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Practice effects are one source of possible confounding effects
in longitudinal studies. Individuals who repeat a test may perform
better merely as a result of the influence from the previous assess-
ment. In the context of a longitudinal study with repeated obser-
vations, the effects attributed to age might be contaminated with
retest effects (Donaldson & Horn, 1992; Hertzog & Nesselroade,
2003). Several articles have illustrated this issue and the need to
model separate effects for age and retest (Ferrer, Salthouse, Stew-
art, & Schwartz, 2004; Lövdén, Ghisletta, & Lindenberger, 2004;
McArdle & Anderson, 1990; McArdle, Ferrer-Caja, Hamagami, &
Woodcock, 2002; McArdle & Woodcock, 1997; Rabbitt, Diggle,
Holland, & McInnes, 2004; Rabbitt, Diggle, Smith, Holland, &
McInnes, 2001; Salthouse, Schroeder, & Ferrer, 2004; Wilson et
al., 2002). Important findings from these studies indicate that both
age and retest should be modeled simultaneously when examining
change of cognitive abilities over time. When practice effects exist
as a result of repeated assessments, ignoring the retest component
underestimates the negative age effects, with larger bias for stron-
ger retest effects. In this study, we extend this work to multivariate

analyses. We argue that similar bias existing in univariate studies
may occur in multivariate analyses that focus on correlates of
change. Such correlates of change have age and retest components,
and both need to be modeled separately to identify their own
contribution to the change correlation.

One essential question in current research in cognitive aging is
the extent to which various cognitive domains change in a parallel
way. Researchers are interested in examining whether cognitive
abilities covary over age or whether they change independently as
a function of different underlying mechanisms (e.g., Deary, 2001).
A large number of cross-sectional studies have examined this
question by comparing age-related variance in various cognitive
abilities and then estimating the shared part of the variance (Baltes
& Lindenberger, 1997; Lindenberger & Baltes, 1994; Rabbitt,
1993; Salthouse & Ferrer-Caja, 2003). In general, results from
these studies suggest that age-related decline is common to most
abilities: When one cognitive function deteriorates, the other func-
tions weaken, too. However, a full account of this age-related
covariation among multiple cognitive abilities needs to consider
both general and specific factors (Salthouse & Ferrer-Caja, 2003).

One limitation of cross-sectional studies, however, is that the age-
related covariation among different domains is examined indirectly.
Longitudinal studies, on the other hand, can directly examine such
covariation because they can follow the changes in each variable over
time. Unfortunately, not many longitudinal studies have addressed
this issue, and moreover, their results are not uniform. For example,
Hultsch, Hertzog, Dixon, and Small (1998) found only moderate
correlations between the rates of change of various cognitive func-
tions over 6 years. Similarly, Anstey, Hofer, and Luszcz (2003)
detected a small relationship between sensory and cognitive changes
over 8 years, and Christensen et al. (2000) found only moderate
correlations between processing speed and memory among older
individuals. Finally, weaker—or not detectable—correlations were
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found between longitudinal changes of perceptual speed and episodic
memory (Sliwinski & Buschke, 1997; Sliwinski, Hofer, & Hall, 2003;
Taylor, Miller, & Tinklenberg, 1992) and between the rates of change
of various forms of memory over up to 25 years (Giambra, Arenberg,
Zonderman, Kawas, & Costa, 1995).

Although these longitudinal studies are informative—and more
suitable to examine change correlations than cross-sectional anal-
yses—the analyses used in these studies are based on the assump-
tion that age is the only factor contributing to correlations among
measures of change. This assumption, however, might not be
realistic in cases when age alone does not capture all of the
changes in a particular variable. In those cases, a broader concep-
tualization may be needed to examine the correlates of change. In
other words, if both age and retest effects are found to underlie
changes in various cognitive abilities, it is reasonable to assume
that both effects may also play a role in the correlation between the
changes in those variables. Moreover, if ignoring retest effects can
underestimate age effects in univariate analysis, it is reasonable to
question whether similar biases exist in multivariate models that
focus on correlates of change without considering retest effects.

Understanding the different components underlying the corre-
lates of change among cognitive abilities has important implica-
tions. For example, correlations of change could be primarily due
to retest, in which case they might reflect common learning pro-
cesses. If, on the other hand, the correlations of change were
primarily due to age, they would potentially reflect a common
maturation—or aging—process.

Despite the important implications of understanding the com-
ponents of correlates of change, this question has received very
little attention. In an exception, Wilson et al. (2002) examined the
covariation in change among different cognitive abilities over 6
years. Using univariate models, the researchers estimated individ-
ual longitudinal age slopes and then used these slopes to compute the
correlations for each pair of variables. The results from these analyses
yielded correlations ranging from .37 (word knowledge and visuo-
spatial ability) to .78 (story retention and word retention), with a
median of .54, and all loaded on a single factor in a principal-
components analysis. Further, when retest effects were considered,
the correlations were not altered, and again, a single factor of change
was found to account for about 62% of all the covariation.

Wilson et al.’s (2002) approach is innovative but might not be
ideal to decompose the different components of the change corre-
lates. It is a two-stage process of estimation of individual slopes
from univariate models to then compute multivariate comparisons.
By definition, however, each of these univariate models assumes
independence, which is exactly the question at hand. We propose
that a potentially more powerful approach is to model directly the
correlation between the changes of two—or more—variables in a
single model that includes both hypothesized components (i.e., age
and retest). This approach seems more appropriate to make infer-
ences about correlations between variables, especially when ex-
amining whether the correlations depend on the within- or
between-person variation. Moreover, a multivariate approach is
more powerful than the univariate analyses to examine the age and
retest effects for the various cognitive abilities, particularly when
they are correlated and have different patterns of missing data
(e.g., see Raudenbush & Bryk, 2002; Snijders & Bosker, 1999).

Examining relations among the growth of two or more variables
is possible with multivariate models of change (Goldstein, 1995;

MacCalum, Kim, Malarkey, & Kielcolt-Glasser, 1997; McArdle,
1988; Rogosa & Willett, 1985; Tisak & Meredith, 1990; Willett &
Sayer, 1994, 1995). In fact, since the appearance of these models,
researchers have been interested in understanding correlates of
change between the growth of variables. That is, the focus is on the
relationships between patterns of change on two or more variables
(Hertzog & Nesselroade, 2003). If one is interested in examining
the different components underlying the correlates of change be-
tween two variables for which retest effects may exist, any of these
models can be extended to accommodate such components.

Our goal in this study is to fit such models to longitudinal data
to examine the contribution of age and retest effects to the corre-
lates of change between cognitive abilities during adulthood. To
achieve our goal, we first give some theoretical background of the
models and their specification in the multivariate case with retest
components. We then fit these models to two different longitudinal
data sets and examine the resulting change correlations when retest
components are included and omitted from the model.

Age- and Occasion-Based Mixed-Growth Models

A basic growth model for a dependent variable Y measured over
time (t � 1 to T) on a person (n � 1 to N) can be written as

Y�t�n � y0n � Age�t�n � ysn � e�t�n, (1)

where Y[t]n is the observed score on person n at measurement t; y0n

is the latent initial level score of person n; Age[t]n is the observed
age of person n at measurement t; ysn is a latent score of person n,
representing the slope, or the individual change over time; and
e[t]n is the latent error score of person n at measurement t. This
model includes sources of individual differences in the level and
slope, whose terms can be decomposed at a second level as

y0n � �0 � e0n and

ysn � �s � esn, (2)

where the level and slope scores have fixed group means (�0 and
�s) and residuals (e0n and esn), and these residuals have variance
components (�0

2, �s
2, and �0s).

This initial age-based model can be extended to incorporate
retest effects as

Y�t�n � y0n � Age�t�n � ysn � B�t�n � ypn � e�t�n, (3)

where ypn represents the slope, or individual change in retest over
time, for person n; and B[t] represents the set of coefficients that
define the shape of the retest effects. Similar to the model in
Equation 1, the terms of this model can be decomposed at a second
level as

y0n � �0 � e0n,

ysn � �s � esn, and

ypn � �p � epn, (4)

where the level, slope, and practice scores have fixed group means
(�0, �s, and �p) and residuals (e0n, esn, and epn), and these
residuals have variance components (�0

2, �s
2, and �p

2) and could
covary among themselves (�0s, �0p, and �sp). According to this
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model, change in Y can be described as a function of two processes
that unfold over time: chronological age and retest. Age[t]n � ysn

can vary over time for each person, so this term represents an
age-based growth process. In turn, the practice term, B[t]n � ypn,
reflects a process based on the measurement occasion (i.e., average
change in Y per unit change in retest for a person n).

By varying the specification of age and retest, these models can
be used to test different hypotheses of change. For example,
questions regarding linear age and retest could be examined by
setting the basis coefficients for age as Age[t]n fixed � 0, 1, 2, . . . ,
age[t], and the retest coefficients as B[t]n � 0, 1, 2, . . . , occa-
sion[t]. Similarly, this general model can accommodate other
hypotheses regarding the age function, the retest function, or both.
For instance, a specification of B[t]n � 0, 1, 1, 1, . . . 1 would
imply that retest effects occur at the second measurement occasion
(first retest) and that they remain constant over time. Similarly, a
specification of B[t]n � 0, 1, ?, ?, . . . , 1 would examine the extent
to which retest takes place in a nonlinear way, with unequal effects
at different measurement occasions (for more details, see Ferrer et
al., 2004).

In the bivariate case, this model can be written for variables Y[t]
and X[t] over time as a model of two growth curves as

Y�t�n � y0n � Agey�t�n � ysn � By�t�n � ypn � ey�t�n, and

X[t]n � x0n � Agex�t�n � xsn � Bx�t�n � xpn � ex�t�n, (5)

with all covariances allowed among the latent variables (�y[i],x[j]).
Among these covariances, two are key to examine correlates of
change between Y and X: �ys,xs and �yp,xp; the former represents
the covariance between the age slopes of the two variables,
whereas the latter represents the covariance between the retest
slopes of the two variables. In subsequent sections, we examine
how both covariances contribute to the overall correlation of
change between the two variables; thus, omitting one from the
model may lead to bias in the estimation of such a change
correlation.

This bivariate model can also be written by using a random
coefficient or multilevel notation as a model with a single outcome
variable Yntk for individual n at occasion t on variable k, where the
variables k do not need to be measured at the same occasions for
all individuals, as

Yntk � �
k�1

m

dk��0nk � �1nk � Agentk � �2nk � pntk � entk�, (6)

where k � 1, . . . , m represents the number of variables (two in
this study); dk is a dummy variable d1 to dm (1 or 0) to indicate the
dependent variables; �0nk is the intercept for person n on variable
k; �1nk is the slope associated with age for person n on variable k;
�2nk is the slope associated with retest p for person n on variable
k; and entk is the residual for person n at occasion t for variable k.
Similar to Equations 2 and 4, the intercepts and slopes for the k
variables can be decomposed as

�0nk � �0k � u0nk,

�1nk � �1k � u1nk, and

�2nk � �2k � u2nk, (7)

which indicates that for each variable k, the intercept, slope, and
practice have fixed group means (�0k, �1k, and �2k) and random
residuals (u0k, u1k, and u2k), and these residuals have variance
components (�0k

2, �1k
2, and �2k

2) and could covary among them-
selves (�01k, �02k, and �12k). In addition to these within-variable k
random effects, covariances between intercepts and slopes are also
allowed between variables. Among all these covariances, two are
fundamental to examine correlates of change between the outcome
variables: �1y,1x represents the covariance between the age slopes
of variables y and x, and �2y,2x represents the covariance between
the retest slopes of variables. The former is an indicator of the
degree of association between the rates of age-related change on
both variables, and the latter is an indicator of the degree of
association between the rates of change related to retest. It follows
from this decomposition that both covariances contribute to the
overall correlation of change between variables y and x.1 More-
over, to test specific hypotheses—or merely due to data con-
straints—restrictions can be imposed as needed in the covariance
matrix of individual residual variances T � cov(Ent) and in the
between-individual covariance matrix � � cov(Ut). This model
can now be estimated by using any standard multilevel program.

Method

Participants

In this study, we used data from two different studies. The first data set
is from the Age, Lead Exposure, and Neurobehavioral Decline (ALEND)
study (Walter F. Stewart, principal investigator). The second data set is
from the National Growth and Change Study (NGCS; John J. McArdle,
principal investigator). Detailed information about the first project is avail-
able in previously published studies (e.g., Schwartz et al., 2000; Stewart et
al., 1999). Characteristics of the specific data used here are also available
elsewhere (Ferrer et al., 2004). Extensive information about design, par-
ticipants, and measures of the second project is also available (McArdle et
al., 2002).

The participants from the ALEND Study were 834 individuals who took
part in a 4-year prospective study to evaluate the effects of lead exposure
on changes in cognitive function. All participants were men between 40
and 70 years of age at the first assessment, with data from one to four
occasions, and a first retest interval ranging from 0.6 to 2.8 years. The
NGCS is an ongoing project focused on the study of cognitive abilities over
the life span. Individuals in the NGCS initially participated in the
Woodcock–Johnson Psycho-Educational Battery—Revised (WJ–R, Wood-

1 Although both components are important, the structure of the covari-
ance for Xt and Yt over time is more complex and takes the following form:

E�Y�t� � �yt,X�t� � �xt	 � �yx � �y0,x0 � �ya,xa
ya�t�
xa�t� � �yp,xp
yp�t�
xp�t�

� �y0,xa
xa�t� � �y0,xp
xp�t� � �ya,x0
ya�t�

��ya,xp
ya�t�
xp�t� � �yp,x0
yp�t� � �yp,xa
yp�t�
xa�t� � �ye,xe,

where �yx represents the expected covariance between X and Y, �y0,x0 is the
covariance between the intercepts, �ya,xa is the covariance between the age
slopes, �yp,xp is the covariance between the retest slopes, and 
 is the
corresponding matrix of factor loadings associated with a slope. Note also
that �ye,xe is the covariance between the residuals for the two variables. By
definition, this covariance can be assumed to be zero. Alternatively, one
can assume that the residuals could represent, for example, unique aspects
associated with the measurement occasion, and thus, allowing them to
covary may be reasonable.
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cock & Johnson, 1989–1990) norming study and were selected from the
norming sample on the basis of a stratified randomized sampling following
such criteria as geographic region, demographic density, gender, and
ethnicity. From this pool of individuals with two measurement occasions
(N � 1,193), a third wave of data was collected by using similar criteria,
but with an emphasis toward older individuals (n � 176). To match the
ALEND sample on age, we selected a subsample of 382 individuals from
the NGCS retest pool whose ages ranged from 30 to 80 at the first
measurement occasion, with data from two to three occasions and a first
retest interval ranging from 0.8 to 10 years.

Measures

Participants in the ALEND study visited a clinical setting for up to four
occasions at which time they completed a comprehensive neurobehavioral
battery and were assessed on a number of biological measures. The current
analyses involve two composites representing verbal learning and memory
and processing speed, which were created on the basis of an exploratory
factor analysis on the original variables (for details and results of this
procedure, see Ferrer et al., 2004). The verbal learning and memory
composite was composed of several measures from the Rey Auditory
Verbal Learning Test (total score across five recall trials, delayed recall,
and recognition test score). The processing speed composite was composed
of a choice reaction time task, the Stroop test (A, B, and C forms), Trail
Making Tests A and B, and the Digit Symbol subtest from the Wechsler
Adult Intelligence Scale—Revised. The same versions of the tests were
administered on each occasion.

To maximize across-sample comparisons, measures that hypothetically
represented similar constructs were selected from the NGCS data. Specif-
ically, two tests of the WJ–R battery (McGrew, Werder, & Woodcock,
1991) were used to compute, as unit-weighted composites and according to
WJ–R guidelines, scales of short-term memory and processing speed. The
selected tests were Memory for Words and Memory for Sentences (Short-
Term Memory, Gsm), and Visual Matching and Cross Out (Processing
Speed, Gs). All these scales are reported to have very high internal
consistency (McArdle et al., 2002; McGrew et al., 1991).

Data Description

A description of the participants’ age and retest intervals at all time
points and across samples is presented in Table 1. To facilitate compari-

sons, information is presented for the overall sample and for different age
groups (i.e., younger than 50 years, between 50 and 59 years, and 60 years
and older). It can be seen that participants from the NGCS sample have a
wider age range than the ALEND participants. Of the initial 827 ALEND
participants who reported their age, 86.7%, 72.3%, and 66.0% were present
at the second, third, and fourth occasions, respectively. Of the 382 NGCS
participants present at the first and second occasions, about 31% were
assessed at the third occasion. For both samples, the retention rates are
smaller for the younger individuals and similar in the two older age groups.

Table 2 presents means and standard deviations for the memory and
processing speed composites across the different measurement occasions
for both samples. These descriptive statistics indicate an increase in mem-
ory scores across occasions for the ALEND participants and a smaller
increase for the NGCS participants, but only from the first to the second
occasion. For speed scores, the increases appear to be smaller overall.
These patterns of change across measurement occasions and over age are
displayed in Figures 1 and 2, for memory and speed, respectively.

Results

Multivariate Age- and Occasion-Based Mixed-Growth
Analyses

All the analyses reported here were conducted by using the
MIXED procedure in SAS (Littell, Miliken, Stoup, & Wolfinger,
1996) with a maximum likelihood estimation method. This method
generates parameter estimates by using all available data under the
assumption that incomplete data are missing at random.

Previous analyses using the ALEND data focused on the age
versus age and retest issue at the univariate level. Extensive
information about background and results from these analyses was
provided by Ferrer et al. (2004). In this article, we focus on
multivariate analyses in which memory and processing speed were
considered simultaneously. In particular, three progressively more
complex models were fitted to the multivariate data: (a) a model
with only correlated age components and their associated random
effects, (b) a model with age and retest components but not random
effects associated with the retest components, and (c) a model
including random effects for retest and a correlation between both

Table 1
Description of Ages and Time Retests

Age group

Time 1 Time 2 Time 3 Time 4

ALEND NGCS ALEND NGCS ALEND NGCS ALEND NGCS

50 years 45.9 39.1 47.1 42.1 47.9 45.9 49.0 —
� age 0.987 2.97 0.885 3.30 0.946 —
n 181 181 153 180 130 47 102 —

50–59 years 55.0 54.9 56.1 57.9 56.9 61.2 57.8 —
� age 1.04 3.04 0.856 3.44 0.923 —
n 357 60 319 60 265 21 249 —

�60 years 64.8 69.8 65.9 72.2 66.5 74.7 67.5 —
� age 1.05 2.38 0.835 2.49 0.924 —
n 289 141 244 141 203 51 194 —

All 56.5 52.9 57.5 55.7 58.2 60.9 59.6 —
� age 1.03 2.79 0.857 5.20 0.927 —
n 827 382 717 381 598 119 545 —

Note. Dashes indicate that data were not obtained. ALEND � Age, Lead Exposure, and Neurobehavioral
Decline Study; NGCS � National Growth and Change Study.
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retest slopes. In all these models, age was coded in years and
centered at 40 years. Retest was coded as 0, 1, 2, and 3 for the
ALEND data and 0, 1, and 2 for the NGCS data. If participants had
only 2 measurements, they were coded as 0 and 1. Results from
these analyses are presented in Tables 3 and 4, for the ALEND and
NGCS data sets, respectively.

The first columns (“Age only”) in Table 3 display the parameter
estimates from a model with only linear age effects for memory
and processing speed. These estimates are comparable to the ones
reported using separate univariate models for each variable (Ferrer
et al., 2004). These results indicated a flat trajectory over age for
memory (�a � .001, p � .05) with small variation across persons
(�a

2 � .0013) and a linear declining trajectory for processing
speed (�a � 
.029 units of decline per year), also with very small
variation across persons (�a

2 � .0012). Note, however, that the
low variability could also be due to the scaling of the variables
(i.e., z scores from first occasion) and the time metric (i.e., 1-year
units). Other random effects in this model indicated a moderate
correlation between initial levels of both variables (� � .30, at age
40); a strong correlation between the age slopes of both variables
(� � .73), suggesting that the rate of change in memory is asso-

ciated with the rate of change in processing speed; and a small
correlation between both residuals (� � .13; �ee � .016), repre-
senting the part in common between both variables not accounted
for by the model.

The second columns (“Retest components”) in Table 3 present
the estimates from a model in which retest components (fixed
effects only) were added to the model. In line with findings from
univariate models (Ferrer et al., 2004), these estimates indicated a
decline in both memory (�a � 
.033) and processing speed (�a �

.038); both were more substantial than in the previous model
without the retest component. The estimates from retest indicated
nontrivial effects for both memory and processing speed (�p �
.201 and .023, respectively), representing increases in performance
from one measurement occasion to the next. Compared with the
previous model, the random effects now indicate a similar corre-
lation between initial levels (� � .32), a smaller correlation be-
tween the age slopes of both variables (� � .67), and a similar
correlation between both residuals (� � .12). The residual variance
(i.e., representing unexplained within-individual variation) was
reduced for memory, which showed a larger retest effect, and the
overall model misfit was reduced significantly, as compared with

Figure 1. Individual longitudinal data for each data set. All figures represent a random 30% of all the cases.
ALEND � Age, Lead Exposure, and Neurobehavioral Decline Study; NGCS � National Growth and Change
Study.

Table 2
Descriptive Statistics Across Samples and Measurement Occasions

Variable

Time 1 Time 2 Time 3 Time 4

M SD M SD M SD M SD

Memory ALEND 
0.005 0.881 0.275 0.831 0.442 0.802 0.529 0.860
Memory NGCS 0.000 1.00 0.104 0.959 0.054 0.927
Speed ALEND 
0.012 0.754 0.066 0.766 0.068 0.686 
0.013 0.868
Speed NGCS 0.000 1.00 0.077 1.06 0.130 1.06

Note. All values are based on Z scores computed from Time 1. ALEND � Age, Lead Exposure, and
Neurobehavioral Decline Study; NGCS � National Growth and Change Study.
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the previous model, by including the two retest parameters (�2/
df � 582/2; � root-mean-square error of approximation [RMSEA]
� .593).

The third columns (“Retest variance”) in Table 3 present pa-
rameter estimates from a model in which random effects for retest
were included. Adding these new parameters to the model did not
alter the estimates of the fixed effects, suggesting linear declines in
both memory and processing speed over age and positive effects
associated with retests (�p � .202 and .022, for memory and
speed, respectively), although much larger for memory. The ran-
dom effects, however, were different, indicating nontrivial
between-person variation in retest effects for both variables (�p

2 �
.011 and .026), a slight decrease in the correlations between the
intercepts (� � .28) and between the age slopes (� � .63), and a
larger decrease in the correlation of the residuals (� � .02, p �
.05). This model also presents a nontrivial correlation between the
retest effects for both variables (� � .59). Adding these new
parameters resulted in smaller residual variances and a much better
fit, as compared with previous models (�2/df � 273/11; �
RMSEA � .188).

In addition to the correlations of the change components be-
tween both variables, this last model also presents within-variable
correlations that are informative about the change for each vari-
able. For example, for both variables, age was negatively corre-
lated with the initial level (� � 
.47, and 
.53), suggesting that
age-related declines in memory and processing speed were slower
for individuals with higher initial scores. In contrast, the correla-
tion between level and retest is zero for memory (� � 
.25, p �
.05) and positive for processing speed (� � .46), the latter indi-
cating that individuals with higher scores benefited more from the
repeated assessments. Finally, age was not correlated with retest
for memory (� � .06, p � .05), but this correlation was negative
for processing speed (� � 
.45), suggesting that individuals with
greater age declines had larger retest gains, and vice versa.

Although results in Table 3 refer to models with linear age, other
nonlinear functions were examined. For example, a model with a
quadratic age component (in addition to the linear function)
yielded a better fit to the data but suggested (a) no linear effects for
any variable, (b) a very small quadratic effect for memory (
.001)
and no quadratic effect for speed, and (c) out-of-bounds correla-
tions between the quadratic slope for each variable and all other
components. Because of the large number of parameters in these
models and the lack of interpretation of some estimates, we de-
cided to retain models with linear age effects.

Results from similar models fitted to the NGCS data are pre-
sented in Table 4. These results indicate the existence of age and
practice components in both variables. Adding practice effects to
the model (i.e., the second columns: “Retest components”) reduced
the age–slopes correlation (from � � .82 to .75) and the residual
variances in both variables (�e

2 � .257 to .249, and .114 to .105,
for memory and processing speed, respectively). These two retest
parameters also helped to reduce the misfit of the model consid-
erably (�2/df � 80/2; � RMSEA � .312). The third model con-
sidered the variance components associated with the two retest
effects, but these were negligible for both variables. In this model,
the correlation between both levels remained unchanged (� � .52),
but the correlation of the age slopes between both variables de-
creased and was no longer significantly different from zero (� �
.58, p � .05). The correlation between both retest slopes was also
not significant (� � .45, p � .05). For memory, age was negatively
related to initial level, suggesting smaller declines for those indi-
viduals with higher starting scores. This association, however, was
not significant for processing speed. Finally, the level–retest and
age–retest correlations were all not different from zero for both
variables. Although this model reduced the residuals substantially,
it did not improve the fit (�2/df � 16/11; � RMSEA � .035).
Because of the reduced sample size at the third measurement
occasion, the residuals correlation was not estimated for these data.

Figure 2. Individual longitudinal data with the same variables superimposed across data sets. All figures
represent a random 30% of all the cases. ALEND � Age, Lead Exposure, and Neurobehavioral Decline Study;
NGCS � National Growth and Change Study.
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As compared with the results from the ALEND data, the esti-
mates from the NGCS data indicate slightly lower starting points
for memory and similar starting points for processing speed (age
was also centered at 40), smaller age slopes for memory (perhaps
due to the participants being 10 years younger at the beginning of
the sample) and similar age slopes for processing speed, and
smaller practice effects for memory and larger practice effects for
processing speed.

Alternative Age and Retest Hypotheses

The numerical results presented in Tables 3 and 4 are from
models specifying age and retest as linear functions. In a new set
of analyses, we considered alternative hypotheses of age and
retest. In the first set of analyses, we examined the possibility that
memory and processing speed follow independent trajectories over
time. For this, we tested a model in which all the correlations
between both variables were fixed to zero, leaving the within-
variable correlations free to estimate. For both data sets, these
models yielded much worse fit than any model that included
across-variable correlations (�2/df � 158/4, 126/4, and 162/9, as
compared with the models included in Table 3; �2/df � 82/4, 76/4,
and 80/9, as compared with the models from Table 4). These
results indicate that the hypothesis of independent trajectories is
not tenable for these data and, instead, suggest that memory and
processing speed follow trajectories that covary over time.

The second set of analyses examined different hypotheses of
retest effects. Linear retest may not be a realistic hypothesis, but it
was used here both for statistical convenience (i.e., simplicity) and
as an adequate reference to evaluate alternative specifications.
First, a model was fitted in which retests effects were allowed to
vary at each repeated assessment (i.e., using dummy codes that
represented each measurement occasion). For the ALEND data,
this “stepwise” retest model improved the fit relative to a model
with a linear retest function (�2/df � 77/4) and yielded estimates
that indicated noticeable retest effects across all measurement
occasions for memory (�p � .284, .173, and .179, for the first,
second, and third retests, respectively) but not for processing speed
(�p � .099, .018, and .001; the latter two were not different from
zero). For the NGCS data, in contrast, a similar stepwise model did
not substantially improve the fit of a model with a linear retest
function (�2/df � 5/2). The retest estimates from this model
suggest that retest effects occurred at the first repeated assessment
only for memory (�p � .164 and .035; the latter value was not
different from zero) and at both retests for processing speed (�p �
.172 and .084).

In the last set of analyses, we investigated the extent to which
retest effects were associated with age and with the age slope. This
question was initially addressed by examining whether retests
effects depended on the age at which individuals were assessed for
the first time. To test this hypothesis, we included age at the first

Table 3
Parameter Estimates From the Multivariate Growth Model for Memory and Speed (ALEND Data)

Parameter

Age only Retest components Retest variance

Memory Speed Memory Speed Memory Speed

Fixed effects
�0 intercept .247 (.067) .539 (.047) .574 (.065) .661 (.049) .563 (.064) .648 (.051)
�a linear age .001, ns (.004) 
.029 (.003) 
.033 (.004) 
.038 (.003) 
.032 (.003) 
.038 (.003)
�p retest — — — — .201 (.008) .023 (.006) .202 (.008) .022 (.008)

Random effects

�0
2 intercept .7202 (.1413) .2622 (.0634) .6815 (.1285) .2679 (.0615) .6496 (.1170) .3689 (.0863)

�a
2 age .0013 (.0005) .0012 (.0003) .0010 (.0004) .0010 (.0003) .0006, ns (.0004) .0012 (.0004)

�p
2 retest — — — — — — — — .0110 (.0030) .0256 (.0026)

�00 level–level .3012 (.1378) .3199 (.1342) .2793 (.1318)
�aa age–age .7344 (.1753) .6753 (.2122) .6290 (.3033)
�pp retest–retest — — — — .5920 (.1158)
�0a level–age 
.5558 (.1236) 
.3314 (.1682) 
.5665 (.1228) 
.3123, ns (.1767) 
.4694 (.1662) 
.5333 (.1442)
�0p level–retest — — — — — — — — 
.2573, ns (.2100) .4597 (.1015)
�ap age–retest — — — — — — — — .0590, ns (.3731) 
.4530 (.1056)
�e

2 residual .1977 (.0069) .0821 (.0028) .1529 (.0051) .0822 (.0028) .1363 (.0056) .0527 (.0022)
�ee residual .0162 (.0032) .0133 (.0027) .0016, ns (.0025)

Goodness of fit


2 log-likelihood 8,259 7,677 7,404
BIC 8,373 7,805 7,599
Parameters NP 17 19 30
� RMSEAa — .593 .188

Note. Number of subjects � 828. Number of data points � 5,359. Age at Time 1 � 39–74 years. First retest interval � 1.03 years (0.60–2.80). All
parameters are maximum likelihood estimates obtained with SAS MIXED. Dashes indicate a parameter that was not estimated. ALEND � Age, Lead
Exposure, and Neurobehavioral Decline Study; ns � not significant (p � .05); BIC � Bayesian Information Criterion; NP � number of parameters;
RMSEA � root-mean-square error of approximation.
a RMSEA of the fit difference.
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occasion as a predictor of retest. For the ALEND data, the results
of this model indicated a nonsignificant effect for memory
(�a1*p � 
.0004) and a very small effect for processing speed
(�a1*p � 
.0024), in the direction of smaller retest effects for
those older individuals who started the study at older ages. Al-
though this model slightly improved the fit (�2/df � 12/2), adding
these parameters did not alter any other estimates in the model.
Similarly, for the NGCS data, this model indicated a nonsignifi-
cant effect for memory (�a1*p � 
.002) and a very small effect for
processing speed (�a1*p � 
.004), with also a minor improvement
in fit (�2/df � 11/2).

A second approach to examine the relationship between age and
retest effects was via spline models. In these models, the age span
is fragmented into segments and linear functions are fitted to each
of these segments. In our analyses, the model tested considered
two linear age segments with a knot (i.e., inflection point) at age
60. For the ALEND data, the estimates indicated similar age-
related declines across the two segments (�a1 � 
.031 and �a2 �

.032, for memory; �a1 � 
.039 and �a2 � 
.038, for process-
ing speed). The retest estimates, however, indicated similar effects
across the two age segments for memory (�p1 � .201 and �p2 �
.201) but not for processing speed (�p1 � .035 and �p2 � .011,
p � .05); these results were in line with the age–retest correlations
from previous models. In addition, the age–slope correlation be-
tween both variables was different across the two segments (�1 �
.87 and �1 � .79), indicating that such covariation declines for

older ages. The fit of this model, however, was worse than that of
previous models for the same data (
2 log-likelihood � 7,673;
Bayesian Information Criterion � 7,895, with 33 parameters).

A similar spline model was fitted to the NGCS data also with a
knot point at age 60. The estimates of this model also indicated
comparable age-related declines across the two segments (�a1 �

.022 and �a2 � 
.023, for memory; �a1 � 
.037 and �a2 �

.035, for processing speed). In contrast to the ALEND data, the
retest estimates indicated weakening effects across the two age
segments for both memory (�p1 � .139 and �p2 � .096) and
processing speed (�p1 � .179 and �p2 � .087). For these data, the
correlation between age slopes of both variables was not different
from zero for either segment. As was the case for the ALEND data,
the fit of this spline model was not better than that of previous
specifications (
2 log-likelihood � 3,212; Bayesian Information
Criterion � 3,408, with 33 parameters).

Discussion

Summary of Results

In this study, we examined the correlates of change between two
cognitive abilities and the contribution of age and retest to such
change correlates. We investigated this issue by fitting various
age- and occasion-mixed models to two longitudinal data sets of
adult individuals. For both data sets, our findings indicate that the

Table 4
Parameter Estimates From the Multivariate Growth Model for Memory and Speed (NGCS Data)

Parameter

Age only Retest components Retest variance

Memory Speed Memory Speed Memory Speed

Fixed effects

�0 intercept .391 (.060) .621 (.037) .395 (.061) .605 (.037) .415 (.061) .628 (.037)
�a linear age 
.018 (.003) 
.030 (.002) 
.024 (.003) 
.037 (.002) 
.025 (.003) 
.040 (.002)
�p retest — — — — .124 (.027) .145 (.018) .110 (.028) .125 (.019)

Random effects

�0
2 intercept .6202 (.0811) .2473 (.0300) .6221 (.0809) .2482 (.0294) .6764 (.0911) .2731 (.0354)

�a
2 age .0007 (.0002) .0003, ns (.0002) .0006 (.0002) .0002, ns (.0001) .0006 (.0002) .0001 (.0000)

�p
2 retest — — — — — — — — .0458, ns (.0257) .0173, ns (.0154)

�00 level–level .5180 (.0671) .5087 (.0674) .5182 (.0737)
�aa age–age .8211 (.2945) .7484 (.3536) .5773, ns (.5775)
�pp retest–retest — — — — .4490, ns (.3620)
�0a level–age 
.6262 (.0991) .6805, ns (.4523) 
.6258 (.0993) .7358, ns (.5339) 
.5736 (.1102) .5926, ns (.4821)
�0p level–retest — — — — — — — — 
.3291, ns (.2307) 
.2285, ns (.2553)
�ap age–retest — — — — — — — — 
.0627, ns (.3428) .7714, ns (.8808)
�e

2 residual .2568 (.0169) .1141 (.0076) .2487 (.0163) .1053 (.0069) .2202 (.0209) .0907 (.0109)

Goodness of fit


2 log-likelihood 3,303 3,227 3,211
BIC 3,398 3,334 3,377
Parameters NP 16 18 29
� RMSEAa — .312 .035

Note. Number of subjects � 382. Number of data points � 1,734. Age at Time 1 � 30–80 years. First retest interval � 2.76 years (0.80–10.00). All
parameters are maximum likelihood estimates obtained with SAS MIXED and NLMIXED. Dashes indicate that a parameter was not estimated. NGCS �
National Growth and Change Study; ns � not significant (p � .05); BIC � Bayesian Information Criterion; NP � number of parameters; RMSEA �
root-mean-square error of approximation.
a RMSEA of the fit difference.
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correlation between the age slopes of memory and processing
speed decreases—albeit only slightly in some cases—when retest
effects are included in the model. If such retest effects exist in the
data but are not included in the model, the age–slopes correlation
is positively biased because it absorbs all the covariance in the
change between both variables. Moreover, not controlling for
retest effects would have allowed an inference that there was no
age-associated decline in memory scores.

The two data sets used in these analyses present some distinct
features. The first data set (i.e., ALEND) included information
from men only and had a shorter age range, shorter retest intervals,
and up to four data points per person. The second data set (i.e.,
NGCS) included information from a nationally representative sam-
ple and had long interval retests and information from up to three
assessments. In spite of these differences, both data sets yielded
similar results: The correlation between the age slopes of memory
and processing speed is reduced when retest effects are included in
the model.

This study extends recent univariate analyses showing that when
analyzing longitudinal data in which retest effects may exist as a
result of repeated assessments, ignoring such retest effects tends to
underestimate the age effects, and thus, both terms should be
modeled simultaneously (Ferrer et al., 2004; McArdle et al., 2002;
Rabbitt et al., 2001, 2004; Salthouse et al., 2004; Wilson et al.,
2002). In the current study, we extended this issue to the multi-
variate level, and we showed that a similar bias existing in uni-
variate analysis may be present in multivariate correlates of
change. Such correlates of change have age and retest components,
and both terms need to be modeled to identify their separate
contribution to the change correlation.

This study also extends previous longitudinal studies that inves-
tigated correlates of change between various abilities. These stud-
ies have yielded different patterns of correlations, ranging from
moderate–large (Wilson et al., 2002), to moderate–weak (Anstey
et al., 2003; Hultsch et al., 1998), to weak or nonexistent (Giambra
et al., 1995; Taylor et al., 1992). Of these studies, however, only
Wilson et al. examined whether retest effects could affect the
correlations of change.

Methodological Considerations

As specified in our models, the retest component comprises the
changes in a variable that occur from one occasion to the next.
Such changes can include effects due to practice (i.e., items could
have been remembered after the first assessment) and effects due
to other more general factors, such as increased familiarity with the
testing situation and decreased test anxiety. It is quite possible that
the correlations of retest between variables (i.e., memory and
processing speed here) are different depending on the components
of retest. For example, it is likely that the correlation between the
retest slopes for memory and processing speed identified here for
the NGCS data is more influenced by general factors than, for
example, by remembering items from previous occasions, which
should not have much of an effect for processing speed. Similarly,
retest effects for memory alone could have been influenced by
both types of factors. The distinction between specific and general
retest factors, however, was not specified in our models, so sepa-
rating the different components of a retest correlation between
variables was unfortunately not possible.

Although memory and processing speed may present some
common covariation over time, age alone does not fully capture
whether, and how, both variables go together over time (Ferrer &
McArdle, 2004; McArdle et al., 2002). If the covariation between
both variables over time is not captured by age alone—or by age
and retest, as in the NGCS data—what are the components under-
lying it, or, more substantively, what is the relationship between
the trajectories of memory and processing speed? It is quite pos-
sible that both variables follow a relationship different than the one
examined by our models. For example, it is possible that process-
ing speed precedes and brings about the changes in memory
(Birren, 1974; Salthouse, 1996). If this is the case, our models
were not suited to identify such lagged sequences. The models
used in our analyses can be informative of the association (i.e.,
strength and valence) between the changes in two variables;
changes in one variable are related—or not—to changes in the
other variable. But such changes are time independent, and differ-
ent models that represent the desired theories of change need to be
fitted (McArdle, 2001; McArdle & Hamagami, 2001). Some of
these dynamic models have been used to examine hypotheses
positing developmental lagged sequences (Ferrer & McArdle,
2003, 2004; Guisletta & Lindenberger, 2003; McArdle,
Hamagami, Meredith, & Bradway, 2000). It is possible for such
time sequences between cognitive abilities to exist in the absence
of age–slope correlations (Ferrer & McArdle, 2003).

Estimating age and retest effects simultaneously can be prob-
lematic when these components are highly correlated (i.e., incre-
ment in age and increment in retest occasion; Ferrer et al., 2004).
In our analyses, we were able to estimate both effects because of
the data conditions in both samples. In the ALEND data set, the
retest intervals were close to 1 year, but the age range was wide,
ranging from 40 to 74 years. This feature allowed us to weaken the
age–retest correlation and to model age and retest simultaneously,
although with age estimates being dominated by cross-sectional
differences, more than longitudinal changes. In the NGCS data set,
there was an even wider age range combined with a wide (and
varying) retest interval range (i.e., from several months to 10
years). This feature of the NGCS was implemented in the design
of the study in order to model retest and to minimize confounding
effects due to this factor.

Several other methodological issues deserve clarification. For
example, all our analyses included models with linear age func-
tions. Other nonlinear functions, however, were examined. For
example, the spline models included two age segments with an
inflection point. Although the fits of these models were not supe-
rior, their estimates were informative and in line with other linear
age models discussed in more detail. Similarly, we examined a
model with a quadratic age function that indicated a good fit to the
data. However, the estimates from this model were hard to inter-
pret and did not alter the results about coupling between variables.
On the basis of these analyses, we concluded that the loss in fit of
a linear model outweighed the complexity and interpretation of a
higher order polynomial age model, and thus we decided to retain
the models with linear age effects.

Another assumption of the models presented here is conver-
gence; that is, all the individuals are from the same cohort. This is
a convenient assumption for modeling purposes that was never
tested, as neither were the assumptions of age and cohort and of
cohort and retest interactions (see Schaie, 1986). For example,
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given the differences in age among the participants in these sam-
ples, it is possible that cohort effects exist such that, for example,
younger and older individuals may follow distinct age and/or retest
processes as a result of differences in historical influences. Equally
untested was the assumption of equal residual variances across
time and age. Because our models used age as a continuous
variable with a large range—especially in relation to the data
density—we could not test this assumption. Similarly, the corre-
lation between the residuals of memory and speed could not be
estimated for the NGCS data, likely because of the reduced data
density at the third measurement occasion. This correlation was
very small for the ALEND data—and did not alter the estimates
from models that did not include such a parameter—and thus, it
does not seem unreasonable to assume a similar pattern for the
NGCS data.

Finally, all the models examined here assume that incomplete
data were missing at random. This was never formally tested here,
and it is a rarely met assumption in longitudinal studies. In previ-
ous analyses with the ALEND data, Ferrer et al. (2004) reported
results from individuals with complete data on all four measure-
ment occasions (n � 492). As compared with individuals with
some kind of missing data, these persons had higher baseline
scores, similar age effects, and smaller practice effects for both
memory and processing speed. For the NGCS data, there were
incomplete data only at the third occasion, but the degree of
incompleteness was substantial. It is possible that this could have
limited the power to estimate random effects for age and retest. It
is important to note, however, that this NGCS subsample was
selected at random from the previous pool, although with an
emphasis toward older individuals.

In sum, in this study we examined the correlates of change
between memory and processing speed among adults. We found
that when retest effects are ignored in multivariate models of
growth, the correlation between the slopes of both variables is
positively biased. When retest effects are included in the model,
however, such age–slope correlations weaken, indicating that
sources other than age contribute to the overall covariation be-
tween memory and processing speed over time.
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