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Examining Developmental Change
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The primary aim of the present study was to examine longitudinal models to determine the function that best
describes developmental change in processing speed during childhood and adolescence. In one sample, children
and adolescents (N5 503) were tested twice over an average interval of 2 years on two psychometric measures of
processing speed: Visual Matching and Cross Out. In another sample, children and adolescents (N 5 277) were
tested four times, every 6months, onCrossOut.Age-related changes in performance on both taskswere examined
using six longitudinalmodels representing different hypotheses of growth. Linear, hyperbolic, inverse regression,
and transition models yielded relatively poor fit to the data; the fit of the exponential and quadratic models was
substantially better. The heuristic value of these latter models is discussed.

The speed with which children and adolescents
execute basic cognitive processes (hereafter, process-
ing speed) consistently predicts performance on
a variety of cognitive tasks. More rapid processing is
associated, for example, with increased capacity of
workingmemory, enhanced inductive reasoning, and
greater accuracy in solving arithmetic word problems
(Fry & Hale, 1996; Kail & Hall, 1999; Kail, 2007).

To understand the nature of age-related change in
processing speed and its links to other cognitive
processes, researchers have investigated the defining
properties of processing speed. One of these is the
developmental profile associated with increased pro-
cessing speed: Processing speed increases substan-
tially in early and middle childhood, continues to
increase though not as rapidly in late childhood and
early adolescence, and reaches asymptotic values in
mid-to-late adolescence (Kail, 1991). Identifying the
mathematical function(s) that describes this pattern
of change has been an important goal of research
because such a function would yield a precise
description of change and could provide insights into
the mechanisms underlying developmental change.

Illustrating this type of research is a study by
Kail (1986, experiment 1) in which individuals at
12 ages—8 to 15 years and 18 – 21 years—judged

whether pairs of pictures were identical physically
or in name. Response times for these judgments were
used to estimate the time needed to retrieve object
names from long-term memory. Retrieval times
declined substantially with age, with values of 303,
147, and 99 ms for 8-, 11-, and 14-year-olds, respec-
tively.

To characterize these changes, exponential and
hyperbolic functions were chosen because they had
been used successfully to describe changes due to
learning and practice. Traditionally, exponential func-
tions are associated with replacement models of
learning in which incorrect responses gradually
replace correct ones and hyperbolic functions are
associated with accumulation models in which cor-
rect responses accumulate in the total pool, ultimately
swamping incorrect answers by sheer numbers
(Mazur & Hastie, 1978; Newell & Rosenbloom,
1981). Kail (1986) found that the exponential function
provided a better fit to the data than did the hyper-
bolic, an outcome consistent with replacement models
of learning.

Several subsequent studies (e.g., Canfield, Smith,
Brezsnyak, & Snow, 1997; Fry&Hale, 1996; Kail, 1988,
1991; Miller & Vernon, 1997) also found that age-
related change in processing speed is well character-
ized by an exponential function. Nevertheless, the
evidence is far fromcompelling, for two reasons. First,
virtually all studies of developmental change in
processing speed have been cross-sectional. We know
of only two studies that have reported longitudinal
evidence concerning the shape of the function that
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characterizes growth in processing speed and neither
focused specifically on change in childhood and
adolescence. In one of these studies, Canfield et al.
examined processing speed during infancy and
found support for nonlinear change between 2
and 12 months. McArdle, Ferrer-Caja, Hamagami,
and Woodcock (2002) studied lifespan changes in
cognitive functioning (including processing speed).
They concluded that the change in processing speed
in childhood and adolescencewas nonlinear, but their
models did not focus specifically on these ages. The
absence of relevant longitudinal evidence on the
shape of developmental functions is, of course, prob-
lematic because the best-fitting function for group
data may not provide the best characterization of
individuals’ data.

Second, cross-sectional studies have focused
almost exclusively on the descriptive use of these
functions and ignored their implications for underly-
ing developmental mechanisms. That is, as noted
previously, in research on change due to practice
and learning, exponential functions are associated
with replacement models in which learning reflects
the gradual replacement of incorrect responses with
correct responses. The manner by which age would
yield such replacement, or, for that matter, what such
replacement would mean in the context of speeded
processes, has not been considered.

Our primary aim in this study was to use longitu-
dinal data to investigate the shape of the function that
characterizes age-related change in processing speed.
To operationalize processing speed, we selected two
psychometric measures—Visual Matching and
Cross Out—taken from the Woodcock – Johnson Psy-
choeducational Battery—Revised (WJ-R). These
measures define a processing speed construct on the
WJ-R and have been used frequently to estimate
processing speed in developmental work (e.g.,
McBride-Chang & Kail, 2002). We used two longitu-
dinal samples: in one, children and adolescents were
tested twice onVisualMatching andCrossOut, and in
the other, children and adolescents were tested four
times on Cross Out only. Although two or four points
are not optimal for determining best-fitting functions
for each person, in the context of a cohort-sequential
design, they can be sufficient to represent individual
growth functions together with information relative
to individual variations in such growth (Ferrer &
McArdle, 2004; McArdle et al., 2002).

A secondary aim of our study was to use informa-
tion concerning the fit of the different models to
generate hypotheses regardingmechanisms underly-
ing developmental change in processing speed. Con-
sequently, we compared the fit provided by a range of

different functions that have been useful in prior
studies of behavioral and neural development and
that embodied different assumptions regarding
underlying mechanisms. Thus, by identifying the
best-fitting models, we aimed to provide a precise
description of longitudinal change in processing
speed and to gain insights into plausible mechanisms
giving rise to those changes.

Age-Based Mixed Growth Models

To examine changes in processing speed over time,
we used a series of mixed models (also known as
hierarchical linear ormultilevelmodels) that included
age as the underlying time dimension (Table 1). We
chose models that had been investigated in prior
cross-sectional work aswell as additionalmodels that
seemed to be potentially useful to capture the non-
linear changes in processing speed observed during
the target years.

Consider a variable Ymeasured on a person (i5 1
to I) at a measurement occasion (t 5 1 to T). A basic
linear growth model can be written as:

Yit 5 b0i þ b1i � ageit þ eit; ð1Þ

where Yit is the observed score on person i at
measurement t, b0i represents the coefficient associ-
ated with the intercept for person i, b1i represents the
coefficient associated with the linear slope for person
i, ageit is the observed age of person i at measurement
t, and eit is the error score of person i atmeasurement t.
As denoted by the subscript i, this model includes
sources of individual differences in the intercept and
slope, whose terms can be decomposed at a second
level as:

b0i 5 m0 þ u0i and b1i 5 m1 þ u1i; ð2Þ

indicating that the intercept and the slope scores have
fixed group means (m0 and m1) and residuals (u0i and
u1i), and these residuals have zero means and vari-
ance components (r20, r

2
0, and r01). Similarly, the error

term associated with the within-person residual eit
has also a zero mean and a variance term r2e .

More generally, the vectors corresponding to the
between-individual residuals ui and the individual
error residuals ei are assumed to be independent and
normally distributed, that is, ui ; N(0, G) and ei ;
N(0, R). To test specific hypotheses or due to data
constraints, restrictions can be imposed as needed in
any of these covariance matrices. In this model, we
did not impose any restriction and estimated all six
parameters (i.e., two fixed effects, three random
effects, and one residual term).
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The second selected model was based on the
exponential function studied by Kail (1986, 1988),
expressed here as:

Yit 5 b0i þ b1i � e�c�age þ eit; ð3Þ

where b0i now represents the asymptote for person i,
b1i represents the intercept (together with b0), e is the
base of natural logarithms, and c represents a rate of
growth. Here, we modeled individual differences
in the coefficients b0i and b1i, yielding a 2 � 2
covariance matrix of random effects G with three
parameters. We did not impose any restriction in
this model and estimated all seven parameters (i.e.,
three fixed effects, three random effects, and one
residual term).

The third model was the hyperbolic function
evaluated by Kail (1986, 1988), expressed here as:

Yit 5 b0i � ðb1i=ðageit þ cÞÞ þ eit; ð4Þ

where, as before, b0i represents the asymptote for
person i and the term (b1i/(age+ c)) represents the rate
with which person i reaches asymptote. As in the
exponential model, here we considered individual
differences in the coefficients b0i and b1i, also yielding
a 2 � 2 covariance matrix of random effects G with
three parameters. We estimated all seven parameters

of the model (i.e., three fixed effects, three random
effects, and one residual term).

The fourth model was an inverse regression func-
tion investigated by Luna, Garver, Urban, Lazar, and
Sweeney (2004) in a study of the speed with which 8-
to 30-year-oldsmove their eyes to fixate a target in the
peripheral visual field. In this cross-sectional study,
age-related changes in saccadic latencies were best
described by an inverse regression function. In our
analyses, we expressed this model as:

Yit 5 b0i þ ðb1i=ageitÞ þ eit; ð5Þ

where b0i represents the asymptote for person i and
the term (b1i/age) represents the rate with which
person i reaches asymptote. We also considered
individual differences in the coefficients b0i and b1i,
yielding a 2 � 2 covariance matrix of random effects
with three parameters. Because we did not impose
any restriction, thismodel yielded six parameters (i.e.,
two fixed effects, three random effects, and one
residual term).

The fifth model, a quadratic function, has been
used to characterize physical and neural growth
during childhood and adolescence. For example,
increases in total body fat between 8 and 20 years
of age are well described by a quadratic function

Table 1

Algebraic Expressions of Models Fitted to the Visual Matching and Cross Out Scores

Model (no. parameters) Equation Parameters

Linear (6) Yit 5 b0i + b1i�ageit + eit
b0i 5 m0 + u0i, b1i 5 m1 + u1i

b0 5 intercept, b1 5 linear slope

Quadratic (8) Yit 5 b0i þ b1i � ageit þ b2i � age2it þ eit
b0i 5 m0 + u0i, b1i 5 m1 + u1i, b2i 5 m2 + u2i

b0 5 intercept, b1 5 linear

slope, b2 5 quadratic slope

Exponential (7) Yit 5 b0i þ b1i � e�c�age þ eit
b0i 5 m0 + u0i, b1i 5 m1 + u1i

b0 5 asymptote, b1 5 intercept

(with b0), c 5 rate of growth

Hyperbolic (7) Yit 5 b0i � (b1i/(ageit + c)) + eit
b0i 5 m0 + u0i, b1i 5 m1 + u1i

b0 5 asymptote,

(b1/(age + c)) 5 rate

of approach to asymptote

Inverse regression (6) Yit 5 b0i + (b1i/ageit) + eit
b0i 5 m0 + u0i, b1i 5 m1 + u1i

b0 5 asymptote,

(b1/age) 5 rate of approach

to asymptote

Latent transition (8) Yit 5 b0i + b1i�ageit + d1i (ageit � s) + eit
b0i 5 m0 + u0i, b1i 5 m1 + u1i, d1i 5 m2 + u2i

b0 5 intercept, b1 5 linear

slope before transition, b1 � d1 5 linear

slope after transition, s 5 transition point

All models ui ; N(0, G); ei ; N(0, R) G 5 covariance

matrix of random

effects, R 5 matrix

of residual variances

Note. See text for explanation of all model parameters.
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(Guo, Chumlea, Roche, & Siervogel, 1997). In the
same vein but more directly related to the present
work, volume of cortical gray matter, as measured
frommagnetic resonance imaging, increases in child-
hood but decreases in adolescence, in amanner that is
well described by a quadratic function (Giedd et al.,
1999). Because physical growth generally and neural
growth in particular may enhance processing speed,
we chose the quadratic function to fit our longitudinal
data. We wrote the quadratic model as:

Yit 5 b0i þ b1i � ageit þ b2i � age2it þ eit; ð6Þ

where age2it is age squared, b2i is the regression coeffi-
cient associated with the quadratic slope score of
person i at time t, and the other terms are as defined
in Equation 1. As described in Table 1, this model
includes sources of individual differences in the inter-
cept, linear slope, and quadratic slope. Thus, the
covariance matrix of random effects G of this model
is a 3� 3 matrix that includes six parameters. To avoid
comparisonsbetween this andothermodels thatwould
rely on the differences in random components, we
imposed restrictions in the G matrix of the quadratic
model. In particular, we fixed to zero the covariances
between the term of the quadratic slope and the terms
of the intercept and the linear slope. The remaining
eight parameters (i.e., three fixed effects, four random
effects, and one residual term) were freely estimated.

Finally, we also examined a transition model
derived from the work by Cudeck and Klebe (2002).
They showed that many patterns of nonlinear change
are characterized by discontinuities in which the
change function takes on different values before and
after a transition point. For example, the develop-
mental function might be linear before and after
transition but with a much steeper slope before
transition; aggregating across individuals would pro-
duce a nonlinear function. This model can be seen as
a variant of a spline model in which the transition
point is unknown. Spline models have been used in
developmental work to examine nonlinear changes
typically observed in these years (e.g., Ferrer &
McArdle, 2004; McArdle et al., 2002; Ferrer et al., in
press). In the present case, we investigated amodel in
which processing speed changes linearly before and
after a transition but much more rapidly before.

The transition model (Cudeck & Klebe, 2002) can
be written as:

Yit 5 b0i þ b1i � ageit þ d1iðageit � sÞ þ eit; ð7Þ

where b0i represents the coefficient associatedwith the
intercept, b1i represents the coefficient associated with
the linear slope before the transition, d1i represents the

difference between the slopes before and after the
transition (thus, b1 � d1 equals the second slope), and
s represents the latent transition point. As was the case
for the quadraticmodel,wemodeled individual differ-
ences in three parameters, yielding a 3 � 3 G matrix
with six parameters. Here, we set to zero all covarian-
ces in the matrix and estimated the remaining three
variance components. In total, we estimated eight
parameters in this model (i.e., four fixed effects, three
random effects, and one residual term).

The models depicted in Equations 1 – 7 were fitted
to the data from the two-occasion samples. However,
the four-occasion sample provided sufficient data for
us to evaluate effects associated with retest (i.e.,
changes related to repeated measurements), in addi-
tion to the age-related effects. For this purpose,
Equations 1 – 7 weremodified by adding components
representing the retest effects. For example, in the case
of a linearmodel, the new specification resulted in the
following equation:

Yit 5 b0i þ b1i � ageit þ b2i � retestit þ eit; ð8Þ

where retestit represents the effects related to mea-
surement occasion of person i at assessment t. The
other terms are as specified in Equation 1. In this
model, change in Y is described as a function of two
processes that unfold over time: age and retest. The
first process ageit varies over time for each person, so
this term represents an age-based growthprocess. It is
a slope based on age at testing occasion t (i.e., average
change in Y per year for a person i). The retest
component, retestit, in turn represents a growth pro-
cess based on themeasurement occasion (i.e., average
change in Yper unit change in retest for a person i; see
Ferrer, Salthouse, Stewart, & Schwartz, 2004).

To summarize, in the present study, we obtained
psychometric measures of processing speed for two
samples of children and adolescents, each of whom
was tested either two or four times. The resulting
longitudinal data were used to evaluate the fit of six
potential developmental functions, thereby provid-
ing evidence regarding the best description of the
change as well as the underlying processes.

Method

Samples

The two-occasion sample included 272 boys and
231 girls, each tested twice on Visual Matching and
Cross Out. The mean ages at first and second testing
were 9.56 and 11.86 years, respectively (SD5 3.1 and
2.85 years, respectively). Of these, 344 (159 females)
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were drawn from the norming sample for the WJ-R
tests and were then retested (McArdle et al., 2002).
We included all individuals who were at least 5 years
old when tested initially and no older than 18 years
when retested. The remaining 159 children and ado-
lescents had participated originally in studies by the
first author. Specifically, of the 128U.S. children tested
by McBride-Chang and Kail (2002), 46 (21 females)
attendingone elementary schoolwere retested approx-
imately 3.5 years later and 27 (11 females) attending
a second elementary schoolwere tested approximately
6 years later. In addition, from children who partici-
pated in studies by Kail, Hall, and Caskey (1999) and
Kail (1997), we recruited 86 children (40 females) who
were 8 – 11 years old when first tested; they were
retested 12– 15 months later.

The four-occasion sample included 277 children
(140 females). Of these, 240 were tested on all four
occasions, 5 tested thrice, 7 tested twice, and 25 tested
once. They were tested every 6 months, with mean
ages at first, second, third, and fourth testing of 9.25,
9.77, 10.29, and 10.82 years, respectively (SD 5 1.99,
2.00, 2.01, and 1.99 years, respectively).

Measures

The Visual Matching and Cross Out tests from the
WJ-R were used to estimate processing speed. In the
former, each of 60 rows includes six digits, two of
which are identical (e.g., 8 9 5 2 9 7); the participant
circles the identical digits. The performance measure
is the number of rows completed correctly in 3min. In
the latter, each of 30 rows consists of a geometric
figure at the left end of a row and 19 similar figures to
the right. One row, for example, consists of a triangle
enclosing a single dot; the 19 figures are triangleswith
various objects in the interior (e.g., a single dot, three
dots, a plus, a square). The child places a line through
the 5 figures of the 19 that are identical to the one at the
left. The performance measure is the number of rows
completed in 3 min.

Procedure

All participants were tested individually. Individ-
uals in the norming sample completed Visual Match-
ing and Cross Out along with other subtests from the
WJ-R. Individuals in the other samples typically
completedVisualMatching andCrossOut alongwith
other measures of working memory and reasoning.
For individuals in the four-occasion sample, the
actual version of Cross Out was administered on the
first and fourth occasions; on the second and third
occasions, modified versions were used in which

items had been randomly reordered within each
row and rows had been randomly reordered on
a page. (Different modified versions were used on
the second and third occasions.) Theywere also tested
onmeasures ofmemory and reasoning, but Cross Out
was always administered first.

Results

For both measures, the familiar developmental pat-
tern was evident: Performance improved across
childhood and adolescence but more rapidly in child-
hood. This pattern is manifest in Figure 1, which
depicts aggregated data obtained by dividing each
sample into 10 subsamples by age (i.e., the first
subsample consisted of the children in the bottom
age decile at the first testing). Nonlinear change is
evident for VisualMatching and Cross Out, with both
two- and four-occasion samples. Also apparent in the
four-occasion data is that performance improved
across sessions, though not linearly: For most age-
groups, there was little change between the first and
the second occasions but steady improvement in the
third and fourth sessions.

The six models listed in Table 1 were fitted to the
data in Figure 1 using the MIXED and NLMIXED
procedures from SAS. (The SAS code for all models is
available from the authors.) The fit of the models was
assessed with three indexes: Akaike’s information
criterion (AIC), AICc, a version of AIC that is more
appropriate with small samples, and the Bayesian
information criterion. All measures are derived from
the log-likelihood ratio that characterizes the fit of the
model to the data; each adjusts the degree of fit based
on the number of parameters in the model, and in all
cases, smaller values indicate a better fit. The pattern
of resultswas the samewith all indexes; consequently,
we present only the findings for AIC.

The fit of the sixmodels, expressed in terms of AIC
values, is shown in Table 2, separately for each test,
and for Cross Out, separately for the two- and four-
occasion samples. The quadratic model provided the
best fit in two instances and the transition model in
one. The linear, hyperbolic, and inverse regression
models consistently provided the worst fit. Because
the models are not nested, they cannot be compared
with likelihood ratio tests; instead, we used informa-
tion theoretic methods to compare their relative fit.
We first computed the difference in fit, DAIC, by
subtracting the value ofAIC for the best-fittingmodel
from the AIC value for each of the other models. By
definition, DAIC 5 0 for the best-fitting model and
DAIC . 0 for all others. Next, we computed an
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Akaike weight, w, for each model, which is defined
as:

w 5 e�1=2DAIC=Re�1=2DAIC;

and indicates the relative likelihoodof themodel given
the data and other models under consideration (Burn-
ham&Anderson, 2002;Wagenmakers& Farrell, 2004).

The w values, shown in Table 2, reveal that the
linear, inverse regression, and hyperbolic models do
not fit the data well. Across both measures and
samples, w � .056 for these models, indicating that
they are highly unlikely descriptions of these data.
Findings for the other threemodels are less consistent.
For the Visual Matching and two-occasion Cross Out
data, the quadratic provides the best fit, with w � .70.
However, for the four-occasion Cross Out data, the
transition model provides the best fit, with w 5 .616.
In other words, the outcomes of model fitting were
consistent across measures for the two-occasion sam-
ple, but the results for Cross Out varied across the
two- and four-occasion samples.

One plausible explanation of these differences is
the fact that the two-occasion sample included
a broader range of ages (5 – 17 years at Time 1
compared to 6 – 13.5 years at Time 1 in the four-
occasion sample). Perhaps, the quadratic provides
a better fit when the sample includes a larger segment
of adolescence, a time when processing speed is
reaching asymptote. To evaluate this possibility, we
randomly selected 277 cases from the two-occasion
sample, combined them with the 277 cases from the
four-occasion sample, and fitted the models to these
pooled data. The results, shown in the last set of
columns in Table 2, yielded outcomes that are consis-
tent with those obtained for the two-occasion sample
alone. That is, the quadratic model provided the best
fit and the exponential model provided the second
best fit. Thus, it seems that across the entire range of
childhood and adolescence, the quadratic model
provides the best characterization of age-related
change in processing speed; the fit of this model to
the data is shown in Figure 2.

To evaluate the more plausible models further, we
determined the extent to which either of them system-
atically mispredicted participants’ scores. That is,
a close fit to the data might be achieved, for example,
by consistently overestimating actual scores at one age
but consistently underestimating them at another. To
evaluate this possibility, we calculated residuals for
each child’s scores (i.e., actual score� predicted score),
separately for the quadratic, exponential, and transi-
tional models. To determine whether these residuals

Visual Matching -- 2 occasion

Age (years)
5 6 7 8 9 10 11 12 13 14 15 16 17 18

Age (years)
5 6 7 8 9 10 11 12 13 14 15 16 17 18

Age (years)
5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
um

be
r c

or
re

ct
N

um
be

r c
or

re
ct

N
um

be
r c

or
re

ct

20

30

40

50

Cross Out -- 2 occasion

10

15

20

25

30

Cross Out -- 4 occasion

5

10

15

20

25

30

Figure 1. Age-related change in performance on Visual Matching
and Cross Out tasks, with performance on the latter task presented
separately for two- and four-occasion samples. In each panel, the
data are presented for 10 groups of participants based on age when
tested initially. For example, the first group (i.e., filled circles)
consists of the youngest (10%) participants and the last group
(i.e., the open hexagons), the oldest (10%). For the two-occasion
sample, each group includes 50 – 51 participants and for the four-
occasion sample, 27 – 28 participants. Error bars depict standard
errors.
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deviated systematically from 0, we correlated them
with age, separately for each testing occasion.

The results are shown in Table 3. For VisualMatch-
ing, none of the correlations is significant. In contrast,
for Cross Out, three of the six correlations are signif-
icant for the quadratic and two of six are significant
for the exponential. In these cases, the quadratic and
exponential functions tend to overestimate scores at
younger ages at Time 1 but overestimate them at Time
2 for the two-occasion sample and at Time 4 for the
four-occasion sample. However, these correlations
are very small, suggesting that these predictive errors
are minor.

Another way to compare these three models is in
the consistency of parameter estimates across sam-
ples. Amodelmight achieve a particularly good fit by
modeling a local feature of the data particularly well
(i.e., a feature specific to a particular sample and not
characteristic of a larger population). If this were true,
then estimated values of parameters should vary
across samples, reflecting adjustments to sample-
specific local features. If, instead, the fit of a model
is driven by basic features of the underlying popula-
tion, then estimated values of a model’s parameters
should be consistent across samples drawn from that
population.

We compared the consistency of parameter esti-
mates for the quadratic and exponential models for
Cross Out scores across the two- and four-occasion
samples. These estimates are presented in Table 4. In
fact, the parameter estimates for the quadratic and the
exponential functions are consistent across the two-
and four-occasion samples. That is, in no case do
estimated values of parameters for these models
differ across the two samples.

Discussion

Our primary goal in this study was to use develop-
mental data and longitudinal models to identify the
function that best characterizes age-related change in
processing speed. Our secondary goal was to use the
findings from curve fitting to generate hypotheses
regarding mechanisms responsible for growth of
processing speed. In this section, we discuss each of
these goals in turn.

Functions That Best Characterize Development of
Processing Speed

We analyzed a set of six plausible developmental
models; the results indicate that three are not reason-
able representations of these developmental data. TheT
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linear model was included primarily as a reference
point, although aggregating across individual linear
functions in cross-sectional work could yield an
aggregate nonlinear function. However, the linear
function consistently provided the poorest fit to the
data. Evidently, processing speed does not increase
linearly across childhood and adolescence.

The other models that received virtually no sup-
port were the hyperbolic and the inverse regression.
Across the three sets of data, the odds that these
models provided the best fit never exceeded 0.022.
The lack of evidence for the hyperbolic model con-
firms the cross-sectional results reported by Kail
(1986, 1988) in which the hyperbolic consistently
provided a poorer fit than did the exponential. The
lack of support for the inverse regression model is
surprising in light of the finding of Luna et al. (2004)
that this model characterized growth in speed of
saccadic eye movements. Perhaps, eye movement
speed develops at a different rate than speed of
cognitive processes; alternatively, this result may be
an artifact of determining growth functions from
cross-sectional data.

The transitionmodel was the best-fittingmodel for
Cross Out scores for the four-occasion sample but not
when these scores were combined with Cross Out
scores for the two-occasion sample. Apparently, some
changes between childhoodand early adolescence are
well characterized by this model, but when the full
range of childhood and adolescence was considered,
the transition model was less accurate.

Overall, the quadratic provided the best fit to the
data and the exponential provided the second best fit.
The quadratic had the largest evidence weights for
two of the original three data sets (w. .7) and for the
combined sample. Furthermore, parameters derived
for thismodel forCrossOutwere consistent across the
two- and four-occasion samples. Although the expo-
nential provided the second best fit, with parameter
estimates that were consistent across two- and four-
occasion samples, the evidence weights were sub-
stantially smaller. Thus, in aggregate, the present
findings point to the quadratic model as providing
the best description of age-related change in process-
ing speed between 5 and 18 years of age.
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Figure 2. The fit of the quadratic model to the Visual Matching and
Cross Out scores (from Figure 1).

Table 3

Correlations Between Age and Residuals

Measure Time

Model

Quadratic Exponential

Cross Out 1 �.104* �.090*

2 .106* .073

Cross Out 1 .045 .020

2 �.060 �.056

3 �.105 �.089

4 .142* .158*

Visual Matching 1 �.042 �.019

2 .044 .020

*p , .05
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These conclusions seem to generalize across the
two psychometric measures used here. The
two-occasion sample included both Visual Matching
andCrossOut tasks, and the resultswere comparable:
both tasks were best described by a quadratic model.
This similar outcome is not surprising inasmuch as
Visual Matching and Cross Out define the processing
speed construct on the Woodcock – Johnson and cor-
relations between them are usually substantial (e.g.,
for the two-occasion sample, correlations with age
partialled out were .70 and .74 for Times 1 and 2,
respectively). Thus, a quadratic pattern of growth
seems robust across this class of psychometric tasks;
we would expect similar developmental profiles for
growth in processing speed as measured on similar
tasks such as Number Comparisons and Identical
Pictures (French, Ekstrom, & Price, 1963).

At the same time, it is important tonote that although
Visual Matching and Cross Out (and similar tasks)
typically define a processing speed construct on psy-
chometric measures, this does not mean that they are

‘‘pure measures’’ of speed. Instead, they are complex
tasks that invoke a set of perceptual, cognitive, mne-
monic, and motor processes, and the developmental
course for each constituent process neednot necessarily
be well described by the quadratic model. Neverthe-
less, as researchers formulate theories of the manner in
which these processes are assembled to generate per-
formance on psychometric measures, the ability to
generate thesebest-fittingdevelopmental functionswill
be one means of evaluating those theories.

Hypotheses Concerning Mechanisms Underlying
Performance

Thus far, we have focused solely on the descriptive
value of each model (i.e., in capturing age-related
change in individuals’ growth of processing speed).
In this section,we focuson theheuristicvalueof the two
best-fitting models: the quadratic and the exponential.
Although the exponential was consistently a distant
second in terms of fit, we include it to contrast differing
ways in which models can have heuristic value.

Exponential model. The signature of exponential
change—whether growth or decay—is that change
occurs at a constant multiplicative rate, which means
that rate is proportional to the current value of a vari-
able. Aswe noted previously, exponential models have
long been used to describe changes associated with
learning and practice, in which performance improves
rapidlyat firstandthencontinues to improveataslower
rate. Exponential change in learning and practice has
typically been associated with replacement models of
learning and practice in which incorrect responses are
replaced by correct responses at a constant multiplica-
tive rate over trials or time (Mazur & Hastie, 1978).

The usual replacement model of learning does not
translate readily to the speeded tasks used here
because performance is essentially error-free from
the outset. However, replacement need not be
restricted to correct and incorrect responses. Instead,
consider a system comprising elements that exist in
two different states—efficient and inefficient. If the
system consists entirely of inefficient elements at the
outset, but elements became efficient at a constant
multiplicative rate over time, the result is exponential
growth to asymptote in efficient elements.

In the context of neural development, for example,
the elements might be neurons, with efficient and
inefficient states corresponding to myelinated and
unmyelinated neurons, respectively. If unmyelinated
neurons were replaced by myelinated neurons, at
a constant multiplicative rate, the result would be
exponential change in myelinated neurons, which
might give rise to increased processing speed.

Table 4

Parameter Estimates From Models Fitted to Cross Out Data

Model Parameter

Sample

Two-occasion

data

Four-occasion

data

Quadratic

Fixed

effects

b0 5 intercept 5.39 (0.29) 6.36 (0.62)

b1 5 linear slope 3.46 (0.11) 3.51 (0.24)

b2 5 quadratic slope �0.13 (0.01) �0.13 (0.03)

Random

effects

r20 5 intercept 4.40 (1.30) 5.98 (3.15)

r21 5 linear slope �0 0.01 (0.01)

r22 5 quadratic slope �0 50

r0,1 5 intercept –

linear slope

0.44 (0.12) 0.17 (0.59)

r2e 5 residual

variance

4.81 (0.30) 3.42 (0.19)

Exponential

Fixed

effects

b0 5 asymptote 33.76 (3.07) 37.69 (2.79)

b1 5 intercept

(with b0)

�58.25 (3.74) �59.31 (2.68)

c 5 rate 0.1403 (0.0293) 0.12 (0.02)

Random

effects

r20 5 asymptote 11.31 (3.39) 9.94 (0.01)

r21 5 intercept 2.70 (85.58) 1.61 (0.01)

r0,1 5 asymptote –

intercept

�3.37 (17.19) �0

r2e 5 residual

variance

4.73 (0.53) 3.42 (0.01)

Note. Standard errors are given in parentheses. The entry �0 in-
dicates a parameter not reliably estimated. Themodels for the four-
occasion data also included parameters representing retest effects.
These are not included here because they were not part of the
models for the two-occasion data and, thus, do not contribute to the
comparison across samples.
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Another possibility for this model comes from
research on children’s solutions to simple arithmetic
problems (Shrager & Siegler, 1998). Children tend to
answer problems such as ‘‘6 + 5 5 ?’’ in one of two
ways—by retrieving an answer from long-termmem-
ory or by computing an answer using any of several
strategies (e.g., counting on their fingers). In this case,
retrieving an answer is efficient (fast, automatic,
error-free) but computing an answer is not (slow,
resource demanding, error-prone). If computed an-
swers were replaced by retrieved answers, at a con-
stant multiplicative rate, this would yield exponential
growth in retrieved answers, which might support
more rapid processing.

In fact, there is evidence suggesting that neither of
these possibilities is likely to be correct, at least in the
lean form described here. Based on imaging studies
that determine volume of cortical white matter,
change in myelination appears to be linear in child-
hood and adolescence, not exponential (e.g., Giedd
et al., 1999). And the shift from computed answers to
retrieved answers is typically considered to be a by-
product of task- and stimulus-specific experience (e.g.,
Rickard, 2004). It is not obvious how such an account
would apply on tasks like those used here, which are
novel and thus unlikely to be solvedwith retrieval, yet
yield exponential change in performance. Neverthe-
less, the more general point is to show the heuristic
value of exploring a class of models (i.e., replacement)
that give rise to a specific pattern of change.

Quadratic model. Quadratic models represent the
sum of a power function, ax2, and a linear function, bx
+ c; they are represented graphically by a parabola. In
some scientific disciplines, the different parameters of
the quadratic map onto distinct processes. Perhaps
the most familiar, from physics, is that the height of
a projectile affected only by its initial velocity and
gravity is given by:

Y 5 at2 þ btþ c;

where t is time in seconds, a 5 �4.9 (rate of fall in
meters), b is initial upward velocity, and c is initial
height.

The quadratic is seldom used in this way in
developmental or cognitive psychology. Indeed, we
know of no models in which the parameters of the
quadratic are mapped onto distinct processes.
Instead, the most frequent use of the quadratic is
descriptive, particularly in the case of U-shaped or
inverted U-shaped relations (e.g., the inverted
U-shaped function that relates recall accuracy to
stress; Parker, Bahrick, Fivush, & Johnson, 2006).

Given this state, the heuristic use of the quadratic
comes in looking for other relevant domains in which

growth is characterized as quadratic. Aswe described
briefly in the introduction, physical growth in child-
hood and adolescence is often well described by
quadratic models. More importantly, the parameters
of these quadratics are often qualitatively like those
obtained here: nonlinear change is achieved from
a linear increase coupled with a nonlinear (power
function) decrease. For example, according to the
best-fitting model for the four-occasion sample, per-
formance on Cross Out increased 3.51 rows per year
but declined by �0.13 rows per year squared. Simi-
larly, Giedd et al. (1999) reported that total cerebral
volume increased 5.6 cm3 annually but declined by
0.72 cubic cmper year squared.Correspondingvalues
for total body fat for girls are 1.84 and �0.03 kg (Guo
et al., 1997). Thus, processing speed, total cerebral
volume, and total body fat all show the same pattern
of quadratic change in childhood and adolescence,
which suggests that all might have a common
(unspecified) biological base.

A more detailed comparison of the findings of
Giedd et al. (1999) provides additional clues. In fact,
when cortical regions were analyzed separately, only
one region had the profile of linear increase in gray
matter volume coupled with a nonlinear (power
function) decrease: the temporal region. (Occipital
gray matter increased linearly throughout childhood
and adolescence; change in front and parietal gray
matter was characterized by linear and nonlinear
declines.) Thus, to the extent that these declines in
graymatter reflect synaptic pruning, they suggest that
adult-like processing speed inmid-to-late adolescence
is a byproduct of the elimination of unnecessary neural
pathways, particularly in temporal cortex.

More generally, we have illustrated a second way
in which curve fitting has heuristic value. When
different domains, tasks, ormeasures share a common
developmental profile—in this case, a quadratic that
included linear increase and nonlinear decrease—
those shared (or similar or related) elements of those
domains can be used to generate hypotheses about
the processes that drive development.

Conclusions

Generally, we believe that identifying a full-fledged
model of the growth of processing speed requires two
complementary lines of research. First, more exten-
sive longitudinal datawould provide stronger tests of
the fit of the different models. The two- and four-
occasion data used here provided a preliminary
assessment, but a more powerful evaluation would
be possiblewith repeated longitudinalmeasurements
of speed over a longer developmental span. Second, it
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would be helpful to evaluate hypotheses that emanate
from the different conceptual models. For example,
can the pattern of quadratic change shown here be
linked directly to changes in cortical gray matter? We
believe that richer developmental data and more
systematic exploration of the conceptual properties
of models should yield a fuller understanding of the
processes that result in faster cognitive processing in
childhood and adolescence, as well as the means by
which increased processing speed is related to other
cognitive processes.
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