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The purpose of this study was to explore patterns of difficulty in 2 domains of mathematical cognition:
computation and problem solving. Third graders (n � 924; 47.3% male) were representatively sampled
from 89 classrooms; assessed on computation and problem solving; classified as having difficulty with
computation, problem solving, both domains, or neither domain; and measured on 9 cognitive dimen-
sions. Difficulty occurred across domains with the same prevalence as difficulty with a single domain;
specific difficulty was distributed similarly across domains. Multivariate profile analysis on cognitive
dimensions and chi-square tests on demographics showed that specific computational difficulty was
associated with strength in language and weaknesses in attentive behavior and processing speed;
problem-solving difficulty was associated with deficient language as well as race and poverty. Implica-
tions for understanding mathematics competence and for the identification and treatment of mathematics
difficulties are discussed.
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Mathematics, which involves the study of quantities as ex-
pressed in numbers or symbols, comprises a variety of related
branches. In elementary school, for example, mathematics is con-
ceptualized in strands such as concepts, numeration, measurement,
arithmetic, algorithmic computation, and problem solving. In high
school, curriculum offerings include algebra, geometry, trigonom-
etry, and calculus. Little is understood, however, about how dif-
ferent aspects of mathematical cognition relate to one another (i.e.,
which aspects of performance are shared or distinct, or how
difficulty in one domain corresponds with difficulty in another).
Such understanding would provide theoretical insight into the
nature of mathematics competence and practical guidance about
the identification and treatment of mathematics difficulties.

The purpose of the present study was to explore the overlap of
difficulty with two aspects of primary-grade mathematical cogni-
tion and to examine how characteristics differ among subgroups
with difficulty in one, the other, both, or neither. The first aspect
of performance was computation, including skill with number

combinations (e.g., 2 � 5; 8 – 3) and procedural computation (e.g.,
25 � 38; 74 – 22). The second aspect of performance was problem
solving, including one-step, contextually straightforward word
problems (e.g., John had 9 pennies. He spent 3 pennies at the store.
How many pennies did he have left?) and multistep, contextually
more complex problems (e.g., Fred went to the ballgame with 2
friends. He left his house with $42. While at the game, he bought
5 hotdogs and 3 sodas. The hot dogs cost $10 each, and the sodas
cost $5 each. How much did Fred spend?).

The major distinction between computation and problem solv-
ing is the addition of linguistic information that requires children
to construct a problem model. Whereas a computation problem is
already set up for solution, a word problem requires students to use
the text to identify missing information, construct the number
sentence, and derive the calculation problem for finding the miss-
ing information. This transparent difference would seem to alter
the nature of the task, but no studies have examined how difficulty
in one subdomain corresponds to difficulty in the other and
whether students’ cognitive characteristics differ as a function of
where the mathematics difficulty resides.

By contrast, a related literature does focus on the interplay
between math and reading. In these studies, math difficulty typi-
cally is defined on a broad measure tapping multiple aspects of
performance, then subgroups are formed to determine how perfor-
mance on mathematics domains differs with or without concurrent
reading difficulty. Research has shown that students with difficulty
in both math and reading (usually defined in terms of word
recognition) experience more pervasive deficits in computation
(e.g., Jordan & Hanich, 2000) and problem solving (e.g., Fuchs &
Fuchs, 2002; Hanich, Jordan, Kaplan, & Dick, 2001; Jordan &
Hanich, 2000). This may occur due to a different pattern of

Lynn S. Fuchs, Douglas Fuchs, and Carol L. Hamlett, Department of
Special Education, Vanderbilt University; Karla Stuebing and Jack M.
Fletcher, Department of Psychology, University of Houston; Warren Lam-
bert, Kennedy Center for Research on Human Development, Vanderbilt
University.

This research was supported in part by Grant 1 RO1 HD46154 and Core
Grant HD15052 from the National Institute of Child Health and Human
Development to Vanderbilt University. Statements do not reflect agency
position or policy, and no official endorsement should be inferred.

Correspondence concerning this article should be addressed to Lynn S.
Fuchs, Peabody College, Box 228, Vanderbilt University, Nashville, TN
37203. E-mail: lynn.fuchs@vanderbilt.edu

Journal of Educational Psychology Copyright 2008 by the American Psychological Association
2008, Vol. 100, No. 1, 30–47 0022-0663/08/$12.00 DOI: 10.1037/0022-0663.100.1.30

30



underlying deficits in domain-general abilities associated with
comorbidity. Other work (e.g., Jordan, Hanich, & Kaplan, 2003;
Landerl, Began, & Butterworth, 2004), however, has shown that
students with general math difficulty, with and without reading
problems, experience comparable deficits on number combina-
tions. An older body of research suggested that specific math
difficulty, usually defined as performance on a broad computa-
tional task, is associated with difficulties in nonverbal processing
(spatial cognition, working memory) and procedural knowledge
(Geary, 1993; Rourke & Finlayson, 1978); concurrent reading and
math difficulties reflect more pervasive language and working-
memory problems.

This line of work, which speaks to the issue of reading diffi-
culty, is important for generating hypotheses about the nature of
mathematics disability as well as its identification and treatment.
This literature does not, however, address the issue of whether
difficulty within mathematics domains is better conceptualized as
shared or distinct. Four large-scale studies speak indirectly to this
issue by examining the cognitive characteristics associated with
computational and problem-solving skill among representative
samples. Studying 353 first through third graders, Swanson and
Beebe-Frankenberger (2004) identified working memory as an
ability that contributed to strong performance across both areas of
mathematical cognition, but some unique cognitive abilities also
emerged as important: phonological processing for computation
and fluid intelligence as well as short-term memory for simple
word problems. In an extension of this work following students’
development of calculations and problem-solving skill over 1 year,
Swanson (2006) identified predictors of computation (inhibition or
controlled attention, vocabulary knowledge, visual-spatial working
memory) that differed from problem solving (working-memory’s
executive system, operationalized as listening span, backward digit
span, and digit/sentence span). A latent variable of reading (i.e.,
phonological processing, timed and untimed reading of real words,
timed reading of pseudowords, and comprehension) accounted for
skill in both math outcomes.

With a sample of 312 third graders, Fuchs et al. (2006) exam-
ined the concurrent cognitive correlates of computation versus
simple word problems, this time controlling for the role of arith-
metic skill within simple word problems. Teacher ratings of inat-
tentive behavior were identified as a correlate common to both
subdomains of math, but the remaining abilities differed: for
computation, phonological decoding and processing speed; for
word problems, nonverbal problem solving, concept formation,
sight word efficiency, and language. The fourth study (Fuchs et al.,
2005) used beginning-of-the-year cognitive abilities to predict the
development of skill across the year among 272 first graders.
Results again suggested some common and some unique patterns
of cognitive abilities. The common predictors were working mem-
ory and ratings of attention. The unique predictors were phono-
logical processing for computation and nonverbal problem solving
for simple word problems.

Across these studies, some findings recur; others are idiosyn-
cratic. But together, the results indicate that some abilities under-
lying these domains of mathematical cognition are unique. This
provides the basis for hypothesizing that the cognitive dimensions
underlying difficulty in each of these domains may also be distinct
and that difficulty in these two domains may be distinct. This has
implications for understanding, identifying, and treating mathe-

matics difficulties. In a related way, such knowledge would help
determine whether the distinction in these domains newly intro-
duced into the 2004 reauthorization of the Individuals with Dis-
abilities Education Act is viable. That is, although the reauthorized
law, which guides the identification and treatment of students with
disabilities throughout schools in the United States, makes a dis-
tinction between problem-solving and computational forms of
mathematics disability, little prior work is available to assess the
validity of this distinction.

In the present study, we extended the literature by addressing
these issues directly. We began by conducting preliminary analy-
ses to evaluate the predictors of each math outcome using assess-
ments of math skills and cognitive domains in a large population-
based sample of children in third grade. In line with the four earlier
studies on representative samples, we hypothesized that different
cognitive skills would be associated with each domain, even when
we accounted for shared variance in computation and problem
solving. Our major analyses, however, focused specifically on
determining whether children with extreme deficits in computation
or problem solving represent distinct groups. We identified stu-
dents at the lower end of the distribution on computation, on
problem solving, on both, or on neither, and we examined the
extent to which students actually experienced difficulty in one
domain but not the other. Then, we assessed how the demographic
and cognitive profiles associated with these subgroups differed.
Using profile analysis, we hypothesized that groups based on
computation or problem solving would show different profiles and
that the presence of both difficulties would show features of both
domains, reflecting a comorbid association. We contrasted profile
analysis findings based on a univariate versus a multivariate ap-
proach.

We note that the vast majority of prior work examining the
cognitive correlates of primary-grade mathematics performance
focused on a limited set of cognitive abilities related to a single
aspect of math skill, rather than studying how these abilities
operate within a multivariate framework to explain different as-
pects of mathematical cognition. For this reason, the literature
provides the basis for deliberate hypotheses about which cognitive
abilities may mediate which aspect of third-grade math perfor-
mance. The literature does not, however, provide the basis for
specifying an integrated theory about how these variables operate
in coordinated fashion to explain computation versus problem
solving. Before describing the method of the present study, we
summarize the basis for our hypotheses about which cognitive
dimensions might be related to which aspect of mathematical
cognition.

In terms of computation, prior work provides the basis for
hypothesizing that attentive behavior, working memory, and pro-
cessing speed may help determine skill. Because computation
requires a series of steps, attentive behavior (i.e., low distractibil-
ity) may enhance performance. Russell and Ginsburg (1984) pro-
vided suggestive evidence on this possibility when they compared
math-disabled fourth graders to normal fourth graders and normal
third graders. Results indicated that the algorithmic errors of
math-disabled students were similar to those of both normal
groups, but math-disabled students more closely resembled
younger normal counterparts in detecting those errors. More re-
cently, Swanson (2006) showed that inhibitory control predicted
the development of computation but not problem-solving skill.
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Second, prior work has implicated working memory (e.g.,
Geary, Brown, & Samaranayake, 1991; Hitch & McAuley, 1991;
Siegel & Linder, 1984; Webster, 1979; Wilson & Swanson, 2001),
or the capacity to maintain target memory items while processing
an additional task (Daneman & Carpenter, 1980). Although the
relation between working memory and memory-based retrieval of
computation has been repeatedly documented, the nature of that
relation is unclear. As described by Geary (1993), working mem-
ory involves component skills including, but not limited to, rate of
decay (creating difficulties in holding the association between a
problem stem and its answer) and attentive behavior (hence the
finding that math-disabled children monitor problem solving less
well than non-math-disabled children; Butterfield & Ferretti, 1987;
Geary, Widaman, Little, & Cormier, 1987). In addition, memory
span appears to be related to how quickly numbers can be counted
(Geary, 1993).

It is not surprising, therefore, that processing speed, or the
efficiency with which simple cognitive tasks are executed (R.
Case, 1985), represents a promising candidate. Processing speed
may dictate how quickly numbers can be counted. With slower
processing, the interval for deriving counted answers and for
pairing a problem stem with its answer in working memory in-
creases; this creates the possibility that decay sets in before com-
pleting the computational sequence. Bull and Johnston (1997)
found that processing speed was the best predictor of computa-
tional competence among 7-year-olds, subsuming all of the vari-
ance accounted for by long- and short-term memory, even with
reading performance controlled. More recently, Hecht, Torgesen,
Wagner, and Rashotte (2001) provided corroborating data on the
importance of processing speed as a correlate of computational
skill while controlling for vocabulary knowledge.

As for problem solving, prior work examining which cognitive
processes mediate arithmetic word problems has focused heavily
on working memory, probably because research (e.g., Hitch &
McAuley, 1991; Siegel & Ryan, 1989) shows that children with
learning disabilities experience concurrent difficulty with working
memory (e.g., Siegel & Ryan, 1989; Swanson, Ashbaker, &
Sachse-Lee, 1996) and mathematical problem solving (e.g., L. P.
Case, Harris, & Graham, 1992; Swanson, 1993). Also, theoretical
frameworks (e.g., Kintsch & Greeno, 1985; Mayer, 1992) posit
that word problems involve construction of a problem model,
which appears to require working-memory capacity. For example,
according to Kintsch and Greeno, when people solve word prob-
lems, new sets are formed on-line as the story is processed. When
a proposition that triggers a set-building strategy is completed, the
appropriate set is formed and the relevant propositions are as-
signed places in the schema. As new sets are formed, previous sets
that had been active in the memory buffer are displaced.

In line with theoretical models implicating working memory, the
literature provides support for its importance. For example, Pas-
solunghi and Siegel (2001) found that 9-year-olds, characterized as
good or poor problem solvers, differed on working-memory tasks.
Other researchers have found corroborating evidence using similar
methods (e.g., LeBlanc & Weber-Russell, 1996; Passolunghi &
Siegel, 2004; Swanson & Sachse-Lee, 2001). At the same time,
other studies have raised questions about the robustness of the
relation. For example, among typically developing third and fourth
graders, Swanson, Cooney, and Brock (1993) found only a weak
relation between working memory and problem solution accuracy,

and this relation disappeared once reading comprehension was
considered. The other leading candidates are attentive behavior,
nonverbal problem solving, language ability, reading skill, and
concept formation.

In studies involving attention, most work has focused on the
inhibition of irrelevant stimuli, with mixed results. Passolunghi
and colleagues ran a series of studies suggesting the importance of
inhibition. For example, comparing good and poor problem solv-
ers, Passolunghi, Cornoldi, and De Liberto (1999) found compa-
rable storage capacity with inefficiencies of inhibition (i.e., poor
problem solvers remembered less relevant but more irrelevant
information in math problems). In contrast, Swanson and Beebe-
Frankenberger (2004) and Swanson (2006) found no evidence that
inhibition contributed to problem-solving skill. Research has, how-
ever, rarely studied the role of attention more broadly. An excep-
tion is Fuchs et al. (2005), who found that a teacher rating scale of
attentive behavior predicted the development of first-grade skill
with word problems.

Nonverbal problem solving, or the ability to complete patterns
presented visually, has been identified as a unique predictor in the
development of problem-solving skill across first grade (Fuchs et
al., 2005), a finding corroborated by Agness and McLone (1987).
This is not surprising, because word problems, in which the
problem narrative poses a question entailing relationships between
numbers, appear to require conceptual representations. Language
ability is also important to consider given the obvious need to
process linguistic information when building a problem represen-
tation of an arithmetic word problem. In fact, Jordan, Levine, and
Huttenlocher (1995) documented the importance of language abil-
ity when they showed that kindergarten and first-grade language-
impaired children (receptive vocabulary and grammatic closure �
30th percentile) performed significantly lower than nonimpaired
peers on arithmetic word problems. Finally, it is hard to ignore the
possibility that reading skill may underlie skill in problem solving.
Reading is transparently involved, even when problems are read
aloud to children, because reading skill provides continuing access
to the written problem narrative after the adult reading has been
completed. This potentially reduces the load on working memory
and thereby facilitates solution accuracy. Swanson (2006) recently
identified reading as a predictor of computational as well as
problem-solving skill.

Method

Participants

The data described in this paper were collected as part of a
prospective 4-year study assessing the effects of mathematical
problem-solving instruction and examining the developmental
course and cognitive predictors of mathematical problem solving.
The data in the present article were collected with the first-,
second-, and third-year cohorts at the first assessment wave, sam-
pling from 1,958 students in 89 third-grade classrooms in 10 Title
1 schools and 3 non-Title 1 schools in a southeastern metropolitan
school district.

The sampling process was designed to yield a representative
sample. That is, from these 1,958 students, we randomly sampled
990 students for participation, blocking within classroom and
within three strata: (a) 25% of students with scores 1 SD below the
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mean of the entire distribution on the Test of Computational
Fluency (see Math Measures); (b) 50% of students with scores
within 1 SD of the mean of the entire distribution on the Test of
Computational Fluency; and (c) 25% of students with scores 1 SD
above the mean of the entire distribution on the Test of Compu-
tational Fluency. Of these 990 students, we had complete data for
the variables reported in the present study on 924 children, who
were the basis for the present report. As measured on the two-
subtest Wechsler Abbreviated Scale of Intelligence (WASI; Wech-
sler, 1999), IQ averaged 97.68 (SD � 14.26). Normal curve
equivalent scores on the TerraNova (CTB/McGraw-Hill, 1997),
administered the previous spring by the school district, averaged
55.40 (SD � 16.72) for the reading composite and 55.75 (SD �
20.15) for the mathematics composite. Standard scores on the
Woodcock–Johnson III Tests of Achievement (WJ-III; Woodcock,
McGrew, & Mather, 2001) Applied Problems averaged 102.25
(SD � 13.51), and standard scores on the Woodcock Reading
Mastery Tests—Revised Word Identification (Woodcock, 1998)
averaged 101.05 (SD � 10.05). Of the 924 students, 437 (47.3%)
were male, and 499 (54.0%) received subsidized lunch. Ethnicity
was distributed as follows: 395 (42.5%) African American, 363
(39.3%) European American, 94 (10.2%) Hispanic, 17 (1.8%)
Kurdish, and 55 (6.0%) other. Schools had identified 73 students
(7.9%) as having a disability (i.e., learning disability, speech
impairment, language impairment, attention-deficit/hyperactivity
disorder, health impairment, or emotional behavioral disorder).

Procedure

In this report, we describe only the subset of measures on which
we report data. The math measures were administered in large-
group arrangement in September of third grade during three ses-
sions each lasting 30 to 60 min. These large-group sessions in-
cluded three tests of computational skill (Addition Fact Fluency,
Subtraction Fact Fluency, and Test of Computational Fluency) and
three tests of word problem skill (Simple Word Problems, Algo-
rithmic Word Problems, and Complex Word Problems). Measures
of eight (of the nine) cognitive dimensions were administered
individually in September and October of third grade during two
45-min sessions: Woodcock Diagnostic Reading Battery Listening
Comprehension, Test of Language Development–Primary Gram-
matic Closure, WASI Vocabulary, WJ-III Retrieval Fluency, WJ-
III Concept Formation, WASI Matrix Reasoning, Working Mem-
ory Test Battery for Children Listening Recall, WJ-III Numbers
Reversed, Woodcock Reading Mastery Tests–Revised Word Iden-
tification, and WJ-III Visual Matching. Tests were administered by
trained examiners, each of whom had demonstrated 100% accu-
racy during mock administrations. All individual sessions were
audiotaped, and 19.7% of tapes, distributed equally across testers,
were selected randomly for accuracy checks by an independent
scorer. Agreement was between 98.7% and 99.9%. In October,
classroom teachers completed the Strengths and Weaknesses of
Attention-Deficit/Hyperactivity Disorder-Symptoms and Normal-
Behavior (SWAN) Rating Scale, the ninth cognitive dimension, on
each student.

Math Measures

Addition and subtraction fact fluency. The Grade 3 Math
Battery (Fuchs, Hamlett, & Powell, 2003) incorporates two math

fact retrieval subtests. Addition Fact Fluency comprises 25 addi-
tion fact problems with answers from 0 to 12 and with addends
from 0 to 9. Problems are presented horizontally on one page.
Students have 1 min to write answers. The score is the number of
correct answers. Agreement, calculated on 20% of protocols by
two independent scorers, was 99.8%. For the representative sam-
ple, coefficient alpha was .91.; criterion validity with the previous
spring’s TerraNova (CTB/McGraw-Hill, 1997) Total Math score
was .53 for the 844 students for whom we had TerraNova scores.
Subtraction Fact Fluency comprises 25 subtraction fact problems
with answers from 0 to 12 and with minuends/subtrahends from 0
to 18. Problems are presented horizontally on one page. Students
have 1 min to write answers. The score is the number of correct
answers. Agreement, calculated on 20% of protocols by two in-
dependent scorers, was 98.5%. For the representative sample,
coefficient alpha was .92, and criterion validity with the previous
spring’s TerraNova Total Math score was .51 for the 844 students
for whom we had TerraNova scores.

Procedural computation. The Test of Computational Fluency
(Fuchs, Hamlett, & Fuchs, 1990) is a one-page test displaying 25
items that sample the typical second-grade computation curricu-
lum, including adding and subtracting number combinations and
algorithmic computation. Students have 3 min to complete as
many answers as possible. The score is the number of correct
responses. Staff entered responses into a computerized scoring
program on an item-by-item basis, with 15% of tests reentered by
an independent scorer. Data-entry agreement was 99.6%. For the
representative sample, coefficient alpha was .94, and criterion
validity with the previous spring’s TerraNova (CTB/McGraw-Hill,
1997) Total Math score was .60 for the 844 students for whom we
had TerraNova scores.

Simple arithmetic word problems. Following Jordan and
Hanich (2000; adapted from Carpenter & Moser, 1984; Riley &
Greeno, 1988; Riley, Greeno, & Heller, 1983), Story Problems
comprises 14 one-step word problems that express change, com-
bine, compare, and equalize relationships among numbers and
require sums or subtrahends of 9 or less for solution. The tester
reads each item aloud while students follow along on their own
copies of the problems. Students have 30 s to respond to each item
before the tester moves to the next one, and students can ask for
rereading(s) as needed. The score is the number of correct answers.
A second scorer independently rescored 20% of protocols, with
agreement of 99.9%. For the representative sample, coefficient
alpha was .86, and criterion validity with the previous spring’s
TerraNova (CTB/McGraw-Hill, 1997) Total Math score was .62
for the 844 students for whom we had TerraNova scores.

Algorithmic word problems. Algorithmic Word Problems
(Fuchs et al., 2003) comprises 10 word problems, each of which
requires one to four steps. The measure samples four problem
types, asking students to (a) apply step-up functions, (b) add
multiple quantities of items each with different prices, (c) find half,
or (d) sum a quantity derived from a pictograph with another
addend. The tester reads each item aloud while students follow
along on their own copies of the problems. The tester progresses to
the next problem when all but one or two students have their
pencils down, indicating they are finished. Students can ask for
rereading(s) as needed. The maximum score is 44. For the repre-
sentative sample, Cronbach’s alpha was .85, and criterion validity
with the previous spring’s TerraNova (CTB/McGraw-Hill, 1997)
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Total Math score was .58 for the 844 students for whom we had
TerraNova scores. Interscorer agreement, computed on 20% of
protocols by two independent scorers, was .984.

Complex word problems. Complex Word Problems (Fuchs et
al., 2003) comprises nine problems representing the same four
problem types as the algorithmic word problems within more
complex contexts: (a) adding multiple quantities of items with
different prices, with information presented in bulleted format and
with a selection response format; (b) adding multiple quantities of
items with different prices, also asking for money left at the end;
(c) a step-up function problem with irrelevant information; (d) a
step-up function that requires students to compare the prices of two
packaging options; (e) a half problem using the words share
equally instead of half; (f) a pictograph/adding problem asking for
money left at the end; (g) a pictograph/adding problem comparing
two quantities; (h) a problem with irrelevant information that
combines multiple quantities with different prices and pictograph/
adding; and (i) a problem with irrelevant information that com-
bines multiple quantities with different prices and a step-up func-
tion. The tester reads each item aloud while students follow along
on their own copies of the problems. The tester progresses to the
next item when all but one or two students have their pencils down,
indicating they are finished. Students can ask for rereading(s) as
needed. The maximum score is 79. For the representative sample,
Cronbach’s alpha was .88, and criterion validity with the previous
spring’s TerraNova (CTB/McGraw-Hill, 1997) Total Math Score
was .55 for the 844 students for whom we had TerraNova scores.
Interscorer agreement, computed on 20% of protocols by two
independent, blind scorers, was .983.

Cognitive Dimensions

Language. Using three measures of language skill, we used a
principal components factor analysis to create a weighted compos-
ite variable of language. Test of Language Development–Primary
Grammatic Closure (Newcomer & Hammill, 1988) measures the
ability to recognize, understand, and use English morphological
forms. The examiner reads 30 sentences, one at a time. Each
sentence has a missing word, and examinees earn 1 point for each
sentence correctly completed. As reported by the test developers,
reliability is .88 for 8-year-olds; the correlation with the Illinois
Test of Psycholinguistic Ability Grammatic Closure is .88 for
8-year-olds. Coefficient alpha on the representative sample was
.76. The Woodcock Diagnostic Reading Battery Listening Com-
prehension (Woodcock, 1997) measures the ability to understand
sentences or passages. For 38 items, students supply the word
missing from the end of each sentence or passage. The test begins
with simple verbal analogies and associations and progresses to
comprehension involving the ability to discern implications. Test-
ing is discontinued after six consecutive errors. The score is the
number of correct responses. As reported by the test developers,
reliability is .80 at ages 5 to 18; the correlation with the
Woodcock–Johnson Psycho-Educational Battery—Revised
(Woodcock & Johnson, 1989) is .73. Coefficient alpha on the
representative sample was .81. WASI Vocabulary (Wechsler,
1999) measures expressive vocabulary, verbal knowledge, and
foundation of information with 42 items. The first four items
present pictures; the student identifies the object in the picture. For
remaining items, the tester says a word that the student defines.

Responses are awarded a score 0, 1, or 2 depending on quality.
Testing is discontinued after five consecutive scores of 0. The
score is the total number of points. As reported by Zhu (1999),
split-half reliability is .86 to .87 at ages 6 to 7; the correlation with
the Wechsler Intelligence Scale for Children–III Full Scale IQ is
.72. Coefficient alpha on the representative sample was .78.

Semantic retrieval fluency. WJ-III Retrieval Fluency (Wood-
cock et al., 2001) asks examinees to recall related items, within
categories, for 1 min per category. Examinees earn credit for each
nonduplicated answer. As reported by the test developers, reliabil-
ity is .78 for 8-year-olds.

Concept formation. WJ-III Concept Formation (Woodcock et
al., 2001) asks examinees to identify the rules for concepts when
shown illustrations of instances and noninstances of the concept.
Examinees earn credit by correctly identifying the rule that gov-
erns each concept. Cutoff points determine the ceiling. The score
is the number of correct responses. As reported by the test devel-
opers, reliability is .93 for 8-year-olds. Coefficient alpha on the
representative sample was .82.

Nonverbal problem solving. WASI Matrix Reasoning (Wech-
sler, 1999) measures nonverbal reasoning with four types of tasks:
pattern completion, classification, analogy, and serial reasoning.
Examinees look at a matrix from which a section is missing and
complete the matrix by saying the number of or pointing to one of
five response options. Examinees earn points by identifying the
correct missing piece of the matrix. Testing is discontinued after
four errors on five consecutive items or after four consecutive
errors. The score is the number of correct responses. As reported
by the test developer, reliability is .94 for 8-year-olds; the corre-
lation with the Wechsler Intelligence Scale for Children–III Full
Scale IQ is .66. Coefficient alpha on the representative sample was
.76.

Working memory. With the Working Memory Test Battery for
Children Listening Recall (Pickering & Gathercole, 2001), a mea-
sure of verbal working memory, the tester says a series of short
sentences, only some of which make sense. The student indicates
whether each sentence is true or false. After all sentences in a trial
(i.e., one to six sentences) are heard and determined to be true or
false, the student recalls the final word of each sentence in the
order presented. The student earns 1 point for each sequence of
final words recalled correctly in the right order, and the score is the
total of correct sequences. Testing is discontinued when the stu-
dent makes three or more errors in any block of items. As reported
by Pickering and Gathercole, test–retest reliability is .93. Coeffi-
cient alpha on the representative sample was .72. With WJ-III
Numbers Reversed (Woodcock et al., 2001), a measure of numer-
ical working memory, the tester says a string of random numbers;
the student says the series backwards. Item difficulty increases as
more numbers are added to the series. Students earn credit by
repeating the numbers correctly in the opposite order. As reported
by the test developers, reliability is .86 for 8-year-olds. Coefficient
alpha on the representative sample was .84.

Word identification skill. The Woodcock Reading Mastery
Tests—Revised Word Identification (Woodcock, 1998) measures
real-word reading ability with 100 words arranged in order of
difficulty. Students read words aloud. Testing is discontinued after
six consecutive errors at the end of a page. The score is the number
of correct items. As reported by Woodcock, split-half reliability is
.98. Coefficient alpha on the representative sample was .87.
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Attentive behavior. The SWAN is an 18-item teacher rating
scale (www.adhd.net). Items from the Diagnostic and Statistical
Manual of Mental Disorders (4th ed.; American Psychiatric As-
sociation, 1994) criteria for attention-deficit/hyperactivity disorder
are included for inattention (largely distractibility; Items 1–9) and
hyperactivity/impulsivity (Items 10–18). Items are rated on a scale
of 1 to 7 (1 � far below, 2 � below, 3 � slightly below, 4 �
average, 5 � slightly above, 6 � above, 7 � far above). In the
present study, we report data for the inattentive behavior subscale.
Using the nine relevant items, we used a principal components
factor analysis to create a weighted composite variable of attentive
behavior, or the ability to maintain focus. (Because the principal
components factor analysis yielded only one factor, no rotation
was necessary.) The SWAN has been shown to correlate well with
other dimensional assessments of behavior related to inattention
(www.adhd.net). Coefficient alpha on the representative sample
was .96.

Processing speed. WJ-III Visual Matching (Woodcock et al.,
2001) measures processing speed by asking examinees to locate
and circle two identical numbers in rows of six numbers. Exam-
inees have 3 min to complete 60 rows and earn credit by correctly
circling the matching numbers in each row. As reported by the test
developer, reliability is .91 for 8-year-olds.

Data Analysis and Results

Variable Transformations

In Table 1, we show means, standard deviations, and correla-
tions for the representative sample of 924 students on computation,
problem solving, and nine cognitive dimensions (language, seman-
tic retrieval fluency, concept formation, matrix reasoning, verbal
working memory, numerical working memory, word identifica-
tion, attentive behavior, and processing speed). Based on the entire
sample of 924 students, we transformed raw scores for each of the
three computation and each of the four problem solving measures
to z scores (M � 0.00, SD � 1.00). For dimensions with more than
one indicator (computation, problem solving, language, and atten-
tion), we used SAS PROC FACTOR to estimate factor scores,
using squared multiple correlations as the communalities.

Preliminary Analyses: Screening for Outliers and
Nonlinearity and Regressions on the Representative
Sample

To identify potential outliers, we plotted the bivariate relations
of both problem solving and computation with each cognitive
variable. We identified five outlier values whose cases we elimi-
nated from further analyses. Then, to investigate the shape of the
relations, we examined the bivariate relations between each math
outcome and each cognitive variable. We used linear and quadratic
forms of each predictor to investigate the functional relation. Any
significant quadratic relations between cognitive dimension and
math outcome were marked for inclusion in the full regression
analysis. We found significant (although not substantial) nonlin-
earity between problem solving and computation when predicting
computation from problem solving (but not when predicting prob-
lem solving from computation). So, in the full regression predict-

ing computation from problem solving, we included the quadratic
term for problem solving.

We then completed regression analyses to examine the relation
of each math outcome with the nine cognitive dimensions using
the entire sample. When the quadratic relation between a cognitive
dimension and a math outcome was significant (see above), we
retained both the linear and quadratic relations within the full
model. (We note that significant nonlinear relations between the
cognitive variables and the math outcomes were trivial.) For each
math outcome, we also investigated the interaction of the cognitive
variables with the math outcome variable we were controlling. For
example, when predicting computation, we entered problem solv-
ing, all nine cognitive variables, any significant quadratic relations
(including the quadratic relation for problem solving), and the
product vectors of each cognitive variable with problem solving.
We did this to determine whether the relation of the cognitive
variables with computation was consistent over the range of prob-
lem solving. We found that the block of interaction vectors did not
add significantly for either math outcome and deleted the product
vectors from the model. Finally, for each math outcome, we ran a
pruned model, the variables for which neither the linear nor qua-
dratic relation in the full regression model was significant. In Table
2, we present the results of the full and pruned models predicting
computation performance. In Table 3, we present findings for the
prediction of problem-solving performance. As shown, after we
controlled for problem-solving skill in the prediction of computa-
tional skill, significant cognitive predictors were word identifica-
tion, attentive behavior, processing speed, as well as the quadratic
relation for numerical working memory. By contrast, after we
controlled for computational skill in the prediction of problem-
solving skill, significant cognitive predictors were language, con-
cept formation, matrix reasoning, numerical working memory, as
well as the quadratic relation for language and attentive behavior.

Difficulty Status Group Formation

Because the major focus of the present study was to extend
understanding about difficulty in computation versus problem
solving and because the regressions only informed about the effect
of each variable when the other variables are controlled at their
means, it was important to examine performance specifically at the
lower ranges of performance on the math outcomes. To establish
extreme groups impaired on computation, problem solving, or
both, we designated math difficulty in the following manner. Any
student who scored above the 40th percentile on the problem-
solving factor score and above the 40th percentile on the compu-
tation factor score was designated as having no difficulty (ND).
Any student who scored below the 15th percentile on the compu-
tation factor score but above the 40th percentile on the problem-
solving factor score was designated as having computational dif-
ficulty (CD). Any student who scored below the 15th percentile on
the problem-solving factor score but above the 40th percentile on
the computation factor score was designated as having problem-
solving difficulty (PD). Any student who scored below the 15th
percentile on the problem-solving factor score and below the 15th
percentile on the computation factor score was designated as
having computation and problem-solving difficulty (CPD). This
placed 372 students in the buffer zone (i.e., scoring between the
16th and 39th percentiles on either or both math outcome) and
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resulted in 415 ND, 35 CD, 33 PD, and 64 CPD. All remaining
analyses were conducted on this subset of 547 students classified
as ND, CD, PD, or CPD (i.e., not in the buffer zone). Because
academic performance occurs on a continuum, cutoffs for denoting
difficulty or lack thereof are necessarily arbitrary, as is the desig-
nation of learning disability in the schools. The 40th percentile is
used commonly in the research literature as a cut-point for desig-
nating lack of difficulty. Cutoffs for designating difficulty or
disability vary more in the literature. We selected the 15th percen-
tile because it is useful for understanding disability as practiced in
the schools. In Table 4, we show standard score means and
standard deviations for the nationally normed math variables we
had available and for the cognitive dimensions on which we had
nationally normed data.

Sociodemographic Comparisons

In Table 5, we show frequencies for gender, subsidized lunch,
and ethnicity by difficulty status. For each variable, we partitioned
the contingency tables to run a series of chi-square tests for
determining (a) whether ND differed from students with difficulty
(ND vs. CD/PD/CPD), (b) whether CD differed from either variant
of problem-solving difficulty (CD vs. PD/CPD), and (c) whether
the two variants of problem-solving difficulty differed (PD vs.
CPD). To control for multiple comparisons, we adjusted the value
of alpha by the number of contrasts on each index (i.e., tested at
p � .05 / 3 � .0167). There was no significant relation between

gender and math difficulty status: �2(1, N � 547) � 0.02, ns; �2(1,
N � 132) � 0.01, ns; and �2(1, N � 97) � 0.50, ns, for the three
contrasts, respectively. For the proportion of subsidized lunch,
however, an interesting set of relations emerged. As might be
anticipated, students without math difficulty were significantly less
likely to receive subsidized lunch than were students with math
difficulty, �2(1, N � 547) � 6.82, p � .009. More interesting is the
fact that students with computational difficulty were significantly
less likely to receive subsidized lunch than were students with
problem-solving difficulty (PD or CPD), �2(1, N � 132) � 7.01,
p � .008, even though students with PD alone and those with CPD
were comparably likely to receive subsidized lunch, �2(1, N �
97) � 0.46, p � .50. The same pattern emerged for ethnicity. The
distribution of ethnicity differed between students with and with-
out difficulty, �2(5, N � 547) � 33.13, p � .001. The distribution
of ethnicity also differed for students with CD versus those with
problem-solving difficulty (PD or CPD), �2(5, N � 132) � 22.89,
p � .001, even though students with the two variants of problem-
solving difficulty (PD vs. CPD) were similarly distributed across
the ethnicity categories, �2(5, N � 97) � 7.71, p � .17.

Group Comparisons on Cognitive Dimensions

Table 6 presents z-score means and standard deviations, by
difficulty status, on the computation and problem-solving factor
scores and on language (factor score), semantic retrieval fluency,
concept formation, matrix reasoning, verbal working memory,

Table 2
Full and Pruned Regression Models Predicting Computationa Performance (n � 919)

Predictor

Full Pruned

B SE t B SE t

Intercept �0.03 0.05 0.62 �0.01 0.05 0.30
Problem solvingb 0.45 0.04 11.18*** 0.44 0.04 11.41***

Languagec �0.08 0.04 �2.13* �0.08 0.03 �2.37*

Semantic retrievald 0.03 0.03 0.99
Concept formatione �0.01 0.03 �0.33
Matrix reasoningf �0.03 0.03 �0.88
Verbal working memoryg �0.04 0.03 �1.24
Numerical working memoryh �0.01 0.03 �0.17 �0.02 0.03 �0.62
Word IDi 0.11 0.03 3.15* 0.10 0.03 3.00***

Attentionj 0.12 0.03 3.50*** 0.11 0.03 3.39***

Processing speedk 0.25 0.03 8.22*** 0.26 0.03 8.90***

Problem solving-Q 0.04 0.02 1.87 �0.04 0.02 �1.96
Language-Q �0.02 0.02 �0.87
Semantic retrieval-Q 0.01 0.02 0.55
Matrix reasoning-Q 0.00 0.03 0.07
Numerical working memory-Q 0.05 0.02 2.77* 0.05 0.02 2.95*

Processing speed-Q 0.03 0.02 1.63 0.03 0.02 1.63

Note. Full, F(16, 902) � 42.22, p � .001, R2 � .43. Pruned, F(8, 910) � 83.54, p � .001, R2 � .42. Q indicates
the quadratic term.
a Addition Fact Fluency, Subtraction Fact Fluency, Test of Computational Fluency. b Simple Word Problems,
Algorithmic Word Problems, and Complex Word Problems. c Woodcock Diagnostic Reading Battery Listen-
ing Comprehension, Test of Language Development–Primary Grammatic Closure, and Wechsler Abbreviated
Scale of Intelligence (WASI) Vocabulary. d Woodcock–Johnson III Tests of Achievement (WJ–III) Retrieval
Fluency (W score). e WJ–III Concept Formation. f WASI Matrix Reasoning. g Working Memory Test
Battery for Children Listening Recall. h WJ–III Numbers Reversed. i Woodcock Reading Mastery Tests—
Revised Word Identification. j Strengths and Weaknesses of Attention-Deficit/Hyperactivity Disorder-
Symptoms and Normal-Behavior Rating Scale. k WJ–III Visual Matching.
* p � .05. *** p � .001.
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numerical working memory, word identification, attentive behav-
ior (factor score), and processing speed.

Preliminary analysis of clustering effects. Before choosing an
analytic model, we examined the extent of clustering of children in
classes and schools. With clustering, the independence assumption
of analysis of variance may be violated, possibly leading to spu-
rious significance levels (Raudenbush & Bryk, 2002). Strong
clustering would necessitate a multilevel model rather than a
repeated measures approach. Variance components were estimated
with SAS PROC MIXED (Littell, Milliken, Stroup, Wolfinger, &
Schabenger, 2006). The resulting intraclass correlations showed
how much of the total variance in the variables of interest (i.e., the
nine cognitive dimensions) was explained by the clustering of
children in classroom and school. The effect for school explained
0% of the variance, and the effect for classroom (nested in school)
explained less than 5%. Raudenbush and Liu’s (2000) ad hoc
standards deem 5%, 10%, and 15% as small, medium, and large.

Overall analysis. Because the intraclass correlations in this
database were small to nonexistent, we conducted an initial profile
analysis using a two-way analysis of variance. The between-
subjects factor was math difficulty status (ND vs. CD vs. PD vs.
CPD); the within-subjects factor was cognitive dimension (z
score on language vs. semantic retrieval fluency vs. concept
formation vs. matrix reasoning vs. verbal working memory vs.
numerical working memory vs. word identification vs. attentive
behavior vs. processing speed). The interaction between math
difficulty status and cognitive dimension was significant, F(24,
4337) � 4.67, p � .0001.

To help interpret the interaction between math difficulty status
and cognitive dimension, we plotted z scores on the nine cognitive
dimensions for each of the four difficulty status groups (see Figure
1). As shown, the ND and CD groups performed at a higher level
than did the PD and CPD groups. In addition, the difficulty status
by cognitive dimension interaction appeared to be evident in the
variations in the profile shape across the nine cognitive dimensions
as a function of the difficulty status group.

Univariate follow-ups to the interaction. Because the eleva-
tion effects in Figure 1 were striking and because many studies
have compared univariate differences among math difficulty
groups, we initially conducted follow-up tests using Fisher’s least
significant difference, with math difficulty status as the factor
(Seaman, Levin, & Serlin, 1991). Alpha was adjusted for six
contrasts per measure, comparing each difficulty status group to all
others ( p � .05 / 6 � .008). Results of these follow-up tests appear
under the labels on the horizontal axis in Figure 1. Symbols for the
four groups (see key) appear under each cognitive dimension.
Groups joined by a horizontal line were not significantly different
from one another. The univariate test on each cognitive dimension
was significant ( p � .0001). To help evaluate the magnitude of the
univariate differences, we computed effect sizes for each variable
(see Table 7) by dividing the difference between group means by
the standard deviation pooled across the two groups in the com-
parison (Hedges & Olkin, 1985). The complicated pattern of
differences that emerged is addressed in the Discussion.

Profile analysis of shape effects. The interpretation of a pat-
tern like the one shown in Figure 1 is complicated. The univariate

Table 3
Full and Pruned Regression Models Predicting Problem-Solvinga Performance (n � 919)

Predictor

Full Pruned

B SE t B SE t

Intercept �0.05 0.04 1.25 �0.07 0.03 2.32*

Computationb 0.31 0.03 11.58*** 0.29 0.03 11.77***

Languagec 0.23 0.03 7.29*** 0.24 0.03 9.05***

Semantic retrievald �0.01 0.03 �0.25
Concept formatione 0.16 0.03 5.84*** 0.16 0.03 5.95***

Matrix reasoningf 0.13 0.03 5.04*** 0.14 0.02 5.44***

Verbal working memoryg 0.03 0.03 1.21
Numerical working memoryh 0.05 0.03 1.92 0.05 0.02 2.14

*

Word IDi 0.02 0.03 0.71
Attentionj 0.18 0.03 6.22*** 0.17 0.03 6.36***

Processing speedk �0.03 0.03 �1.26
Language-Q 0.03 0.02 1.90 0.03 0.02 2.00*

Concept formation-Q 0.01 0.02 0.90
Matrix reasoning-Q �0.02 0.02 �0.72
Numerical working memory-Q 0.03 0.02 1.89
Attention-Q 0.04 0.02 2.32* 0.04 0.02 2.18*

Note. Full, F(15, 903) � 81.96, p � .001, R2 � .58. Pruned, F(8, 910) � 152.55, p � .001, R2 � .57. Q
indicates the quadratic term.
a Simple Word Problems, Algorithmic Word Problems, and Complex Word Problems. b Addition Fact Flu-
ency, Subtraction Fact Fluency, Test of Computational Fluency. c Woodcock Diagnostic Reading Battery
Listening Comprehension, Test of Language Development–Primary Grammatic Closure, and Wechsler Abbre-
viated Scale of Intelligence (WASI) Vocabulary. d Woodcock–Johnson III Tests of Achievement (WJ–III)
Retrieval Fluency (W score). e WJ–III Concept Formation. f WASI Matrix Reasoning. g Working Memory
Test Battery for Children Listening Recall. h WJ–III Numbers Reversed. i Woodcock Reading Mastery
Tests—Revised Word Identification. j Strengths and Weaknesses of Attention-Deficit/Hyperactivity Disorder-
Symptoms and Normal-Behavior Rating Scale. k WJ–III Visual Matching.
* p � .05. *** p � .001.
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tests do not account for relations among the cognitive dimensions,
and they confound level and measure effects. A traditional multi-
variate analysis of variance determines how a set of measures can
be combined into a set of K – 1 univariate composites (discrimi-
nant functions), which maximally separates groups (Bernstein,
Garbin, & Teng, 1988; Harris, 1975). However, each composite
comprises elements that involve differences not only in elevation
but also in shape, both of which seem apparent in the profiles
shown in Figure 1. By contrast, a multivariate profile analysis
accounts for correlations among cognitive dimensions and decom-
poses the univariate composites into components representing el-
evation, flatness, and shape. The elevation effects are differences
among groups averaged across the dimensions. Flatness effects are

differences in dimensions averaged across groups; they indicate
whether the profile measures vary or can be represented as a
relatively straight line (because we used z scores, we did not
anticipate flatness effects). When profiles differ in shape, which is
analogous to the Difficulty Status � Dimension interaction already
documented, differences among groups vary depending on cogni-
tive dimension, in which case the elevation and flatness compo-
nents are not interesting.

Thus, we used multivariate profile analysis to conduct four
planned contrasts to explore how the profiles of the math difficulty
groups differed. In these contrasts, we compared the ND group to
the specific computational difficulty group and then in turn com-
pared the specific computational difficulty group to each of the

Table 4
Standard Score Performance by Difficulty Status

Variable

Difficulty status

ND (n � 415) CD (n � 35) PD (n � 33) CPD (n � 64)

M SD M SD M SD M SD

TerraNova 58.80 14.97 22.06 14.34 24.83 15.16 17.00 15.60
Applied problemsa 109.65 12.80 100.31 11.15 93.30 7.72 88.17 9.00
Grammaticb 89.43 11.61 86.14 10.30 78.48 8.15 78.83 6.59
Listeningc 101.92 18.37 104.31 14.11 84.88 11.71 84.36 12.45
Vocabularyd 50.88 9.89 49.49 10.20 40.33 6.64 40.75 7.77
Semantic retrievale 96.94 12.94 93.26 12.92 92.36 12.94 86.00 14.07
Concept formationf 98.74 12.03 91.80 13.58 84.82 10.59 81.48 10.95
Matrix reasoningg 53.35 10.27 49.06 9.94 42.15 9.63 42.45 9.68
Verbal working memoryh 97.72 14.59 90.23 15.47 83.27 16.07 83.66 15.62
Numerical working memoryi 99.73 14.13 95.20 10.43 90.30 12.19 89.08 10.19
Word IDj 104.93 10.50 100.69 9.45 94.94 6.97 93.08 6.73
Processing speedk 104.35 14.83 92.37 12.76 96.42 17.71 87.56 13.85

Note. TerraNova is normal curve equivalents on the TerraNova. All other scores are standard scores. Standard scores are M � 100, SD � 15, except
vocabulary and matrix reasoning, for which M � 50 and SD � 10. ND � no difficulty; CD � computational difficulty; PD � problem-solving difficulty;
CPD � computational and problem-solving difficulty.
a Woodcock–Johnson III Tests of Achievement (WJ–III) Applied Problems. Applied Problems assesses a variety of math domains with only a limited
number of word problems assessed in the third-grade range. b Test of Language Development–Primary Grammatic Closure. c Woodcock Diagnostic
Reading Battery Listening Comprehension. d Wechsler Abbreviated Scale of Intelligence (WASI) Vocabulary. e WJ–III Retrieval Fluency. f WJ–III
Concept Formation. g WASI Matrix Reasoning. h Working Memory Test Battery for Children Listening Recall. i WJ–III Numbers Reversed.
j Woodcock Reading Mastery Tests—Revised Word Identification. k WJ–III Visual Matching.

Table 5
Demographics by Difficulty Status

Demographic
variable

Difficulty status

ND (n � 415) CD (n � 35) PD (n � 33) CPD (n � 64)

n % n % n % n %

Male 201 48.4 17 48.6 14 42.4 32 50.0
Subsidized luncha 185 23.4 14 45.2 18 66.7 45 73.8
African American 129 31.1 10 28.6 23 70.0 43 67.2
European American 201 48.4 22 62.9 6 18.2 14 21.9
Hispanic 36 8.7 3 8.6 1 3.0 6 9.4
Kurdish 14 3.4 0 0.0 1 3.0 0 0.0
Other 35 8.4 0 0.0 2 6.1 1 1.6

Note. ND � no difficulty; CD � computational difficulty; PD � problem-solving difficulty; CPD �
computational and problem-solving difficulty.
a Some schools declined to provide subsidized lunch data, resulting in sample sizes of 363, 31, 27, and 61 for
the four difficulty status groups, respectively.
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groups involving problem-solving difficulty, thereby reducing the
need to compare the ND and problem-solving difficulty groups
directly (especially given that the ND group performed at a much
higher level than the CPD and PD groups, as shown in Figure 1).
We also compared the specific problem-solving difficulty group to
the group that manifested both forms of difficulty. To control for
Type 1 error (given four planned contrasts), we adjusted the
critical value of alpha to .0125 (.05 / 4); however, because the
power for each comparison differed, effect sizes (eta-squared)
were also considered.

Although separate effects for the elevation, flatness, and shape
effects might be explored in a profile analysis approach, the large
interaction already documented in the univariate analysis between
difficulty status and cognitive dimension mitigated against pursing
elevation or flatness effects. Table 8 presents the interaction con-
trasts exploring the shape effects. As shown, only the contrasts for
ND versus CD and for CD versus PD met the critical alpha level.
Although the contrasts between PD and CPD and between CD and
CPD did not meet the critical alpha level, the effect sizes (both
�0.15) were slightly larger than for the ND versus CD contrast
(0.08), the latter having more power. Effect sizes were in the small
to medium range.

In interpreting the shape effects, we note that the overall tests for
elevation, flatness, and shape are not dependent on the ordering of
the dimensions. However, interpretation of individual dimensions
may depend on the ordering and the location of pairs of dimen-

sions in the profile. To determine how profile dimensions contrib-
ute to the interaction regardless of the ordering of the dimensions,
we followed a commonly recommended procedure for the inter-
pretation of profile analysis multivariate analysis of variance:
inspection of the canonical structure matrix (Harris, 1975). In
following up the shape effect, it is also necessary to remove the
effect of elevation (Bernstein et al., 1988; Fletcher et al., 1994).
This was done by computing the residuals in a model, which
included only the main effects of group and cognitive dimension;
the result reduced the elevation of each group to approximately
zero. Any variation among group means on the cognitive variables
is then due only to the effect of shape.

Figure 2 shows the elevation-adjusted shape profile for each of
the four groups along the nine cognitive dimensions. Note that the
relation of the groups on the y-axis differs substantially from the
relations manifested in Figure 1. This is because the elevation
differences that dominated Figure 1 have been removed in Fig-
ure 2. In Table 9, we present the canonical structure matrix for
each of the four planned contrasts. Within the canonical structure
matrix, simple correlations are computed for each variable with the
discriminant function representing the multivariate effect for
shape, adjusted for elevation (Huberty, 1975). The positive or
negative value of the correlations reflects the pattern of mean
differences between the contrasted groups. For interpretive pur-
poses, we consider both the magnitude and the direction of these
correlations as well as the significance of the univariate test (F

Table 6
Performance by Difficulty Status

Variable

Difficulty status

ND
(n � 415)

CD
(n � 35)

PD
(n � 33)

CPD
(n � 64)

M SD M SD M SD M SD

Basic facts �a 0.62 0.80 �1.21 0.43 0.40 0.61 �1.44 0.53
Basic facts �b 0.62 0.95 �0.95 0.31 0.09 0.74 �1.02 0.45
Computationc 0.76 0.79 �1.09 0.20 0.14 0.62 �1.27 0.30
Simple PSd 0.76 0.49 0.36 0.53 �1.33 0.54 �1.75 0.59
Algorithmic PSe 0.68 0.96 0.00 0.57 �0.98 0.22 �1.04 0.22
Complex PSf 0.56 1.10 �0.18 0.55 �0.84 0.22 �0.78 0.22
Languageg 0.40 0.89 0.32 0.79 �0.85 0.82 �0.81 0.82
Semantic retrievalh 0.27 0.93 0.01 0.93 �0.05 0.93 �0.51 1.01
Concept formationi 0.42 0.88 �0.09 1.00 �0.60 0.78 �0.85 0.80
Matrix reasoningj 0.37 0.92 �0.01 0.90 �0.64 0.87 �0.61 0.87
Verbal working memoryk 0.31 0.91 �0.16 0.97 �0.59 1.00 �0.57 0.97
Numerical working memoryl 0.27 1.01 �0.05 0.74 �0.40 0.87 �0.49 0.73
Word IDm 0.39 1.04 �0.04 0.94 �0.61 0.69 �0.79 0.67
Attentionn 0.55 0.90 �0.47 0.94 �0.59 0.72 �1.07 0.53
Processing speedo 0.39 0.96 �0.38 0.82 �0.12 1.14 �0.69 0.89

Note. Performance is expressed as z scores in relation to the representative sample of 919. ND � no difficulty;
CD � computational difficulty; PD � problem-solving difficulty; CPD � computational and problem-solving
difficulty.
a Addition Fact Fluency. b Subtraction Fact Fluency. c Test of Computational Fluency. d Simple Word
Problems. e Algorithmic Word Problems. f Complex Word Problems. g A factor score across the Wood-
cock Diagnostic Reading Battery Listening Comprehension, Test of Language Development–Primary Gram-
matic Closure, and Wechsler Abbreviated Scale of Intelligence (WASI) Vocabulary. h Woodcock–Johnson III
Tests of Achievement (WJ–III) Retrieval Fluency. i WJ–III Concept Formation. j WASI Matrix Reasoning.
k Working Memory Test Battery for Children Listening Recall. l WJ–III Numbers Reversed. m Woodcock
Reading Mastery Tests—Revised Word Identification. n Strengths and Weaknesses of Attention-Deficit/
Hyperactivity Disorder-Symptoms and Normal-Behavior Rating Scale. o WJ–III Visual Matching.
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value) associated with each cognitive variable for each pair of
contrasts (see asterisks in Table 9, where the critical p value has
been adjusted to .006 to account for nine univariate dimensions).

As reflected in the canonical structure correlations shown in
Table 9, the contrast between the ND and CD groups was ac-
counted for by language (–.44), attentive behavior (.60), and
processing speed (.32), which were more heavily weighted than
other variables. Accordingly, in Figure 2, the difference in lan-
guage (positive direction for CD relative to other dimensions),
attentive behavior (negative direction for CD relative to other
dimensions), and processing speed (negative direction for CD
relative to other dimensions) most clearly differentiates the shape
of the ND and CD profiles. Among language, attentive behavior,
and processing speed, attentive behavior was the most reliable
correlate of the shape effect across different methods of interpret-
ing the contributions of the dimensions.

As might be expected, therefore, for the comparison between the
PD and CPD groups, Table 9 shows the highest canonical structure
coefficients for attentive behavior (.54) and processing speed (.44).
In Figure 2, these differences in attentive behavior (negative di-
rection for CPD relative to most other dimensions) and processing
speed (positive direction for PD relative to most other dimensions)
are striking aspects of the profile and also clearly contrast with the
profile for the CPD group, in which attentive behavior was a
negative dimension and processing speed is neutral. Again, atten-
tive behavior was the most reliable correlate of the shape effect
across different methods of interpreting the contributions of the
dimensions.

By contrast, for the comparison between PD and CD, language
(–.70) and processing speed (.51) were the variables contributing

to the shape effect and reflect the negative direction of language
relative to other dimensions for the PD group and the positive
direction in language relative to other dimensions for the CD
group. In contrast, processing speed was a negative dimension for
the CD group but positive for the PD group. Figure 2 shows that
semantic retrieval fluency was also positive in the PD group, a
likely suppressor effect given the large standardized coefficient for
semantic retrieval fluency (.74). Language was the most reliable
correlate of the shape effect across different methods of interpret-
ing the contributions of the dimensions. Finally, and in keeping
with the contrast between PD and CD, the cognitive dimension
accounting for the contrast between the CPD and CD groups was
language (–.72). The standardized coefficients showed a similar
pattern. Again, this variable moved in opposite directions in the
profiles for the two groups (see Figure 2).

Discussion

The purposes of this study were to explore the overlap between
difficulty with two aspects of primary-grade mathematical cogni-
tion—computation and problem solving—and to examine how
demographic and cognitive profiles differ among subgroups with
difficulty in one, the other, both, or neither. The goal was to gain
insight into whether these domains are shared or distinct aspects of
mathematical cognition in extreme groups. This issue is not only
theoretically important but also has implications in terms of iden-
tifying math disability, as specified in the 2004 reauthorization of
the Individuals with Disabilities Education Act, and for designing
effective methods for preventing and remediating math difficulty.

Figure 1. z scores on nine cognitive dimensions by difficulty status. WM � working memory; ID �
identification.

41PROBLEM SOLVING VS. COMPUTATION



With respect to overlap, results revealed that difficulty in one
domain did not necessarily align with difficulty in the other. This
is understandable because correlations between computational and
problem-solving skill, as demonstrated elsewhere (e.g., Fuchs et
al., 2006; Swanson & Beebe-Frankenberger, 2004), were only
moderate, ranging from .30 to .49. In fact, difficulty occurred in a
single math domain as frequently as across math domains. More-
over, specific difficulty was distributed across the two domains
with almost identical prevalence.

In a related way, the demographic profiles of the groups also
suggest that performance in these two domains of mathematical
cognition may be distinct. The demographic profiles of students
with specific computational difficulty, in terms of poverty and
ethnic background, were more similar to those of students without
difficulty than to those of students with problem-solving difficulty
or with concurrent difficulty. This suggests that the contextual
variables associated with poverty or race exert little effect over the
development of computational difficulty. By contrast, students
with problem-solving difficulty were significantly poorer and dis-
proportionately more likely to be African American compared to
students with specific computational difficulty. This was true
regardless of whether problem-solving deficits occurred alone or
in combination with computational deficits, with no significant

demographic differences between students experiencing specific
problem-solving difficulty and those experiencing concurrent
problem-solving and computational difficulty. This finding indi-
cates that early or ongoing experience outside of school may
account for variance in building a strong foundation for mathe-
matical problem solving.

To identify what kinds of experience outside of school may be
key, it is useful to consider analysis of the cognitive dimensions.
The regression analyses indicate that a different set of cognitive
predictors is associated with the math outcomes, suggesting that
these two domains of mathematical cognition may be distinct.
However, because the focus of the present study was to extend
understanding about difficulty with computation versus problem
solving, and because the regressions only inform about the effect
of each variable when the other variables are controlled at their
means, it is important to examine performance specifically at the
lower ranges of performance on the math outcomes.

The univariate profile analyses, which addressed mean differ-
ences among difficulty status groups on each cognitive dimension,
indicate that language and word identification clearly distin-
guished problem-solving from computational difficulty. Students
with problem-solving difficulty, regardless of whether the
problem-solving difficulty occurred alone or in combination with
computational difficulty, scored reliably lower than students with
neither form of difficulty and lower than those who experienced
computational deficits alone. Moreover, students with computa-
tional difficulty were statistically indistinguishable from students
without difficulty, and students with problem-solving difficulty
alone were statistically comparable to students with problem-
solving difficulty that occurred in combination with computational
difficulty. Two additional variables, concept formation and matrix
reasoning, also served to distinguish problem-solving difficulty
from computational difficulty (with PD and CPD comparable to
each other, and both lower than students with CD and ND, al-
though on these dimensions, students with specific computational
difficulty were reliably lower performing than students without
difficulty).

It is therefore interesting to consider these abilities in light of the
major distinction between mathematical computation and problem
solving: the addition of linguistic information that requires indi-
viduals to construct a problem model. That is, whereas a compu-
tation problem is already set up for solution, a word problem
requires students to use text to identify missing information, con-
struct the number sentence, and derive the calculation problem for
finding the missing information. This transparent difference would

Table 7
Effect Sizes (in Absolute Values) for Math Variables and
Cognitive Dimensions as a Function of Difficulty Status

Variable

Contrast

ND vs. CD vs.
PD vs.

CD PD CPD PD CPD CPD

Computationa 2.80 0.73 3.16 4.83 0.86 5.13
Problem solvingb 0.89 2.48 2.78 4.13 5.27 0.68
Languagec 0.09 1.45 1.37 1.44 1.40 0.05
Semantic retrievald 0.28 0.34 0.83 0.06 0.53 0.46
Concept formatione 0.57 1.17 1.45 0.60 0.87 0.32
Matrix reasoningf 0.39 1.09 1.08 0.70 0.67 0.03
Verbal working

memoryg 0.52 0.98 0.96 0.44 0.42 0.02
Numerical working

memoryh 0.32 0.67 0.78 0.43 0.59 0.12
Word IDi 0.42 0.98 1.19 0.70 0.97 0.26
Attentionj 1.13 1.28 1.64 0.15 0.69 0.80
Processing speedk 0.75 0.68 1.46 0.16 0.52 0.58

Note. Performance is expressed as z scores in relation to the representa-
tive sample of 919. ND � no difficulty; CD � computational difficulty;
PD � problem-solving difficulty; CPD � computational and problem-
solving difficulty.
a A factor score (Addition Fact Fluency, Subtraction Fact Fluency, Test of
Computational Fluency). b A factor score (Simple Word Problems, Al-
gorithmic Word Problems, Complex Word Problems). c A factor score
across the Woodcock Diagnostic Reading Battery Listening Comprehen-
sion, Test of Language Development–Primary Grammatic Closure, and
Wechsler Abbreviated Scale of Intelligence (WASI) Vocabulary.
d Woodcock–Johnson III Tests of Achievement (WJ–III) Retrieval
Fluency. e WJ–III Concept Formation. f WASI Matrix Reasoning.
g Working Memory Test Battery for Children Listening Recall. h WJ–III
Numbers Reversed. i Woodcock Reading Mastery Tests—Revised Word
Identification. j Strengths and Weaknesses of Attention-Deficit/
Hyperactivity Disorder-Symptoms and Normal-Behavior Rating
Scale. k WJ–III Visual Matching.

Table 8
Math Difficulty Status � Cognitive Dimension Interactions for
Four Planned Comparison

Contrast F dfs p �2

ND vs. CD 4.22 8, 441 .0001 .08
PD vs. CPD 1.85 8, 87 .08 .15
CD vs. PD 4.75 8, 59 .0002 .39
CD vs. CPD 2.26 8, 89 .03 .16

Note. ND � no difficulty; CD � computational difficulty; PD �
problem-solving difficulty; CPD � computational and problem-solving
difficulty.
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seem to alter the nature of the task, and findings corroborate such
a hypothesis.

With respect to the contribution of reading skill, although
word problems were read aloud to students, with repeated
opportunities for rereading whenever students requested, stu-
dents had the written problem available until they completed it;
so, we note that independent, skilled reading may support
continuous access to text. In a different way, because the
development of word identification skill is facilitated by vo-
cabulary knowledge (cf. Perfetti, 1992), the link between word
identification and problem-solving skill suggests that language
may play a role in math problem solving. This finding was in
fact documented in the univariate analyses. It stands to reason

that the ability to make sense of language, as reflected indi-
rectly by word recognition skill and as reflected directly by our
language factor score (i.e., grammatic closure, listening com-
prehension, and vocabulary), should help students cope with
narratives in the service of building problem models, and find-
ings corroborate previous work about the role language plays in
problem-solving skill (e.g., Fuchs et al., 2006). It also makes
sense that nonverbal problem-solving skill, as reflected in con-
cept formation and matrix reasoning, should underlie mathe-
matical problem-solving skill. This corroborates previous work
(Fuchs et al., 2005, 2006) and is interpretable because mathe-
matical problem solving requires students not only to build a
problem model but also to distinguish relevant from irrelevant

Figure 2. Shape effects by difficulty status. WM � working memory; ID � identification.

Table 9
Canonical Structure Correlations for Each Cognitive Dimension for the Shape Effect

Variable ND vs. CD PD vs. CPD PD vs. CD CPD vs. CD

Languagea �.44 �.38 �.70* �.72*

Semantic retrievalb .22 .32 .23 .07
Concept formationc .04 .06 �.08 �.19
Matrix reasoningd �.09 �.30 �.16 .01
Verbal working memorye �.01 �.32 .22 .26
Numerical working memoryf �.15 �.19 .04 .26
Word IDg �.05 �.04 �.13 �.20
Attentionh .60* .54* .21 .01
Processing speedi .32 .44 .51 .38

Note. ND � no difficulty; CD � computational difficulty; PD � problem-solving difficulty; CPD �
computational and problem-solving difficulty.
a Woodcock Diagnostic Reading Battery Listening Comprehension, Test of Language Development–Primary
Grammatic Closure, and Wechsler Abbreviated Scale of Intelligence (WASI) Vocabulary. b Woodcock–
Johnson III Tests of Achievement (WJ–III) Retrieval Fluency (W score). c WJ–III Concept Formation.
d WASI Matrix Reasoning. e Working Memory Test Battery for Children Listening Recall. f WJ–III Num-
bers Reversed. g Woodcock Reading Mastery Tests—Revised Word Identification. h Strengths and Weak-
nesses of Attention-Deficit/Hyperactivity Disorder-Symptoms and Normal-Behavior Rating Scale. i WJ–III
Visual Matching.
* p � .006.
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information and to determine how numerical quantities fit into
the slots of the problem model (cf. Kintsch & Greeno, 1985).

For the remaining cognitive dimensions, the univariate results
were less clear. On verbal and numerical working memory, the
performance of the three difficulty groups was indistinguishable.
However, on numerical working memory (but not on verbal work-
ing memory), students with specific computational difficulty per-
formed comparably to their peers without difficulty.

In terms of working memory, or the capacity to maintain target
memory items while processing an additional task (Daneman &
Carpenter, 1980), a body of work has established links with
computation (Fuchs et al., 2005; Geary et al., 1991; Hitch &
McAuley, 1991; Siegel & Linder, 1984; Webster, 1979; Wilson &
Swanson, 2001) and problem solving (e.g., Fuchs et al., 2005;
LeBlanc & Weber-Russell, 1996; Passolunghi & Siegel, 2004;
Swanson & Beebe-Frankenberger, 2004; Swanson & Sachse-Lee,
2001). Although other studies have raised questions about the
tenability of this association (e.g., Fuchs et al., 2006; Swanson et
al., 1993), the univariate results of the present study corroborate a
role for working memory, verbal as well as numerical, in both
computational and problem-solving difficulty. For computation,
students must hold terms and operators in working memory while
using various counting strategies to arrive at the correct answer.
Over time, repeated associations for the problem stem and its
answer, achieved via successful counting, result in representations
in long-term memory, which in turn facilitate fluent procedural
computation. With respect to word problems, as described by
Kintsch and Greeno (1985), when processing a problem narrative,
students formulate new sets to construct a problem model. When
a proposition that triggers a set-building strategy is completed, the
appropriate set is formed and the relevant propositions are as-
signed their places in the various slots of the set schema. As new
sets are formed, previous sets that had been active in the memory
buffer are displaced, illustrating the potential importance of work-
ing memory. Our univariate analyses lend empirical support for the
contribution of working memory to both aspects of mathematical
cognition: computation and problem solving. It is important to
note, however, that the multivariate profile analyses indicate that
working memory is primarily related to elevation (severity), not to
shape.

In any case, results of the univariate analyses suggest a pattern
of more pervasive cognitive involvement for problem-solving dif-
ficulty. Yet, because univariate analyses fail to account for rela-
tions among the cognitive dimensions and because in the univar-
iate analyses, elevation and shape are confounded, it is important
to consider results of the multivariate profile analyses. At a general
level, by explicating the patterns of cognitive abilities associated
with computational and problem-solving difficulty, the shape anal-
yses highlight two important notions: (a) that computational dif-
ficulty may be distinct from problem-solving difficulty and (b) that
the cognitive dimensions associated with performance in a single
math domain may also be associated with both computation and
problem solving when difficulties occur concurrently. At the same
time, the multivariate profile results, which isolate the effects of
shape from the effects of elevation, serve to pinpoint more specif-
ically and narrowly which cognitive differences between groups
matter. In this way, results demonstrate the need to rely on mul-
tivariate, rather than univariate, approaches in the study of math-
ematics.

Within the multivariate interpretations of the profile analy-
ses, three cognitive dimensions emerged as central to the dis-
tinction between computational and problem-solving difficulty.
The dominant role of language deficits was substantiated for
problem-solving difficulty. Language was the cognitive dimen-
sion that served to distinguish the specific problem-solving
difficulty group from the specific computational difficulty
group and to distinguish the group with concurrent difficulty
across problem solving and computation again from the specific
computational difficulty group. By contrast, the dominant roles
of attentive behavior and processing speed were revealed for
computational difficulty, serving to distinguish the specific
computational difficulty group from the group without either
form of difficulty and to distinguish the group with concurrent
difficulty across computation and problem solving from the
group with specific problem-solving difficulty.

In the preceding discussion about the univariate analyses, we
already considered the role of language in problem solving, but
what about the role of attentive behavior and processing speed
in computation, which became evident only in the multivariate
analyses? Within the univariate analyses, a step-down pattern
occurred for attentive behavior, whereby students without dif-
ficulty were rated more favorably than the other three groups;
students with specific computational difficulty were rated sim-
ilarly as students with specific problem-solving difficulty but
more attentive than students with concurrent difficulty; and
students with specific problem-solving difficulty were deemed
similarly attentive as students with concurrent difficulty. This
ordering, which suggests greater cognitive involvement for
problem-solving deficits, is based entirely on elevation differ-
ences among groups. By contrast, the multivariate analyses
specifically consider the shape (i.e., the profile) by removing
the elevation effects. These multivariate profile analyses dem-
onstrate that attentive behavior is implicated in computational
but not problem-solving difficulty. Few studies have considered
attentive behavior as a predictor of computational skill, but
some previous work has suggested its role (e.g., Fuchs et al.,
2005, 2006). Moreover, Swanson (2006) recently substantiated
the role of inhibitory control, a form of attention, in the devel-
opment of computational but not problem-solving skill.

At least two explanations seem possible for the role of attentive
behavior in computational difficulty. First, attentive behavior may
create the opportunity to persevere with the serial execution re-
quired for computational math (Luria, 1980) and thereby enhance
performance and improve students’ responsiveness to instruction.
Alternatively, it is possible that teacher ratings of attentive behav-
ior are clouded by students’ academic performance and therefore
serve as a proxy for achievement rather than indexing attention.
Cirino, Ewing-Cobbs, Barnes, Fuchs, and Fletcher (2007) found
that although attentive behavior accounts for unique variance in
mathematics performance, removing variance due to behavioral
ratings of attention does not alter the relations of cognitive mea-
sures and mathematical cognition. Present findings, in which at-
tentive behavior was implicated in specific computational diffi-
culty but not specific problem-solving difficulty, reduce the
plausibility that teacher ratings simply serve as a proxy for aca-
demic achievement and instead provide the basis for hypothesizing
that attentive behavior plays a role in computation and for explor-
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ing the underlying nature of the relation with alternative measures
of attention.

In terms of processing speed, previous work has suggested that
processing speed underlies fluency with math facts. For example,
Bull and Johnston (1997) found that processing speed subsumed
all of the variance in 7-year-olds’ arithmetic skill while controlling
for word reading ability, item identification, and short-term mem-
ory. Processing speed may facilitate counting speed so that as
young children gain speed in counting sets to figure sums and
differences, problems are successfully paired with their answers in
working memory before decay sets in, such that associations in
long-term memory are established (e.g., Geary et al., 1991; Le-
maire & Siegler, 1995). In addition, Fuchs et al. (2006) demon-
strated that processing speed accounted for unique variance in
simple arithmetic but not in mathematical problem solving once
the relation between processing speed and arithmetic had been
accounted for.

In sum, findings lend support for the hypothesis that compu-
tation and problem solving may represent distinct domains of
mathematical cognition within students at the lower ranges of
performance as might be identified with mathematics learning
disabilities in the schools. This lends empirical support for the
distinction between computational and mathematics problem-
solving learning disabilities specified in the 2004 reauthoriza-
tion of the Individuals with Disabilities Education Act. Results
also suggest that poverty and language play critical roles in the
development of problem-solving difficulty and that inattentive
behavior and poor processing speed may inhibit the develop-
ment of computational skill. In addition, despite the more
substantial math deficits evidenced for students with concurrent
difficulty (i.e., an effect size of 0.86 favoring the computational
skill of CD over CPD and an effect size of 0.68 favoring the
problem-solving skill of PD over CPD), the cognitive deficien-
cies associated with math performance in a single domain are
also apparent when difficulties occur in both domains: for
computation, attention and processing speed (as revealed for
CD and for CPD); for problem solving, language (as revealed
for PD and for CPD). Similarly, poverty or race is associated
with problem-solving difficulty, whether it occurs alone or in
combination with computational difficulty, and therefore cor-
roborates the relation between language and these sociodemo-
graphic variables. Together, these findings suggest that concur-
rent difficulty with computation and problem solving may not
be a unique form of math disability but represents a comorbid
association of difficulties in both domains. Additional research
should continue to investigate these issues as well as explore
the possible role of other cognitive dimensions, including read-
ing comprehension. Matching groups of students on their areas
of math strength may also be a productive line of related work.
Further work is also needed using larger samples to yield
difficulty status groups with greater numbers of students and
using more restrictive cutoffs for denoting difficulty that cor-
respond even more closely to the criteria employed to designate
children in schools as having mathematics learning disabilities.
In addition, related work using different strategies for measur-
ing computational skill, problem-solving skill, and the nine
cognitive dimensions is required to corroborate effects. Further-
more and more generally, present study findings indicate that
multivariate analytic approaches are required to untangle the

role of cognitive abilities underlying the development of math-
ematical skill.

In the meantime, however, we caution practitioners about the
potential need to consider computational skill and problem-
solving skill separately in diagnosing and instructing students
with learning disabilities. We also note that models of mathe-
matical competence should expand focus on mathematical prob-
lem solving and explicitly consider the abilities that underlie the
development of this form of mathematical competence. More-
over, findings support the importance of studying instructional
procedures that may enhance performance specifically in the
area of mathematical problem solving, separate from the issue
of how to promote computational skill. Finally, the critical
importance of assessing computational and problem-solving
skills separately for the presence of math difficulties is appar-
ent. Many mathematics assessments are generic and do not
adequately attend to the differentiation of these dimensions of
mathematical cognition.
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