 67.0 20.3
Median time lag (years) 1.8 1.6 1.4 3.0 3.1 22

Note.

All persons listed here participated in at least two testing sessions using some of the same WJ-R tests.

WI-R = Woodcock—Johnson Psycho-Educational Battery—Revised.



LONGITUDINAL ANALYSES OF INTELLECTUAL ABILITIES

Table 2

Demographic Characteristics of the Retest Sample and the Norming Sample

Retest sample

Norming sample

Characteristic Statistic (N = 1,193) (N = 6,471)
Age (years) M (SD) 27.4(22.9) 20.3 (18.2)
Minimum 2.00 1.92
Maximum 95.1 95.6
Gender
Male n (%) 555 (46.5) 3,152 (48.7)
Female n (%) 638 (53.5) 3,317 (51.3)
Ethnicity
White non-Hispanic n (%) 797 (68.8) 4,445 (68.7)
Black non-Hispanic n (%) 207 (17.4) 1,054 (16.3)
American Indian n (%) 19 (1.6) 71 (1.1)
Asian Pacific n (%) 60 (5.0) 197 (3.0)
Hispanic n (%) 110 (9.2) 592 (9.1)
Missing n (%) — 112 (1.7)
Education (years) M (SD) 10.4 (4.8) 9.11 (4.9)
Minimum 0 0
Maximum 21.0 25.0
Educational attainment
No high school n (%) 491 (41.2) 3,440 (53.2)
High school n (%) 163 (13.7) 519 (8.0)
No college n (%) 264 (22.1) 1,183 (18.3)
College n (%) 50 (4.2) 189 (2.9)
Beyond college n (%) 81 (6.8) 322 (5.0)
Missing n (%) 144 (12.1) 818 (12.6)
Occupational level
White collar n (%) 214 (17.9) 714 (11.0)
Blue collar n (%) 147 (12.3) 463 (7.2)
Service n (%) 83 (7.0) 230 (3.6)
N/A n (%) 749 (62.8) 4,952 (76.6)
Occupational status
Employed n (%) 244 (20.5) 776 (12.0)
Unemployed n (%) 34 (2.8) 156 (2.4)
Not in labor force n (%) 190 (15.9) 561 (8.7)
N/A n (%) 725 (60.8) 4,866 (75.2)

Note. N/A (not applicable) includes school-age participants, housewives, and dropouts.

The retest participants were selected to reflect a range of age, sex, and
geographical regions. As can be seen in Table 2, these participants were
reasonably similar to the norming sample on several other characteristics.
Although the longitudinal sample was slightly older (by design), most other
demographic characteristics were the same as those for the larger WJ-R
norming samples. An interview was arranged for each person at a conve-
nient and quiet location (school, home, public library, etc.), and after
informed consent was established, each person was examined by one
interviewer for approximately 3 hr.

Variables Measured

Table 3 is a list and description of the WJ-R scales that were used in this
study. Included are the 14 basic measures of the WJ-R that are intended to
measure seven broad factors used in contemporary theories of intellectual
ability theory: Fluid Reasoning (Gf), Comprehension—Knowledge (Gc),
Long-Term Retrieval (Glr), Short-Term Memory (Gsm), Processing Speed
(Gs), Auditory Processing (Ga), and Visual Processing (Gv). These first
seven scales are each created as an unweighted average of two indicators
(listed in Table 3), and each is reported to have relatively high internal
consistency reliability (r,. ~ .90; see Appendix C of McGrew et al., 1991).
Three additional clusters are widely used in academic and other settings
and are also presented in Table 3: Broad Quantitative Ability (Gg), Broad
Academic Knowledge (Gk), and Broad Reading and Writing (Grw). These

three clusters are based on multiple measures with high internal consistency
reliability. The last variable, Broad Cognitive Ability (BCA; see McGrew et al.,
1991), is derived by averaging the first seven composite scores.

It may also be useful to note that many of the participants were also
measured on a variety of other intellectual abilities (e.g., the Wechsler
Adult Intelligence Scale, Cattell’s Matrices, Power Letter Series) as well as
given a comprehensive demographic questionnaire, but these variables are
not discussed here. However, in order to keep the overall testing time at the
second occasion to about 3 hr, only 17 of the 22 WJ-R measures were
administered to all participants. That is, for the most part, this incomplete
data structure was planned in advance of the data collection to permit the
measurement of a wide range of variables (after McArdle, 1994). However,
because of the small longitudinal sample sizes for some variables (e.g.,
Picture Vocabulary with n = 327), and in order to keep the data structure
as simple as possible, several factors are represented here on the basis of
only one variable (e.g., Gc is simply Oral Vocabulary). Because of the
relatively high reliability, all composites are treated in the same way in
further analyses here.

Data Description

Table 4 lists the means, standard deviations, and minimum and maxi-
mum scores for each of the 11 WJ-R composites for the retest sample used
in this study and for the overall WJ-R norming sample (N = 6,471) from
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Table 3
A Description of the WJ-R Variables Used in the Test—Retest Study
Internal Internal
WIJ-R factor cluster consistency (r;.) WIJ-R test N[1]/N[2] consistency (r;.)
Fluid Reasoning (Gf) 946 Analysis—Synthesis (AS) 1,044/1,090 AS = .900
Concept Formation (CF) 1,045/1,087 CF = .941
Comprehension-Knowledge (Gc) 936 Picture Vocabulary (PV) 1,193/327 PV = .879
Oral Vocabulary (OV) 1,050/1,098 OV = .900
Long-Term Retrieval (Glr) 945 Memory for Names (MN) 1,193/1,192 MN = 916
Visual Auditory Learning (VAL) 1,193/285 VAL = .909
Short-Term Memory (Gsm) .890 Memory for Words (MW) 1,071/1,070 MW = 800
Memory for Sentences (MS) 1,193/1,191 MS = .865
Processing Speed (Gs) .866 Visual Matching (VM) 1,047/1,091 VM = .799
Cross Out (COU) 1,047/1,040 COU = .752
Auditory Processing (Ga) .888 Incomplete Words (IW) 1,193/1,191 W = .787
Sound Blending (SB) 1,193/268 SB = .867
Visual Processing (Gv) .816 Visual Closure (VC) 1,193/1,192 VC =.721
Picture Recognition (PR) 1,193/254 PR = .808
Broad Quantitative Ability (Gg) 954 Calculation (CA) 1,193/263 CA = .925
Applied Problems (AP) 1,192/1,106 AP = .920
Broad Academic Knowledge (Gak) .949 Science (SC) 1,193/1,146 SC = .875
Social Studies (SS) 1,193/1,141 SS = .887
Humanities (HU) 1,193/1,133 HU = 877
Broad Reading and Writing (Grw) 943 Letter Word Identification (LWI) 1,193/1,081 LWI = 936
Passage Completion (PSC) 1,049/1,050 PSC = .895
Dictation (DI) 1,193/1,140 DI = .908
Broad Cognitive Ability (BCA) 948 Average of first seven factor composites 1,193/1,044

Note. Sample sizes (N[1] = test sample; N[2] = retest sample) are based on available data. WJI-R = Woodcock—Johnson Psycho-Educational
Battery—Revised. All reliabilities are from Appendix C in Woodcock—Johnson Revised Technical Manual (pp. 265-282), by K. S. McGrew, J. K. Werder,
and R. W. Woodcock, 1991, Itasca, IL: Riverside Publishing. Copyright 1991 by Riverside Publishing Company. Reprinted with permission.

which this longitudinal sample was drawn. The differences found here
between the two samples are all very small, with the retest sample scoring,
in general, about one to two points (W units) lower. A multivariate
statistical test on two independent samples (logistic prediction of the
test—retest sample vs. the norm minus test—retest sample) shows that these
group differences account for a trivial amount (R* < 0.01%) of the overall
variation in the data.

Table 5 is a more complete description of the raw data collected in this
test—retest study for the 11 WJ-R composites for the five age groups. It is
important to again note that both test and retest scores obtained on each of
the scales were originally collected on a Rasch-based measurement scale
(see Footnote 1). This further implies that differences or rates of change
between scale points can be meaningfully compared both within and
between variables.

To convey the key features of the distributions of these scores, we
present the various change statistics within each cell of Table 5. The first
two rows of each cell provide a simple indication of the rate of change in
scores from one testing time to the next (for calculation, see Table 6,
Equation 1). The first row is the median slope or change score (50th
percentile), and the second row includes values from both the lower
quartile (25th percentile) and an upper quartile (75th percentile). These
values can be interpreted as an expected score difference for each year of

time (e.g., a linear slope). For example, the median slope score obtained on
the BCA composite for all participants (lowest cells) is 50% = 2.1, with a
range of 25% = 0.4 and 75% = 5.2. The third row in each cell is the standard
test—retest correlation, uncorrected for either age or time lag. This simple
relationship between the BCA scores, 1y, 5, is .89 over all ages and times.

In general, most WJ-R scores obtained here show that the younger age
groups (ages 6—10 and 11-19) exhibit lower starting scores but more
positive score changes, whereas the older age groups (ages 20—49 and
50-95) display higher initial scores and less change. In most columns of
Table 5, there are systematic changes in scores related to age differences.
Some variables exhibit much larger age changes than others (e.g.,
Comprehension-Knowledge, Broad Academic Knowledge, Broad Reading
and Writing). Also, although we have not provided details here, these
1-year slope estimates seem to get smaller as the time lag between tests
increases (e.g., across the last row). The test-retest correlations exhibit a
substantial amount of variation but exhibit a slight tendency to be higher
with shorter time lags. The first age column also shows that only a few of
the youngest children (ages 2-5) were measured on all seven factors
(leading to the reduced n), but in further analyses we included any available
data. These 1-year change estimates and their ranges may be most useful
when used as descriptive indicators of the expected range of changes for
persons of specific ages on specific tests.
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Table 4
Descriptive Statistics for the WI-R Cognitive Variables in the
Longitudinal Sample and in the WJ-R Norming Sample

Retest sample Norming sample

WI-R factor cluster (N = 1,193) (N = 6,471)

Fluid Reasoning

M (SD) 506.2 (19.9) 508.6 (19.4)

Minimum 435.5 433.0

Maximum 553.5 553.5
Comprehension-Knowledge

M (SD) 536.6 (20.2) 537.0 (20.3)

Minimum 448.0 433.5

Maximum 575.5 595.0
Long-Term Retrieval

M (SD) 497.3 (13.0) 499.7 (13.8)

Minimum 447.0 434.0

Maximum 537.5 537.5
Short-Term Memory

M (SD) 510.1 (18.6) 512.6 (19.1)

Minimum 441.5 398.0

Maximum 566.5 573.5
Processing Speed

M (SD) 513.9 (18.2) 516.4 (18.3)

Minimum 443.5 417.0

Maximum 563.0 563.0
Auditory Processing

M (SD) 501.3 (17.6) 503.3 (17.0)

Minimum 433.0 422.0

Maximum 540.0 552.5
Visual Processing

M (SD) 504.9 (12.7) 506.7 (12.7)

Minimum 454.0 430.0

Maximum 533.5 538.5
Broad Quantitative Ability

M (SD) 532.8 (22.1) 534.6 (23.2)

Minimum 437.5 386.0

Maximum 601.5 607.5
Broad Academic Knowledge

M (SD) 529.3 (18.2) 530.4 (18.7)

Minimum 448.0 368.3

Maximum 571.7 574.3
Broad Reading and Writing

M (SD) 529.1 (18.0) 529.0 (17.9)

Minimum 421.0 421.0

Maximum 570.0 570.5
Broad Cognitive Ability

M (SD) 510.1 (13.9) 512.2 (13.6)

Minimum 456.0 440.0

Maximum 540.0 540.0

Note. WJ-R = Woodcock-Johnson Psycho-Educational Battery—Re-
vised.

Figure 4 includes several plots of the Broad Cognitive Ability (BCA)
variable for all persons having complete data at both occasions
(n = 1,044). We have subtracted the constant 500 (the empirical average
score at age 10) from each score for ease of presentation and modeling.
Figure 4A is a scatter plot of the BCA scores for each person at the first
(x-axis) and second (y-axis) occasions of testing; this plot illustrates the
generally high test-retest correlation. Figure 4B is a scatter plot of the
initial age at testing (x-axis) versus the BCA scores at the first occasion of
testing (y-axis); this plot shows a distinct curvature in the trend between
individuals at different ages—there is a steep rise up to about age 20 and
then a gradual decline afterward. Figure 4C is a scatter plot of the age at
testing (x-axis) versus the 1-year changes (see Equation 1 in Table 6) in

BCA scores (y-axis); here we see larger positive changes within individuals
at the earlier ages and a different pattern of changes at later ages. Finally,
Figure 4D is an individual line plot of the BCA scores that includes two
ages of testing and two BCA scores; here we see the same general
curvature but now with the combined cross-sectional (Figure 4D) and
longitudinal (Figure 4C) information.

Linear Growth and Change Models

‘We now consider a few kinds of structural models for the changes over
time that can be applied to the available WJ-R data, and these are outlined
in Table 6. In the notation used here, the longitudinal data collection is
based on the measurement of a group of persons (n = 1 to N) at two
occasions (m = 1 or 2); the observed score at each occasion, W,, ,; and the
corresponding chronological ages, Age,,, ..

The first equation (Equation 1) in Table 6 defines an observed rate-of-
change score (symbolized as W) as the W-score difference (W, — W)
divided by the amount of time between the test and the retest (Age, —
Age,). There are many published data analyses in which these kinds of
observed rates-of-change scores are outcomes in further data analyses (e.g.,
Giambra, Arenberg, Zonderman, Kawas, & Costa, 1995; McCrae, Aren-
berg, & Costa, 1987; Sullivan, Rosenbloom, Lim, & Pfefferman, 2000).
Unfortunately, the simple and practical use of rates-of-change calculations
has also led to a great deal of theoretical complexity and confusion. Prior
methodological research has shown that when observed rates are used as
outcomes in multiple regression analyses, the resulting coefficients can be
severely biased by several factors, including residual error, measurement
error, and regression (and egression) to the mean (e.g., Allison, 1990; Nessel-
roade & Bartsch, 1977; Nesselroade & Cable, 1974; Nesselroade, Stigler, &
Baltes, 1980; Raykov, 1999; Willett, 1990; Williams & Zimmerman, 1996).
These problems can be severe when standard linear regression is used with
time-dependent variables (e.g., Boker & McArdle, 1995; Hamagami &
McArdle, 2001; McArdle, Hamagami, Elias, & Robbins, 1991).

Methodological solutions to these problems have been proposed in
recent statistical techniques in latent growth and change models (see
McArdle & Bell, 2000; McArdle & Hamagami, 2001; McArdle & Nes-
selroade, 1994; Meredith & Tisak, 1990). In the approach used here, we
estimate the parameters of a model for the latent change score by speci-
fying an expected set of latent trajectories over time. In Equation 2 of
Table 6 we define (a) an initial starting score (w[0]) at a specific starting
time (¢ = 0); (b) a latent slope score (Aw), defined as the theoretical
difference in a pair of latent scores (w[f] and w[r — At]); and (c) an error
of measurement score at each occasion of measurement (e,,,).

A path diagram including additional aspects of the linear latent growth
model is presented in Figure 5. In the model used here we assume the
unobserved initial-level component (w[0]) has mean and variance (i.e., u,
and 0'20), and the error of measurement has a mean of zero, has constant
variance (02 > 0), and is uncorrelated with every other component. Here,
however, the constant change component (Aw) has a nonzero mean (i.e.,
s, the average of the latent change scores), a nonzero variance (i.e., 0,
the variability of the latent change scores), and a nonzero correlation with
the latent initial levels (i.e., py,). From these standard assumptions, we can
write a more complex set of expectations for the means, variances, and
covariances for all observed scores. This approach to the estimation of
latent parameters allows us to avoid some of the key problems raised by
observed change scores (e.g., see Cnaan, Laird, & Slasor, 1997; Goldstein,
1995; Lindsey, 1993; Littell, Miliken, Stoup, & Wolfinger, 1996; Pinherio
& Bates, 2000; Singer, 1998; Verbeke & Molenberghs, 2000).

The test-retest data collection used here includes some variation with
respect to the time lag between tests (e.g., see Table 1). The models
described earlier have not made full use of this variation, and a variety of
alternative models are possible. For example, if we consider that some
aspects of the observed score may be due to prior familiarity with the test
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Table 5
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One-Year Rates of Changes by Age Group for 11 WJ-R Factor Composites

Age (in years)

WI-R factor composite Change statistic 2-5 6-10 11-19 20-49 50-95 All ages
Fluid Reasoning Median A 8.7 5.1 3.0 2.0 1.2 33
(Gfs n = 1,192) Range of A 5.0-13.8 24-84 0.2-7.1 0.0-5.6 —0.2-4.3 0.4-7.7
Test-retest r .63 .65 .65 .66 .80 .85
Comprehension-Knowledge Median A 8.7 6.0 2.6 1.4 0.3 2.3
(Ge; n = 1,046) Range of A 6.2-11.3 2.5-8.9 0.0-5.7 0.0-3.8 —1.9-3.0 0.0-6.0
Test-retest r 49 14 .86 .84 91 90
Long-Term Retrieval Median A 6.0 3.4 2.6 0.6 —0.3 1.6
(Glr; n = 1,192) Range of A 2.7-11.2 0.0-8.3 0.0-12.0 —1.4-6.2 —2.4-1.6 —0.8-7.7
Test-retest r .54 .68 .60 .64 .58 .70
Short-Term Memory Median A 9.2 39 1.6 0.7 0.3 2.1
(Gsm; n = 1,191) Range of A 4.1-13.6 1.4-9.0 —1.4-6.0 —-1.6-5.3 —2.3-42 -1.1-7.6
Test-retest r .65 18 a7 17 .66 .85
Processing Speed Median A 7.8 6.6 2.4 1.2 0.3 2.1
(Gs; n = 1,042) Range of A 7.1-12.7 3.9-9.0 0.4-5.2 —04-35 —1.6-2.5 —0.1-5.6
Test-retest r .30 71 75 .84 .86 .85
Auditory Processing Median A 6.8 5.0 0.6 0.5 0.5 0.6
(Ga; n = 1,191) Range of A 0.0-12.0 0.0-10.3 —2.2-7.17 —2.7-6.8 —2.3-6.8 —2.1-8.1
Test-retest r .60 18 .57 .58 .65 .82
Visual Processing Median A 8.7 5.1 3.0 2.0 1.2 33
(Gv; n = 1,192) Range of A 5.0-13.8 24-84 0.2-7.1 0.0-5.6 —0.2-4.3 0.4-7.7
Test-retest r .63 .65 .65 .66 .80 .85
Broad Quantitative Ability Median A 15.7 9.1 0.3 0.0 0.0 3.0
(Gg; n = 1,106) Range of A 7.6-23.5 43-133 —3.0-7.0 —3.04.5 —2.9-42 —1.4-10.3
Test-retest r .58 73 .83 .82 .82 92
Broad Academic Knowledge Median A 10.9 6.5 2.6 1.0 —0.1 2.7
(Gak; n = 1,141) Range of A 7.1-15.2 43-84 —0.3-5.2 —0.5-3.5 —2.3-1.6 —0.2-7.6
Test-retest r .70 .86 .90 .88 91 94
Broad Reading and Writing Median A 22.1 8.4 2.4 0.4 —-02 1.7
(Grw; n = 961) Range of A 16.3-26.2 5.3-13.9 —0.1-5.8 —-1.3-3.1 —1.8-1.6 -0.7-7.1
Test-retest r .29 78 .92 .89 94 .90
Broad Cognitive Ability Median A 5.6 4.9 2.6 1.2 0.3 2.1
(BCA; n = 1,033) Range of A 52-74 3.2-7.0 1.0-5.3 0.2-4.0 —0.8-2.2 0.4-5.2
Test—retest r .61 .83 .88 .87 90 .89
Sample sizes used 163-161 188-177 269-295 280-319 218-227 1,193-995

Note.

itself, we can define a set of models representing retest, or practice,
components (e.g., McArdle & Woodcock, 1997), as presented in Equa-
tion 3 of Table 6.

Here the standard linear model applies to the first time of testing, but the
observed score at the second time of testing has a constant addition (p).
Although this practice component is unobserved, we assume it is a feature
of the test and not the trait (i.e., it only appears after the first occasion of
testing) and that it is the same at any interval of time. In the simplification
of this model illustrated in Figure 5, we assume this practice has a mean
(i.e., the average practice p,) and a variance (i.e., the variability of practice
0']2,) and no correlation with the latent initial levels or the latent changes. A
variety of more complex models are possible to use here.?

WIJ-R = Woodcock—Johnson Psycho-Educational Battery—Revised.

Nonlinear Growth and Change Models

The simple linear models described above are not always a reasonable
representation for longitudinal growth data (see, e.g., Figures 1 and 3). This
situation has led researchers to use more complex models, often based on
a polynomial series (Bryk & Raudenbush, 1987, 1992; Cohen & Cohen,

2 Alternative linear models: In the linear-change-plus-practice model
(Equation 3 of Table 6), we allow linear changes (Ap) in the size of the
practice effect with increasing time lags (Age, — Age,) between the test
and retest (see McArdle & Woodcock, 1997). With the use of this same
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Figure 4. A description of the Woodcock—Johnson Psycho-Educational
Battery—Revised (Woodcock & Johnson, 1989) Broad Cognitive Ability
(BCA) longitudinal data (retest n = 1,044).

1983; Goldstein, 1995; Stimson, Carmines, & Zeller, 1978) and written as
in Equation 4 of Table 6, in which four components of change are
introduced (e.g., Awl, Aw2, Aw3, and Aw4). In this type of model, the
latent difference score is assumed to change as a function of age, so the
resulting trajectory over age forms polynomial shapes with multiple points
of inflection. Of course, there are several well-known problems with fitting
polynomials to longitudinal data, including (a) a lack of direct interpreta-
tion of the coefficients associated with each polynomial power and (b) the
need for further often arbitrary constraints to deal with two-occasion data
(McArdle & Woodcock, 1997).

Our key goal in this analysis is to find a structural model that (a) captures
the apparent nonlinearity of the growth curve and (b) requires only a small
number of meaningful individual-difference components. One of the sim-
plest alternative models we can consider here is based on the joining of
“connected segments” of linear growth (see Bryk & Raudenbush, 1992;
Cudeck, 1996; Draper & Smith, 1981; McArdle, Paskus, & Boker, in press;
Smith, 1979). This kind of SEM can be written as Equation 5 in Table 6
and is based on the definition of the intercept (w[0]) at some specific “knot
point” or cutoff age (C), a constant slope score (Ab) for the person “before”
this age (Age < C), and a second constant slope (Aa) “after” at all later
ages (Age > C). The observed score at any specific age is thus assumed to
be an additive accumulation of the changes that have occurred up to that
age, and at the specific location of the cutoff points, the segments are

logical distinction it is possible to include more complex models for the
practice scores (p[f],), including a set of models with interactions of
practice effects with age. However, these kinds of models now include four
(or more) individual-differences terms. Because of the basic limits of
information available in test-retest data, we often cannot estimate all
variance terms simultaneously (examples to follow in the text). Given these
kinds of constraints, other researchers have found it useful to place con-
straints so the models represent the change from a baseline with initial age
held constant (Sliwinski & Buschke, 1999; Verbeke & Molenberghs, 2000;
Wilson et al., 2000). These restricted but popular mixed models may be
useful for understanding the time-lag components— but they are clearly not
focused on age components, so they are not examined further here (for
further details, see McArdle & Woodcock, 2000).

“joined.” These age-segmented SEMs can also be fitted using the multi-
level software described in Appendix A. In contrast to the polynomial
restrictions used above, this approach seems to be a reasonable way to
ensure the identification of the other model parameters. This use of linear
age segments can be expanded to include multiple cutoffs (C;) between any
specific ages. For example, a model including five segments can be defined
by the four age-group cutoffs of Tables 1 and 5 (i.e., ages 6, 11, 20, and 50;
Draper & Smith, 1981).

The previous multicomponent models are useful when particular age or
time segments are well defined. There also exist a variety of more complex
functional forms in which the components of the model can be used to
estimate these kinds of critical ages. Meredith and Tisak (1990) showed
how previous research could be reinterpreted as a structural equation model
written in the form of a latent curve with estimated basis coefficients (i.e.,
B[t] = BIt]). In recent work, McArdle and Hamagami (1992, 1996) and
McArdle and Bell (2000) have shown how this kind of a latent growth
model with an explicit structure on these latent loadings can be useful for
models of age-sampled test-retest data.

In the analyses presented here, we consider a latent growth model based
on a concept of competing forces (after Cerella & Hale, 1994; McArdle,
2001; Sandland & McGilchrist, 1979; Simonton, 1984; Zeger & Harlow,
1987), which is written as Equation 6 of Table 6. In this model, we assume
there are two rates (m, and ,) representing an accumulative rise before
(m, > 0), and an accumulative fall after (7, > 0), some unobserved but
estimable cutoff age (r = 7). These two exponential impacts are assumed
to be related to two different sources of individual differences (b and a), but
for the purposes of identification in test—retest data, these are aggregated
into one latent slope score (Aw[T,, 7,]). The difference between these two
exponential accumulations at any specific age is used as the loading (S[7])
for the age-related trajectory. The model parameters define other aspects of
these growth functions, including the expected age (7,) of the latent
maximum score (i.e., the peak) and the expected age (7,) of the latent
asymptote score (i.e., the initial decline; for details, see McArdle &
Woodcock, 2000).

Comparing Growth and Decline Curves

One overall theme in this research is the necessity of some procedure for
comparing the growth patterns between different variables. Typically, they
are compared by using a multivariate analysis of variance with a test for
what are often termed parallel growth curves across different variables

3 Identification restrictions for two-occasion data: The use of two-
occasion longitudinal data places some limits on the number of unique
parameters that can be estimated. This situation leads to numerical results
that show an overparameterization of the model, odd estimates (correla-
tions approaching 1 or —1), no unique computation of the standard errors,
and the need for further and often arbitrary constraints (see McArdle &
Woodcock, 1997). For example, in the higher order polynomial models
(see Equation 4 of Table 6), the mean coefficients are all unique under the
assumption that a minimal set of variance components (p < 3) is esti-
mated. In the latent growth spline model, each age segment is allowed to
have its own change means (u, and w,) and change variances (o7 and 02)
and possibly some correlation among components (o, for persons over-
lapping the cutoff age). In order to allow an optimal fit for the scores, the
levels and slopes in such a model are allowed to correlate (i.e., 0, 0p,)-
However, because most of the data collected will be in one age segment or
the other, it is appropriate to carry out estimation with a restriction of no
correlation among the age slopes across segments (i.e., 0, = 0, or based
on the overlapping persons). As we fit an increasing number of age
segments with only two-occasion data, the covariance constraints become
necessary for identification (i.e., all p,, = 0).
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Table 6
Algebraic Expressions of the Latent Growth Models Fitted to the WJ-R Data
Model Equation
Linear growth and change models
Observed rate-of-change model (1) AW, /At = (W,,, — W, ,)/(Age,,, — Age,,),
where W, , = observed score on person n at measurement m, and
Age,,,, = observed age of person n at measurement /.
Latent change score model 2) W, = {w[0], + Age, - Aw,} + ¢,,, and
Wy, = {wl0], + Age, - Aw,} + e,,,
where w[0], = latent initial-level score of person n,
Aw,, = latent slope score of person n, and
Con = latent error score of person n at measurement 7.
Retest, or practice, components model (€)] Wi, = {w[0], + Age, - Aw,} + ¢, and
W,, = (wl0], + Age, - Aw,} + plO], + (Age, — Age)) - Ap, + e,
where p[0], = latent initial practice score of person n, and
Ap, = latent slope of practice score of person n.
Nonlinear growth and change models
Polynomial growth model 4) W, = w0, + Age,, - Awl, + Age?, - Aw2, + Aged - Aw3, + Agel, - Awd, + e,
where Agel,, = age basis of power p for person n, and
Awp,, = latent polynomial component score of person n.
Connected linear spline model 5) W,.. = wl0], + B[Age,, < C] - Ab, + B[Age,, > C]- Aa, + e,,,,
where C = the latent age cutoff score (estimated or fixed),
Ab,, = latent slope “before” the age cutoff for person n, and
Aa, = latent slope “after” the age cutoff for person n.
Growth model of “competing” forces (6) W, = wl0], + BlAge,] - AwlT,, 7,1, + €,
with B[1]= exp(—m, - Age,) — exp(—, " Age,),
where fB[f]= the accumulation of a latent age basis,
, = latent rate “before” the age peak,
m, = latent rate “after” the age peak, and
Awl[T,,T,],, = the combined latent slope for person n.
Multivariate models to compare growth and decline curves
SEM enhanced “parallel growth curves” model (@) Y[Age,l, = u, + A, - glAge,), + u[Age,],, and

X[Age,l, = . + Ao glAge, ], + ulAge,],, with
glAge,], = gl0], + BlAge,] - Ag, + e[Age,].,

where A, = the latent loading (proportion) for variable ¢, and
B, = the latent intercept (additive) for variable g.

Note. WIJ-R = Woodcock-Johnson Psycho-Educational Battery—Revised. SEM = structural equation modeling.

(Bock, 1975; Pothoff & Roy, 1964; Rao, 1958; Rencher, 1995; Zuker,
Zerbe, & Wu, 1995). In these analyses, we assume multiple observed
scores Y and X are independently measured over ages and times, and we
write a model based on Equation 7 of Table 6. In this model, both measured
variables (Y and X) are related within each time to a third latent variable (g)
by a common factor model with variable intercepts (u,, 1), factor loadings
(Ay, A,), and uniquenesses (u,, u,). Over time we assume that only the
common factor score (g[Age,,]) changes as a function of one of the basis
coefficients (B[Age,,]), as described above (i.e., linear or nonlinear). This
SEM is consistent with the idea that each measured variable is only an
indicator of a latent construct with factorial invariance over age and time
(as in McArdle, 1988; McArdle & Nesselroade, 1994; McArdle & Wood-
cock, 1997). A path diagram of this general structural growth model is
presented here in Figure 6.

In this bivariate representation of the common factor model, we need to
add additional constraints to ensure that the parameters are identified. This
results in a model in which the two growth curves are assumed to be
proportional (A) to one another except for constants representing the

differences in origin (w,) and scale (u,[Age,,]). By comparing the fit of this
combined bivariate model to that of the separate models, we obtain a
formal test of the fit of the “same shape” hypothesis. Obviously, this is only
one of many SEMs for describing the similarities of the shape of the
growth curves across multiple variables, but it turns out to be both simple
to fit and useful.

Maximum Likelihood Estimation of Longitudinal
Multilevel Models

One benefit of the formal model expressions in Table 6 is that they can
be fitted directly to data and examined as empirical alternatives. Each of
these alternative models yields an explicit set of expected means, variances
(standard deviations), and correlations over time. By comparing these
expected statistics to the observed statistics from the data, we can (a)
estimate an optimal set of values for the unknown parameters and (b)
examine the goodness of fit of the model. To the degree that the alternative
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Figure 5. A path diagram of the multilevel growth model. W, = score at
time t; AW = slope; P = practice; e = uniqueness; 8, = basis coefficient;
05 = variance of level; o3 = variance of slope; o, = covariance of level

and slope; 0'12, = variance of practice; w, = mean of level; w, = mean of
slope; p, = mean of practice.

models yield different expectations, we have the possibility of detecting
empirically grounded differences between these theoretical concepts.

The computer software needed for these kinds of multilevel growth
model analyses is widely available (for reviews, see Bryk & Raudenbush,
1992; Hox & Kreft, 1994; Joreskog & Sorbom, 1999; Kreft, De Leeuw, &
van der Leeden, 1994). Each of these computer programs provides maxi-
mum likelihood estimates (MLEs) and standard-likelihood-based statistical
information on goodness of fit (e.g., f = —2LL and chi-square) for a wide
variety of what are now commonly termed multilevel or random coefficient
models (Bryk & Raudenbush, 1987, 1992; McArdle & Hamagami, 1996).
Although there are some practical differences among these computer
programs, results from the PROC MIXED and PROC NLMIXED algo-
rithms of SAS are presented here (e.g., Cnaan et al., 1997; Littell et al.,
1996; Singer, 1998; for detailed scripts, see McArdle & Woodcock, 2000,
and Appendix A in the present article). We fit these structural (i.e.,
multilevel) models using all available data with a likelihood function (f)
that is typically based on multivariate normal theory (i.e., f = —2LL; Little
& Rubin, 1987; McArdle, 1988, 1994), and a variety of goodness-of-fit
indices are used.*”

Results

Four sets of numerical results are presented here in summary
form: (a) a summary of growth and decline models based on
polynomial multilevel strategies; (b) details on models with linear
age splines (see Table 7); (c) elaboration of nonlinear models
based on dual competition (see Tables 8 and 9); and (d) a summary
of differences between growth curves for different abilities using
common factor models.

Initial Multilevel Polynomial Models

The multilevel analyses were initiated using a standard sequence
of linear polynomials of increasing complexity, and we can illus-
trate these results by describing the numerical results for the BCA
variable (see Figure 4). A first model fit included only a single
mean (u, = 7.9) and a single error variance (af(o, = 233.4) and
yielded a baseline likelihood (f = 17,626). A second model in-
cluded individual differences in initial levels (of = 206.6), re-
duced the size of the error variance (o> = 36.3), and improved the
fit, X2(1) = 1,245, n2 = .844. The next model fit was a linear
growth model (see Equation 2 in Table 6) with an intercept mean
(o = 11.8) at age 20 and a slope mean (n, = w, = 0.294) for

4 Goodness of fit: All of the models we examine represent different
hypotheses about the growth and decline of cognitive abilities. In our
analyses, we compare these models and select the most accurate results on
both statistical (i.e., statistically significant) and conceptual (i.e., prior
research) grounds. As an overall index of goodness of fit we calculated the
difference in the likelihood (f{j — k}) for nested models. Under normal
theory, this statistic is assumed to be distributed as a noncentral chi-square
variate with degrees of freedom based on the differences in the number of
nested parameters (df{j — k}). As a second index of fit we calculated a
likelihood increment percentage (LIP; LRT = likelihood ratio test; i.e.,
LIP{j} = 1 —[LRT,ge1( jy/LRTpuserine] X 100), also popular in other
contexts (see Horn & McArdle, 1980; Menard, 2000). We also calculated
the percentage reduction in error (PRE), documented by Snijders and
Bosker (1994). These percentages are assumed to be unbiased estimates of
the modeled variance at the first level (PRE,) and at the second level
(PRE,) for a correctly specified population, so we used these as one
indicator of the impact of specific predictor variables (for details, see Kreft
& De Leeuw, 1998; Singer, 1998; Snijders & Bosker, 1994). These
analyses include multiple statistical tests, and because we did not use any
adjustment in our analyses, we cannot claim to enjoy any overall experi-
mentwise protection. In a standard multiple-model comparison, we could
presume we had an overall null hypothesis and then adjust the alpha level
by, say, using a traditional Bonferroni correction procedure. However, as
soon as we are interested in another analysis, which we usually are, we
would need to go back and correct the prior analyses for these additionally
new tests. As far as we know, this problem of the likely overstatement of
results by multiple and continual testing is not solved, and about all we can
offer is to report our statistical indices in the context of mathematical
modeling for others to use and openly critique. Instead, we identify results
for those parameters that were not twice as large as their own standard
errors (i.e., p [H,] > .05; see Tables 7 and 8).

5 Fitting multivariate multilevel models: Recent research has shown how
any bivariate model (see Table 6, Equation 7) can be reparameterized and
fit using the available mixed-model software (Goldstein, 1995; McArdle,
Paskus, & Boker, in press). The observed data for Y[Age] and X[Age] can
be lined up as a single vector (W[Age]’ = [Y[Age]’ | X[Age]']), and by
making appropriate provisions for the expectations of the model for each
variable, the standard single-outcome optimization can treat this multiple
variable model as a single equation. It follows that it is possible to construct
a simultaneous test of proportionality of multiple (M > 2) growth vari-
ables, estimating the proportions (A;, A, etc.) as factor loadings and
obtaining an overall fit to test the hypothesis of a general growth factor (as
in McArdle, 1988; McArdle & Woodcock, 1997). In practice, however,
these kinds of multiple-outcome variable models turn out to be complex
models to fit (McArdle et al., in press).
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Figure 6. A path diagram of the multivariate multilevel growth model. X[t] = score of variable X at time t;
Y[t] = score of variable Y at time t; u = uniqueness; g[t] = general factor at time t; Ag = slope of general factor;
g, = initial level of general factor; z[t] = disturbance of factor g at time t; p = practice component; 3 = basis
coefficient; w = means of components; o> = variances of components; A = loading of variable on factor g.

each year of age before and after age 20. The variance of the
age-related changes (07 = .464, p,; = —.64) was notable; there
was a decrease in the size of the first-level residual variance (o>
= 28.4) and a corresponding improvement in the model fit,
X°(3) = 253.

The next three models fit to BCA added successive polynomial
growth models to the means. Because we only have two time
points of data for each person, we limited the estimation of
variance components to the intercept and slope but estimated all
means of the higher order powers. The fit of each progressive
higher order polynomial component yielded a significant increase
in the fit of the model: second-order quadratic model, x*(1) = 253,
An? = .034; third-order cubic model, ¥*(2) = 1,529, An* = .072;
and fourth-order quartic model (Equation 3 of Table 6), x*(3) =
1,805, An> = .083. Higher order analyses of these models of the
means were not assessed further here. This last model seems to
represent an important increase in fit, and the expected mean trajec-
tory over age from this fourth-order polynomial model is plotted in
Figure 7A. The particular parameters (see Appendix B) are not clearly
separable as components of the resulting curve, but the general picture
(Figure 7A) clearly shows a rapid increase in the early years, followed
by a peak and a slower decline over all adult years.

The numerical sequence results for all other WJ-R variables are
essentially similar to those presented above. The estimated param-
eters are different for each variable, but the general shapes of the
curves are at least as complex as the one presented above. For
example, the estimated fourth-order curves for Gf and Gc variables
obtained reasonable fits (f = 17,126 and 17,209, respectively),
and when plotted, these polynomial curves have the same general

shape as the curve in Figure 7A; however, the parameters are
different, which leads to important differences in the curves (as in
Figure 1). These growth curve differences are best described using
the other models that follow.

Linear Age-Segmented Multilevel Results

The next models fitted were based on a linear growth model
with two nested age segments— before and after the cutoff age of
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Figure 7. Alternative linear and nonlinear multilevel models fitted to
Broad Cognitive Ability longitudinal data.
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C = 20 years. Table 7 is a list of results from the parameters of this
kind of a bilinear latent growth model fitted to each of the 11
WIJ-R composites over all ages. Each row represents one WJ-R
variable, and each column represents a particular kind of param-
eter: the mean and variance of the intercept (column 1), the mean
and variance of the “before age 20” segment (column 2), the mean
and variance of the “after age 20” segment (column 3), the mean
and variance of the independent practice shift (column 4), the
variance of the independent error component (column 5), the
difference in fit (Ax?) between this model and the baseline model
(column 6), and the difference in modeled variance (An?;
column 7).

This bilinear model for the BCA scores yields an intercept mean
(mo = 20.6) at age 20, a positive pre-20 slope mean (w, = 2.64)
for each year before age 20, and a smaller and negative slope mean
(n, = —0.39) for each year after age 20. Now the expected
10-year age change from age 10 to age 20 is +26.4, whereas the
expected 10-year change from age 20 to age 30 is —3.9 points (in
the W scales). The key difference here is the separation of the large

Table 7

129

yearly increases before age 20 and the small yearly decreases after
age 20. In this bilinear model, the age-related variance changes are
also split into two independent components (o7 = 1.35, o> = .05)
with the before-age-20 changes showing the larger yearly compo-
nent. In addition, this model adds a practice effect (coded as a 0 at
the first test and a 1 at the retest). The parameters obtained show
an average score increase that is due to practice (p, = 3.2) but no
estimable individual differences in this shift (o’zp = (0 with corre-
lations fitted as zero for identification). The addition of two
age segments plus a practice effect does improve the model fit a
great deal compared with either the constant baseline model,
X°(8) = 1,857, the linear growth model, x*(5) = 1,660, or the
bilinear without-practice model, x*(2) = 319. Furthermore, there
is a decrease in the size of the first-level residuals (o> = 13.6),
yielding an additional explained variance (An‘zF” = .10). The
practice mean is added at one time only and accounts for slightly
more mean differences than do the overall trait changes seen over
any 1 year of age. Additional forms of practice effects (e.g., linear
decline with time, different practice mean before and after age 20)

Linear Latent Growth Model Parameters Including Bilinear Age and Practice Components for WJ-R Variables

Time-lag test and age model mean and variance components

Age 20 Ages 2-19 Ages 21-75 Additive
constant segment segment practice
Random error Fit of changes Modeled variance
WJ-R composite Mo (07) my (07) s (03) 1, (07) (02) Ay? 7 (A7)

Fluid Reasoning 16.9 2.68 —0.45 6.21 1,988 .882
(98.1) (1.90) (0.086) (1.23) (47.0) (.118)
Comprehension—Knowledge 41.4 5.11 —0.08 1.81 2,631 947
(329.5) (3.45) (0.308) (4.4) (45.5) (.066)
Long-Term Retrieval 9.1 1.52 —0.45 3.6 927 743
(131.3) (1.07) (0.027) (3.59) (57.2) (.086)
Short-Term Memory 22.4 3.38 —0.36 2.1 1,368 .868
(259.0) (3.90) (0.071) (=0?) (83.3) (.061)
Processing Speed 31.6 3.95 —0.62 2.7 1,272 923
(151.7) (2.70) (0.126) (=07) (36.1) (.099)
Auditory Processing 11.2 2.07 —0.34 1.8 1,427 .820
(58.3) (3.01) (0.045) (=07 (64.6) (.041)
Visual Processing 16.9 2.68 —0.45 6.2 1,989 .882
(98.1) (1.89) (0.086) (127 (47.0) (.118)
Broad Quantitative Ability 49.8 6.64 —0.54 2.8 2,466 945
(632.3) (12.60) (0.551) (=0?) (114.3) (.066)
Broad Academic Knowledge 43.2 5.38 —0.46 1.9 2,593 970
(384.4) (5.08) (0.281) 9.2) (33.7) (.063)
Broad Reading and Writing 43.0 5.51 —0.44 1.9 2,125 .989
(587.3) (17.10) (0.350) (60.8) (12.4) (.124)
Broad Cognitive Ability 20.6 2.64 —0.39 32 1,857 942
(86.1) (1.35) (0.05) (~0?7) (36.3) (.098)

Note.

All parameters are maximum likelihood estimates fitted using SAS PROC MIXED and LISREL 8.3. A question mark (?) next to a value indicates

a parameter that is not twice as large as its own standard error (i.e., p[H,] > .05). WJ-R = Woodcock—Johnson Psycho-Educational Battery—Revised.
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were also fit, but the results are not listed here because they did not
add anything to the fit or alter the parameter estimates. The bilinear
equation for the BCA scores is plotted over two age segments
(purged of a practice mean of 3.2) in Figure 7B.

The previous model estimates suggest that each of the different
WIJ-R scales has some notable, systematic age differences in the
mean and variation of age changes. The pattern of mean changes
is very similar for all 11 variables: (a) large yearly mean increases
and substantial change variance over the age range from 2 to 19
years, (b) smaller yearly mean decreases and smaller change
variance from ages 21 to 95, and (c) positive mean shifts for this
simple form of practice. A relatively large proportion of the
variance is due to the initial level of the trait (ranging from about
.70 to .90), and these levels differed across tests. Individual dif-
ferences in the linear age segments accounted for a small but
potentially important part of the trait variance (from .03 to .10).
But there are some important differences apparent here as well. For
example, the estimated equations for Gf and Gc show that the
intercepts and variances of these equations are quite different, and
the key age-related feature is clear—the Gc rises more rapidly up
to age 20 (5.11 vs. 2.68), and then Gf falls more rapidly (—0.45 vs.
—0.08).

More complex spline models were fit using a five-nested-age-
segments model with the cutoffs C, = 6, C, = 11, C; = 20, and
C, = 50. The cutoffs were chosen to produce segments matching
the five age groups defined earlier (in Tables 1 and 5). These
models permit five different mean and variance components to be
estimated (only the first two are listed) and also include the
practice component for any time lag. In the first case, we obtained
means that clearly showed more systematic growth in the early
years followed by declines in the later years (per year average
change, u, = 5.24,4.92, 1.46, —0.12, and —0.73); there was also
a positive practice mean (pu, = 2.75). In this case, the estimation
of the restricted variance components was not completely success-
ful, but the resulting models did fit better than the previous
two-segmented models, x*(8) = 259, but with only a small in-
crease in overall fit (Arﬁs,” = .004). These nonlinear trends were
not matched with estimated variances as in a single model, but it
is likely that this model was computationally limited (e.g., by
multiple correlation parameters from two-occasion data and by the
1-year scaling of age). The expected trajectory over age from this
five-segment model is plotted in Figure 7C.

Nonlinear Multilevel Results for Broad Cognitive Ability

Table 8 expands these issues by fitting nonlinear models to the
same WJ-R data. Here we centered all data (at age = 0) so time
would constantly increase. The key model reported here is a dual
exponential model (of Equation 6) with both level and slope
variance and covariance.

The final nonlinear estimates for BCA are plotted in Figure
7D. The parameters of this model have direct substantive in-
terpretation (see Appendix B). The mean of the initial level
(o = —75.2, with scores centered at a constant of 500) is the
initial score (at age = 0), and the mean slope (u, = 117.7) is
the constant multiplier on the changing age basis. The initial
growth rate (m, = .0065, so exp {—.0065} = .994) is strong
and positive, and the decline rate (m, = .1165, so

exp{—.1165} = .890) shows a steady but slower decline. From
these parameters of the model we can deduce that the maximum
BCA average score, is W, r.,; = 18.3 (see Table 9), and this
occurs at an age of 7, = 26.2 years (i.e., where the first
derivative equals zero). We can also deduce that the point
where the slope begins to de-accelerate is at a score of
Myira) = 8.0 and an age of 7, = 52.3 years (i.e., where the
second derivative equals zero; Raudenbush & Chan, 1993). The
expected rates of changes at specific ages can also be calcu-
lated, and here we find the expected average rate of change in
BCA between ages 2 and 19 is u, = 4.0 W units per year,
whereas between ages 20 and 75 it is only —0.3 W units per
year.

The latent variance components can be interpreted in many
ways as well. The initial-level variance (at age 0, o3 = 91.7), the
slope (03 = .628), and the covariance (0,, = —7.5) can be
combined to form expectations about the latent or true score
variance at any age, and the error variance (0> = 13.1) can be
added to form the total variance. For BCA, at the peak age of 7,
= 26.2 years, the true score variance is oy, = 73.9. These
formulas can be combined with the expressions for the mean to
produce 95% confidence boundaries around the latent scores. A
pictorial representation of these variance expectations is presented
in Figure 8. It is noteworthy that these variances do not exhibit
much “fan-spread” (Cook & Campbell, 1979). This figure also
includes the individual line plots of the longitudinal data to illus-
trate the goodness of fit of this dual exponential with-practice
model.

For BCA, this model yielded a much better fit to the data than
found before, x*(5) = 1,838, An? = .09, so we explored this
model in further detail. In more restrictive models (not shown
in Table 8) we found that we could eliminate the slope variance,
X>(2) = 1, but we could not eliminate the level variance,
X*(2) = 50. In an expanded form of this model we added a
practice component (coded as 0 or 1 depending on the occasion
of testing), which yielded a substantial improvement in fit,
X>(7) = 2,070, An*> = .08. In the final model, we added an
exponential loss function (to mimic a proportional practice
decay), but the addition of this parameter (7, = —.028) did not
yield an improvement in fit. Statistical comparisons among
these last few models suggested that (a) the overall double
exponential model is a much better fit than the other models
used here; (b) either level or slope components are needed, but
the level is more important; and (c) the inclusion of a practice
mean is helpful to model fit.

The final nonlinear estimates for Gf and Gc have several dif-
ferent features, including (a) growth rate differences, with Gf
slowing more rapidly than Gc (.0052 vs. .0026), and (b) decline
rate differences, with Gf falling more rapidly than Gc (.1539 vs.
.1104). The resulting parameters of these nonlinear models can be
drawn as smooth latent curves (with 95% confidence boundaries)
for any variable. In Figure 9 we give a complete picture of the Gf
and Gc nonlinear model expected trajectories and observed data.

In Figures 10 (Gf, Gc, Gs and Glr) and 11 (Gsm, Ga, Gv and
Gq), we include expectations for all eight composites without the
specific data. In Table 9 we list additional statistical information
for all 11 WJ-R composites, including the expected (a) age at peak
growth (7,), (b) age at initial decline (7,), (c) latent means and
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Table 8
Nonlinear Latent Growth Model Parameters Including Bilinear Age and Practice Components for WJ-R Variables
Time-lag test and age model mean and variance components
Age =0 Age Growth Decline Practice + Modeled
constant slope rate rate covariance variance
Random error Fit of changes -
WIJ-R composite Mo (03)  my (0] mlexpl  m, [exp] 1 (001) (2) Ay? n” (An?)
Fluid Reasoning —116.5 156.3 .0052 1539 3.0 3,003 .831
(110.9) (16.8) [.995] [.857] (30.5) (67.5) (.067)
Comprehension-Knowledge —116.3 179.2 .0026 .1104 ~0? 2,631 943
(292.4) (4.72) [.997] [.896] 4.7) (49.0) (.062)
Long-Term Retrieval —56.7 75.0 .0080 .1805 2.7 1,122 743
(16.6) (82.6) [.992] [.835] (7.3) (57.2) (.086)
Short-Term Memory —101.1 132.7 .0038 1578 1.8 1,675 .879
(196.0) (0.281) [.996] [.854] (=7.2) (76.4) (.072)
Processing Speed —128.3 188.9 .0058 1295 23 2,132 925
(140.1) (0.668) [.994] [.879] (=9.7) (34.9) (.101)
Auditory Processing —84.3 107.0 .0045 .1628 ~0? 1,581 817
(88.5) (2.26) [.996] [.850] (—14.1) (65.8) (.038)
Visual Processing —74.6 1134 .0075 1210 5.0 2,283 .884
(93.5) (0.973) [.993] [.886] (—9.5) (46.4) (.120)
Broad Quantitative Ability —192.7 254.0 .0022 .1475 ~0? 3,071 .964
(145.5) (40.5) [.998] [.863] (75.8) (100.0) (.085)
Broad Academic Knowledge —120.1 179.8 .0035 1225 0.3 3,082 970
(120.4) (30.9) [.997] [.885] (52.2) (34.1) (.063)
Broad Reading and Writing —398.6 438.0 .0005 .2407 —-0.4 2,699 .965
(189.2) (16.0) [.999] [.786] (53.9) (39.2) (.100)
Broad Cognitive Ability =752 117.7 .0065 1165 2.7 2,070 944
L7 (0.628) [.994] [.890] (=17.5) (13.1) (.100)

Note.

All parameters are maximum likelihood estimates fitted using SAS PROC MIXED and LISREL 8.3. A question mark (?) next to a value indicates

a parameter that is not twice as large as its own standard error (i.e., p [H,] > .05). WI-R = Woodcock—Johnson Psycho-Educational Battery—Revised.

deviations at these ages, and (d) the implied growth and decline
rates of change at the predefined age ranges of 2-19 years and
20-75 years.

Statistical Differences Between Growth Patterns

There are several obvious differences between the WJ-R com-
posites that are noteworthy. For example, when we compare Gf
with Gce (see Figure 9), we see that Gf has a slightly slower initial
growth rate (exp{—m,} = .995 vs. .997) but a faster decline
(exp{—m,} = .857 vs. .896). These parameters reflect an earlier
peak age for Gf than for Gc (7, = 22.8 vs. 35.6 years) and an
earlier age at decline (7, = 45.5 vs. 71.3 years). These results are
quite consistent with the basic age-curve predictions of the theory
of fluid and crystallized intelligence (Cattell, 1971; Horn & Cat-
tell, 1967; see Figures 1 and 3).

These statistical differences in growth and decline curves further
suggest that different rates of change are to be expected for
different ages and for different functions, and these results can be

used in planning further experiments. For example, Table 9 lists an
expected rate of change for Gf as 5.5 for ages 2—19 but —0.5 for
ages 20-75. This means that the same magnitude of change is
expected when we measure the growth of Gfin a child over 1 year
and the decline of Gf'in an adult over 11 years. Table 9 also lists
an expected rate of change for Gc as 7.0 for ages 2-19 but as
—0.01 for ages 20-75. This means that the same changes are
expected when we measure the growth of Gc in a child over 1 year
and the decline of Gc in an adult over all years. These general age
functions suggest we will find little or no change at all if we try to
measure cognitive abilities right around their peak ages. These
results further suggest that different experimental time lags and
different ages will be optimal for measuring changes in people on
different constructs.

Most of the other composites studied here are more similar in
shape to this Gf composite (Analysis—Synthesis + Concept For-
mation) than to this Gc score (only Oral Vocabulary). Among the
first seven composites, the fastest growth and decline rates are
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Table 9

McARDLE, FERRER-CAJA, HAMAGAMI, AND WOODCOCK

Implied Characteristics of Nonlinear Latent Growth Curves for All WJ-R Cognitive Composites

Time-lag test and age model mean and variance components

Rate of
Age at Age at Score at Score at A ages Rate of A
peak deceleration peak deceleration 2-19 ages 20-75
WI-R composite 7 (Bw) To (Bia) Wy (03) M (07) Wi (0D Ko (03)
Fluid Reasoning 22.8 45.5 17.6 6.7 55 —0.5
(0.80) 0.79) (13.3) (13.0) (8.0) (8.2)
Comprehension-Knowledge 35.6 71.3 445 35.7 7.0 —0.01
(0.92) (0.87) (18.5) (17.9) (17.7) (17.8)
Long-Term Retrieval 18.1 36.1 6.2 0.10 24 —-0.4
(0.83) (0.75) 9.2) (8.6) 5.9 (5.5)
Short-Term Memory 24.2 48.4 17.1 9.3 4.8 -0.3
(0.89) (0.83) (13.5) (13.6) (8.7 (8.5)
Processing Speed 25.1 50.2 27.7 12.6 6.6 —0.6
(0.83) (0.75) (11.2) (11.1) (7.2) (7.1)
Auditory Processing 22.7 454 9.7 29 3.8 -0.3
(0.88) (0.82) 8.1 (8.2) 5.4 (5.2)
Visual Processing 24.5 49.1 14.0 3.8 3.8 —-0.4
(0.78) 0.69) (8.9 9.0 (5.8) (5.7)
Broad Quantitative Ability 29.0 57.9 42.1 30.9 9.7 -0.3
(0.92) (0.88) (17.9) (17.6) (10.6) (11.1)
Broad Academic Knowledge 29.8 59.7 37.2 25.6 6.6 —0.3
(0.87) (0.81) (15.3) (15.0) .1 9.4)
Broad Reading and Writing 25.8 51.6 33.2 28.4 15.2 -0.2
(0.98) 0.97) (17.5) (17.4) (11.1) (11.6)
Broad Cognitive Ability 26.2 52.3 18.3 8.0 4.0 —-0.3
(0.80) 0.71) (8.6) 9.0 (5.8) (5.7)

Note.

All entries are calculated from maximum likelihood estimates and fitted using SAS PROC NLMIXED.

The dual exponential model yielded loadings of B, = [exp(—m, * Age,) — exp(—m, * Age)]. WI-R =
Woodcock—Johnson Psycho-Educational Battery—Revised.

found for Long-Term Retrieval (Glr), which exhibits unexpected
peaks at the earliest ages (7, = 18.1 years, 7, = 36.1 years),
whereas the slowest growth and change is seen for Gc. Perhaps not
too surprisingly, the three composites reflecting academically re-
lated information (e.g., Gg, Gk and Grw; the last two are not
plotted) have much faster growth rates and slower decline rates
than the first seven cognitive abilities.

There are several techniques we can use to study the relation-
ships among the variables. Some recent models described in the
statistical literature have emphasized the examination of parallel
growth curves, including the correlation of various components
(McArdle, 1988, 1990; Willett & Sayer, 1994). Of substantive
interest here is the possibility of examining the equality of the
shapes of the group curves (e.g., B,[f] = B,[t]). Other models can
be fitted to examine the size and sign of the covariances of initial
levels (i.e., O'y()yx()| > 0) and the covariance of slopes (i.e., |0, |

Vs, X8

> (). These random coefficients reflect individual similarities in

the way persons start and change over time across different vari-
ables, and these are key features to some researchers (e.g., T. E.
Duncan, Duncan, Strycker, Li, & Alpert, 1999; Raykov, 1999;
Willet & Sayer, 1994). It has also been demonstrated how more
restrictive hypotheses about proportional growth curves are the
expectations from a model in which multiple variables are reflec-
tions of the same common factor (e.g., McArdle, 1988, 2001;
McArdle & Woodcock, 1997). Such a model can be fitted by
including common factor scores (z[f]), proportionality via factor
loadings (A, A,), and uniqueness (u,, u,). If multiple measure-
ments are made, this common factor hypothesis about the change
pattern is a strongly rejectable model. To formalize these differ-
ences and the similarities of the overall growth patterns, we fit the
one-common-factor models to specific pairs of variables (see
Equation 7 in Table 6; see also Footnote 5 and Appendix B).

In a structural analysis we tested the hypothesis posed in Figure
1: How different are the life span growth patterns of Gf and G¢? To
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Figure 8. Broad Cognitive Ability longitudinal data and nonlinear mul-
tilevel model expectations.

answer this question, we fitted a bivariate model in which the Gf
scores were presumed to have the same basic curve as the Gc
scores except for scaling. This new 11-parameter model resulted in
a constant of proportionality (A = 1.55) and new rate parameters
(m, = .0053 and 7, = .1085). However, this bivariate model,
when compared with the univariate likelihoods found for each
separate variable, yielded a large loss of fit, y*(7) = 1,016. So,
while there is distinct similarity in the general growth and decline
shapes of Gf and Gec, this statistical evidence supports the notions
that the peaks of growth and decline in Gf and Gc¢ occur at notably
different ages and that the general latent growth patterns are not
likely to come from the same source (i.e., g).

The same bivariate or multiple-outcome multilevel analysis can
be fitted to each of the composites listed here. In order to simplify
and limit the potential models, we report only models comparing

General Fluid Ability (Gf) score as a function of Age

T T T T

GeneralFluid Ability score

0 20 40 60 80 100
Age-at-Testing

each of the first seven factors with the BCA overall composite. As
a simple summary of results from these analyses we found the
following: Gf with A = 1.24 and x*(7) = 169; Gc with A = 1.66
and x*(7) = 472; Glr with X = 0.56 and x*(7) = 747; Gsm with
A = 1.14 and x*(7) = 198; Gs with A = 1.39 and *(7) = 152; Ga
with A = 0.80 and x*(7) = 232; Gv with A = 0.90 and x*(7) =
448; and Gg with A = 2.11 and x*(7) = 340. These proportions (A)
can be rescaled to approximate factor loadings for a single-factor
model estimated under fixed factor score assumptions (McDonald,
1999).

The goodness-of-fit indices listed above imply that there is a
relatively large distance between the overall BCA curve and the
seven WJ-R composites. Thus, further approximation to the com-
mon factor loadings is not crucial because it appears that these
separate growth curves reflect different cognitive functions over
age. As found in earlier work on this topic (e.g., McArdle, 1988;
McArdle & Woodcock, 1997; and many others), this developmen-
tal evidence suggests that a single common factor will not account
for all the growth and change among these variables.

Cross-Validation Analysis

There are many ways in which the results presented here can be
examined with standard techniques of cross-validation or sensitiv-
ity analyses. In a typical kind of analysis we can randomly split the
sample in half, fit the same models, and examine the differences in
results; that is, what is the overall accuracy if we apply expecta-
tions from one model to the data of the other set? In this approach,
we gain information about the likely prediction error. Alterna-
tively, we can select the subsamples representing different sub-
stantive groupings to see how local the expectations can be; that is,
what if we had sampled a particular age group? In this approach,
we expect completely different parameters depending on the range
of ages. Combinations of these cross-validation techniques can be
found in more extensive bootstrap-type analyses that use all the
available data.

General Crystallized Ability (Ge) score as a function of Age
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Figure 9. A comparison of multilevel longitudinal age curves for Gf and Gc abilities (Rasch W units).
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Figure 10. Expected latent curves for Gf, Ge, Glr, and Gsm.

We fitted the exponential growth and decline curves to the BCA
composite using data from the first and second occasions sepa-
rately. We then compared the results with the estimates from the
overall sample. These analyses yielded some notable differences in
parameter values from the first and second and overall assess-

ments—mean intercepts (u, = —81.8 and —79.3), age slopes
(p; = 117.3 and 120.7); growth rates (7, = .0052 and .0065),
decline rates (m, = .1352 and .1153), and error variance (o2

= 93.4 and 93.8). All of these parameters were accurately esti-
mated (z values > 2.0). This simple form of this cross-validation
analysis gives a positive estimate of the accuracy of the values
obtained when all the available data are used, and the other
variables exhibited similar statistical behavior.

Several parameter estimates in the overall model cannot be
uniquely estimated using one data point only: the variance and
covariance terms and the mean of practice at the second occasion.
To examine the adequacy of these parameters, we examined what
happened when progressively larger numbers of data points were
not included (i.e., as if they were not measured in the study). We
carried this out for random subsamplings in which 20%—-80% of
the data were eliminated. In these analyses, the parameter esti-
mates for the intercept and slope variances (og and o7) remained
fairly stable up to about an 80% loss, but other parameters (e.g.,
the intercept—slope covariance, oy,,) were not as easy to replicate.
However, and in general, the parameters representing the means
retained their overall value over different samplings of persons
with this data set. A more extensive bootstrap-type analysis using
all of the available data may be needed for improved information
about the probable range of error in these data.

Discussion

Summary of Results

The main substantive results of this study suggest that it is
possible to understand the growth and decline of most broad
cognitive functions in terms of a family of curves that rise and fall
(after Horn, 1970). Most clearly, as shown in Figures 1 and 3, the

functions describable as broad fluid reasoning (Gf) and accultur-
ated crystallized knowledge (Gc) are separable entities that have
different growth patterns. The same result seems to follow for
different kinds of broad memory (Glr and Gsm), processing speed
(Gs), and auditory and visual processing (Ga and Gv) and for
several forms of academic knowledge (Gg, Grw, and Gk).

We mainly used the BCA score as a convenient starting point to
highlight our overall modeling strategy and to compare with other
variables (e.g., see Figure 1). But there are reasonable scientific
concerns about the singular and often inappropriate use of such a
composite score. Many prior analyses have shown that these kinds
of scores lack internal validity when development is considered
(e.g., Horn & Cattell, 1966; McArdle & Woodcock, 1997). This
BCA variable is often considered as an indicator of g, or general
intelligence (from Spearman, 1904; see Jensen, 1998), but the
results presented here, and in concert with prior theory about fluid
and crystallized intelligence, suggest that the description of a
cognitive system with only a single g factor is an overly simplistic
view of the more complex sequential dynamics (as in Devlin,
Daniels, & Roeder, 1997; E. B. Hunt, 1995; McArdle & Wood-
cock, 1997, 1998; cf. Humphreys, 1989; Jensen, 1998). This does
not mean that the BCA score cannot be useful in other contexts—
the BCA is a simple unweighted composite of more fundamental
constructs. As such it may yield some benefits in external validity
(prediction) in the same way as any compensatory equation (e.g.,
high school grades and tests; see McArdle, 1998). However, the
analyses presented here describe BCA, compare it with other
abilities, and indicate that it does not have the validity required of
a developmental construct (e.g., McArdle & Prescott, 1992).

This means that the use of a single general construct has limited
developmental construct validity. For example, some prior biomet-
ric genetic research by Plomin, Pedersen, Lichtenstein, and Mc-
Clearn (1994) demonstrated a differential heritability of general
cognitive abilities, with reported increases across the life span until
reaching about .80 in adulthood. When compared with estimates
for specific cognitive abilities (ranging from .33 to .68), these
findings were interpreted to suggest that the nature of genetic
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Figure 11. Expected latent curves for Gs, Ga, Gv, and Gq.
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influence in cognitive abilities is more general than specific. Sim-
ilarly, many of the genetic effects on specific abilities appear to be
explained by genetic effects on g, although independent genetic
influences also exist for specific abilities (Pedersen, Plomin, &
McClearn, 1994). In contrast, when we examine longitudinal data
on several broad cognitive abilities, the models used here suggest
that the biometric components do not exhibit the same develop-
mental properties (as in McArdle et al., 1998).

The parameters (and related derivations) of these kinds of non-
linear models turn out to be useful indices in the description of a
life span growth curve. The resulting nonlinear curve shapes
(Figures 8, 9, 10, and 11) are nearly identical to the family of
growth curves from the early cross-sectional research of Jones and
Conrad (1933; see their Figures 1 through 6). A similar growth
curve was formalized by von Bertalanffy (1938) and used to
describe changes in weight as a function of competing forces of
anabolism and catabolism. A similar dual exponential (but in-
verted) model was used by Cerella, Rybash, Hoyer, and Commons
(1993) to describe the rise and fall (see Horn, 1970, 1972) of
information-processing-speed differences over age—the differ-
ences between older and younger adults are the net result of
accumulated growth and accumulated decrements (also see Kears-
ley, Buss, & Royce, 1977). A similar model (without initial levels
and variance estimates) has also been promoted by Simonton
(1984, 1989, 1997) in his studies of career productivity, and the
basic concepts used here are much the same.

In this sense, the key contributions of this study come from our
use of combined longitudinal and cross-sectional data, our estima-
tion of the variances of the latent changes, our use of formal
alternative models, and the statistical evaluation of goodness of fit.
The methodological results of this study show that it is practical to
use two-occasion accelerated time-lag longitudinal data with stan-
dard multilevel software to estimate latent growth models of
considerable complexity. We started with models based on poly-
nomial age changes, moved to models with linear age segments
(i.e., splines), and found a nonlinear model (i.e., a dual exponential
model) to describe the growth and decline of multiple factors. The
multilevel model comparisons of curves show that these cognitive
functions are separable entities that have different growth patterns.
At the very least, these growth curve parameters provide some
normative information about the dynamics within each of several
measures of cognitive functioning. Because of the unusually wide
spread of initial ages, a great deal of cross-sectional (between-
persons) information was available here. The parameters estimated
from these two-occasion data represent one approach toward an
accurate representation of the longitudinal (within-person) infor-
mation as well. As such, these growth and decline curves represent
as much precision as possible until more longitudinal data are
collected.

Limitations of the Results

The fitting of longitudinal models when data are incomplete is
a complex problem, and the test—retest analyses presented here rely
on recent statistical developments. Solutions for dealing with in-
complete data have been stated in different ways in different
disciplines—for example, the Pearson, Aiken, Lawley, and
Meredith selection theorems and Rubin’s theorems for incomplete

groups (for overviews, see Little & Rubin, 1987; McArdle, 1994;
McArdle & Cattell, 1994). In practice, we assume (a) that the
initial selection into the study (i.e., before the first occasion of
measurement) is an adequate sampling from the population of
interest, (b) that this population has the same growth model for all
incomplete subgroups (g = 1 to G), and (c) that we can restrict the
age basis of the growth pattern (e.g., using the previous models).
These modern statistical approaches allow opportunities for use of
all the available data and address some problems of subject attri-
tion and refusals (Brown, Indurkhya, & Kellam, 2000; Little &
Rubin, 1987; McArdle & Hamagami, 1991, 1992, 1996). How-
ever, all of the models here are based on these untestable
assumptions.

The results presented here also rely on the contemporary devel-
opments in item response scaling offered by the WJ-R scales, and
this reliance would be a limitation when fitting latent growth
models to other scales. That is, because these are single-
dimensional and interval-scaled tests (i.e., Rasch scales), we are
more confident in mapping the magnitude of change from one
score to another onto the same ability metric even though we are
using different sections of the scale (i.e., some different items) and
different variables (i.e., all different items). Most longitudinal
models presume these conditions of measurement, but few longi-
tudinal data sets meet these stringent assumptions. On the other
hand, the WJ-R has not yet been widely used in longitudinal
analyses, which means that the description of the growth curves,
especially the growth and decline parameters, may not directly
translate onto other more traditional measures. Although we think
it is likely that the linkage of the WJ-R to other measures is
practical (e.g., Aggen, 1998; Flanagan & McGrew, 1998; McArdle
& Woodcock, 1997; Shaywitz et al., 1992; Woodcock, 1990), it is
probably not true for all constructs of interest to cognitive
researchers.

These multilevel longitudinal growth curve results also rely on
our assumption of the metric factorial invariance (Horn &
McArdle, 1992; McArdle & Cattell, 1994; Meredith, 1993) of the
WIJ-R tests over time and age. In all growth analyses presented
here, we assumed the WJ-R scale measured the same construct at
all ages in the life span—from ages 2 to 95—and no model was
presented here for checking these critical assumptions. Here we
relied on previous analyses of the larger set of data presented by
McGrew et al. (1991) and suggested reasonable levels of invari-
ance across multiple age groups (Grades K-3, 4-7, and 8—12, and
ages 18-40, 41-59, and 60+ years) for both 16 tests and 27 tests
(pp- 163-179). A more detailed analysis of factor invariance over
time suggests that invariance can be achieved at almost any time
lag as long as some practice components are included (McArdle &
Nesselroade, in press).

Another threat to the validity of these interpretations of age
growth and decline patterns is that the time lag in this longitudinal
study may not have been long enough (<10 years) to eliminate all
practice confounds or to examine secular or cohort changes. Of
special importance here are the age-sensitive determination of
cohort changes (e.g., Boyne, 1960; Nesselroade & Baltes, 1979;
Schaie, 1996) and some evaluation of what is now known as the
Flynn effect—large increases in average intellectual abilities over
successive age cohorts throughout the 20th century (Flynn, 1999;
Neisser, 1998). There is some doubt about the overall magnitude
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of these effects, the intellectual ability constructs that are changing
the most, and the persons who are affected. However, our current
longitudinal study was not long enough in time to include cohort
parameters and to quantify these hypotheses (e.g., McArdle &
Anderson, 1990; Miyazaki & Raudenbush, 2000). Because of our
use of aging persons, the possibility of subject mortality and
“terminal drop” is a potential problem as well (see Bosworth,
Schaie, & Willis, 1999; Maier & Smith, 1999; Siegler & Botwin-
ick, 1979).

More specific questions about the likely heterogeneity of sub-
jects were not examined here, and these could have profound
impacts on the growth curves. Parameters can be added to these
multilevel longitudinal models to compare growth and changes
associated with gender, ethnic differences, geographical areas, and
educational levels. But other observed groupings may account for
the variation in the curve parameters, including family income
levels, social networks, health evaluations, and other related infor-
mation. These models may need different parameters for the means
and variances (amplitude and phase differences) or even group
difference in the rates (and, hence, peak ages). New forms of
mixture distribution analysis may be required to detect latent group
differences in trajectories and dynamics to quantify a set of opti-
mal classification profiles from available demographic variables
(L. K. Muthén & Muthén, 1998; Nagin, 1999).

Future Research

The accelerated two-occasion data used here provide the initial
basis for the measurement of developmental change even when
additional longitudinal measurements are obtained (Burr & Nes-
selroade, 1990). Of course, choosing the most informative interval
of time between these tests is a complex theoretical problem that
is not the same for all measures or ages (see Cattell, 1957;
McArdle & Woodcock, 1997). In these data, as usual, the rela-
tionships between the cognitive factors and other achievement
clusters do vary over time, even with the relatively short daily and
monthly time lags. These results suggest some benefits in using
longer time lags between tests, especially for the cognitive factors.
This time-lag model can be used to determine the minimum
aggregation of time lag needed to accurately estimate any change
patterns (as in McArdle, 1994; McArdle & Hamagami, 1996).

Previous research suggests that many different forms of incom-
plete data models can have reasonable power (Brown et al., 2000;
McArdle & Hamagami, 1992; B. O. Muthén & Curran, 1997), and
this was illustrated here. The resulting power to test basic growth
hypotheses varies as a function of (a) the test of means and
variances, (b) the type of time-lag pattern selected, (c) the number
of occasions of measurement, and (d) the communality of the
variables used to indicate the common factors. Previous research-
ers have pointed out both problems of time-lag designs (e.g.,
Helms, 1992; Overall, 1987; Schlesselman, 1973), but it seems
reasonable to use the time-lag design when relatively little is
known about the characteristics of the tests or the traits.

More elaborate models of developmental change may be needed
to account for other important features of tests and traits. As more
occasions of measurement become available, more complex non-
linear models can be formulated and evaluated (e.g., Nesselroade
& Boker, 1994). From a methodological perspective, the nonlinear

mixed models used here are also directly related to more general
and complex nonlinear models for lengthy longitudinal series, such
as the coupled oscillator model by Nesselroade and Boker (1994;
with one cycle) or the one-compartment fluid intake—elimination
pharmokinetics model of Pinherio and Bates (2000). In addition,
there exists a more general family of growth functions offered by
Richards (1959), Preece and Baines (1978), Sandland and McGil-
christ (1979), and Bock (1989, 1991; Bock et al., 1973). Each of
these prior models can be represented in this same multilevel
statistical fashion, and each may apply here.

Of more general theoretical importance in this research is a
related but more complex set of questions: How do these functions
relate to one another (longitudinally) within an individual? and
What are the time-dependent dynamic sources of variation in these
changes? By fitting these dynamic models we can further examine
Cattell’s (1971) investment theory, which suggests that Gf is the
leader or key source of the development of other cognitive func-
tions. Evidence pertaining to the cross-variable dynamic predic-
tions of Gf-Gc theory is largely lacking, but some studies have
focused on examining these hypotheses. The recent study by
Sliwinski and Buschke (1999) examined a particular kind of dy-
namic hypothesis from the point of view of a processing speed
hypothesis (Salthouse, 1996), using multilevel models of time with
initial age and processing speed as predictor variables. Although
these authors did not directly address the Gf-Gc question, the
multilevel methodology used here can be extended to permit such
an investigation (e.g., McArdle, 2001; McArdle & Hamagami,
2001; McArdle et al., 2000; McArdle & Nesselroade, 1994). These
newer models are not simple applications of multilevel models but
attempt to untangle some of these issues and make a clearer
separation of normative and nonnormative age changes.

The scientific evaluation of these kinds of growth and change
questions can require many different approaches for the analysis of
longitudinal multivariate data. We think that many uses of accel-
erated longitudinal data collection design (Bell, 1954) can play an
important role in this future research, and out of necessity, the
benefits begin with a second occasion of measurement. We hope
these structural analyses of growth and change using WJ-R infor-
mation can be substantively useful.
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Appendix A

Computer Programming for Nonlinear Mixed Models

The SAS PROC MIXED computer program was used to estimate the parameters and goodness of fit. Excellent examples of the use of these programs
can be found in Singer (1998) and Littell, Miliken, Stoup, and Wolfinger (1996). A brief example of the SAS code we used follows:

TITLEl ‘Retest Study Polynomial Models’;
DATA tmpl;
SET ngcs.retest_2000;

agecl = (tagel - 19); pracl=0;
segal = agecl; IF (agecl GT 0) THEN segal = 0;
segbl = agecl; IF (agecl LT 0) THEN segbl = 0;

agec2 = (tage2 - 19); prac2=1;
sega?2 = agec2; IF (agec2 GT 0) THEN sega2 = 0;
segh2 = agec2; IF (agec2 LT 0) THEN segh2 = 0;
FILE outfile LRECL=200 LINESIZE=200;
PUT
##1 id agecl pracl segal segbhl bca_wl
##2 id agec2 prac2 sega2 segh2 bca_w2;
RUN;
DATA tmp3;
INFILE outfile LRECL=200 LINESIZE=200;
INPUT agecOl practice sega segb y01;
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RUN;
TITLE2 ‘Model 1; Linear Age+Corr’;
PROC MIXED NOCLPRINT METHOD=ML COVTEST IC; CLASS id;
MODEL y01 = agec01 / SOLUTION DDFM=BW CHISQ;
RANDOM INTERCEPT agec01 / SUBJECT=id TYPE=UNR;
RUN;
TITLE2 ‘Model 2: Quadratic Age+
PROC MIXED NOCLPRINT METHOD=ML COVTEST IC; CLASS id;
MODEL y0l1 = agecOl agecOl*agec0l / SOLUTION DDFM=BW CHISQ;
RANDOM INTERCEPT agec01 / SUBJECT=1id TYPE= UNR;
RUN;
TITLE2 ‘Model 3: Dual Segmented Age + Restricted Corrs’;
PROC MIXED NOCLPRINT METHOD=ML COVTEST IC; CLASS id;
MODEL y01 = sega segb / SOLUTION DDFM=BW CHISQ;
RANDOM INTERCEPT sega segb / SUBJECT=1id TYPE= UN GCORR;
PARMS (260) (1) (2) (1) (0) (2) (40) / EQCONS=5;RUN;
TITLE2 ‘Model 4: Dual Segmented Age+Practice+Corr Restricted ’;
PROC MIXED NOCLPRINT METHOD=ML COVTEST IC; CLASS id;
MODEL y01 = sega segb practice / SOLUTION DDFM=BW CHISQ;
RANDOM INTERCEPT sega seghb practice / SUBJECT=id TYPE=UN GCORR;
PARMS (68) (1) (2) (1) (0) (2) (0) (0) (5) (75) / EQCONS=5,7,8,9; RUN;

The newer nonlinear version of this program, SAS PROC NLMIXED, has only recently been available, so previous applications are sparse. However,
this program was required for the estimation of parameters and goodness of fit in the dual exponential model, and an example of the code we used follows:

TITLE2 ‘Model 5: ExpExp Nonlinear Model with Individual Differences ’;
PROC NLMIXED;
traject = level + slope (EXP(-rate_g*tage0l) - EXP(-rate_d*tage0l));
MODEL y01 ~ NORMAL (traject, v_error) ;
RANDOM level slope ~ NORMAL([m_level, m_slopel,
[v_level, c_levslo, v_slope]) SUBJECT=1id;
PARMS m_level =-80 m_slope = 120 rate_g =.001 rate_d =.100
v_error=20 v_level=80 v_slope=10 c_levslo=-.01; RUN;

TITLE2 ‘Model 6: ExpExp Nonlinear Model with Practice Mean ’;

PROC NLMIXED;

traject = level + slope (EXP(-rate_g*tageOl) - EXP(-rate_d*tage0l)) +
(m_prac*practice);

MODEL y01 ~ NORMAL (traject, v_error);
RANDOM level slope ~ NORMAL([m_level, m_slope],
[v_level, c_levslo, v_slope]) SUBJECT=id;
PARMS m_level =-80 m_slope = 120 rate_g =.001 rate_d = .100 m_prac=.01
v_error=20 v_level=80 v_slope=10 c_levslo= -.01; RUN;

For further examples and details of alternative codes, see Pinherio and Bates (2000), and see the other SAS codes included on our website:
http://kiptron.psyc.virginia.edu.

Appendix B

Numerical Results From Linear and Nonlinear Models

Numerical results from multilevel polynomials (not listed in tabular form here). The resulting estimates for the fourth-order growth curve for the BCA
variable can be expressed as

Keca = 17.9 + (Agey - 1.17) + (Age;, - —0.100) + (Age;, - 0.0023) + (Age), - —0.00002)) + em
[+0scam] [£8.0] [+0.16] [+4.1]

where the estimated latent mean values are listed and the estimated latent standard deviations are included below them in brackets (i.e., [£]). In contrast,
the estimated fourth-order curves for the Gf and Gc variables can be written as

(Appendix continues)
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Mo = 182 + (Age, - 1.15) + (Age? - —0.114) + (Agel - 0.0026) + (Aget - —0.00002) + e,
[0l [£11.8] [*£0.21] [£8.7]
and
Woem = 341 + (Age, - 2.43) + (Agep - —0.153) + (Age;, - 0.0032) + (Agej, - —0.00002) + e,
[*06em]  [£14.3] [+0.32] [£7.1]

Numerical results from age-spline models (see Table 7 and Figure 7B). The final bilinear equation for the BCA scores is written as

Mecarm = 20.6 + ({Age, — 20 <0} -2.64) + ({Age,, —20>0}-—-0.39) + (p[0]-3.2) + eu
[Zoscapm]  [£8.4] [£1.16] [£0.22] [£6.0]

The estimated bilinear equations for Gf and Gc are

Bem = 169 + ({Age, — 20 <0} -2.68) + ({Age, — 20 >0} - —0.45) + (p[0] - 6.2) + &
[Zogpm]  [£9.9] [+1.40] [+0.29] [+6.8]
and
Boam = 414 + ({Age, —20<0} -5.11) + ({Age, — 20 >0} - —0.08) + (p[0] - 1.8) + e,
[Z0Gm]  [£18.2] [=1.87] [£0.55] [£6.8]

Numerical results from nonlinear models (see Table 8 and Figure 7D). The final dual exponential model estimates for BCA can be written as

Mecarm = —75.2 + {[exp(—.0066 - Age,) — exp(—.1165 - Age,)]} 117.7 + (p[0]-2.7) + en
[*oscapm]  [£9.6] [+0.79] [+3.6]

The final nonlinear model estimates for Gf and Gc can be written as

KGam = —116.5 + {[exp(—.0052 - Age,) — exp(—.1539 - Age,)]} 156.3 + (pl0]-3.0) +  €n
[io-(iﬂmj] [£10.5] [+4.1] [+8.2]
and
Mooy = —116.0 + {[exp(—.0026 - Age,) — exp(—.1104 - Age,)]} 179.2 + (p[0]-0.0) + en
[=0cqml  [=17.1] [+2.20] [£7.0]

Numerical results for common factor growth function (not in tabular form; see Footnote 5 in the text). The final common factor model estimates can be
written as

Rem = {[exp(—.0053 - Age,) — exp(—.1085 - Age,)]} 117.7 +

[F0ogm] [+0.79] [*3.6]
and
Katm = 1165 + I(pypy) + 3.0+ ugpm
[Zogugl [£10.5] [(£4.1]  [x8.2]
and
Koy = —116.5 + 1.55 (pgpny) + 3.0 + tGem
[Xogem]  [£10.5] [=4.1] [%£8.2]

Received December 5, 2000
Revision received August 3, 2001
Accepted August 20, 2001 =



