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Abstract

The present study evaluated the criterion validity of the aggregated tasks of basic cognitive processes (TBCP).

In age groups from 6 to 19 of the Woodcock-Johnson III Cognitive Abilities and Achievement Tests normative

sample, the aggregated TBCP, i.e., the processing speed and working memory clusters, correlate with measures of

scholastic achievement as strongly as the conventional indexes of crystallized intelligence and fluid intelligence.

These basic processing aggregates also mediate almost exhaustively the correlations between measures of fluid

intelligence and achievement, and appear to explain substantially more of the achievement measures than the fluid

ability index. The results from the Western Reserve Twin Project sample using TBCP with more rigorous

experimental paradigms were similar, suggesting that it may be practically feasible to adopt TBCP with

experimental paradigms into the psychometric testing tradition. Results based on the latent factors in structural

equation models largely confirmed the findings based on the observed aggregates and composites.
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Tasks of basic cognitive processes (TBCP), also known as elementary cognitive tasks, are

measurement instruments designed to unravel the most fundamental mechanisms of human cognitive

processing, such as those of sensation, perception, and memory. The cognitive processes underlying

TBCP share two important characteristics that render them basic or elemental to human cognition. First,

unlike conventional tests of crystallized intelligence, TBCP require only minimal formal instruction.
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Secondly, in contrast to tests purported to measure the ability to educe correlates and relations (general

intelligence and fluid intelligence; Cattell, 1963; Horn & Cattell, 1965; Jensen, 1998, 2001; Spearman,

1904), TBCP apparently engage only primitive processes of sequencing, classification, etc., but rarely, if

at all, higher-order processes theorized for reasoning, such as rule abstraction, rule mapping, etc.

Because the demands for formal knowledge and skills or for complex inductive and deductive reasoning

are usually incompatible with the intention to unequivocally measure the basic processes, most TBCP

are deliberately designed to minimize these demands. The elemental features of TBCP are naturally

appealing to those who intend to provide a reductionist account of intelligence (Detterman, 1987; Hunt,

1978; Jensen, 1982a, 1982b, 1985, 1987; Larson & Saccuzzo, 1989; Nettlebeck & Lally, 1976; see also

Brody, 1992; Deary, 2000; Jensen, 1998; Vernon, 1987 for comprehensive reviews).

TCBP have still another important feature. Conventional intelligence tests cannot be readily subjected

to experimental analyses, and are thus elusive in their cognitive underpinnings. TBCP, on the other hand,

are traditionally used in experimental settings. Some of these tasks, for example, reaction time and

stimulus discrimination, are classic tasks of psychophysics. Others, such as those of working memory

processing, also directly originate from cognitive-experimental psychology (Baddeley, 1986; Baddeley

& Hitch, 1974). These experimental tasks can be systematically manipulated and the mechanisms that

control the task performance can be explicitly analyzed through the experimental manipulations. TBCP

are also sometimes adapted to psychological testing and assessment, but the adapted TBCP still maintain

the most essential features of their experimental prototypes.

Despite the advantage of TBCP in their basic and explicable features, TBCP have not been used

intensively in the practical testing of intelligence (Carroll, 1992, 1993), primarily because they seem to

have relatively poor psychometric properties. Individual TBCP typically have only low to moderate

correlations with indexes of general intelligence (g loadings), and do not manifest strong criterion

validity. By comparison, conventional intellectual ability tests have high g loadings and strong criterion

validity, and are thus considered more suitable testing instruments of intelligence. Although recent years

have seen an increase in the employment of TBCP in batteries of intelligence (Wechsler, 1991, 1997;

Woodcock, McGrew, & Mather, 2001a, 2001c), TBCP are still far outweighed by conventional ability

tests in most batteries. The contrasts between experimental tasks of basic processes and conventional

ability tests reflect to a degree a fundamental division that runs deep between the experimental and the

psychometric traditions in psychology. The division dates back to the early years of modern psychology,

and is considered unfortunate for an integrated science of psychology (Cronbach, 1957).

Recent studies of intelligence have accumulated a considerable body of evidence suggesting that

intelligence, particularly general intelligence, or g, can be largely reduced to a few basic cognitive

components. Two of these components, processing speed and working memory, have attracted special

attention among students of human intelligence. The two basic cognitive components, determined

statistically either as linear composites of TBCP via multiple regression and principal component analyses,

or as latent factors of TBCP, have been found to have substantial correlations with indexes of g (Conway,

Cowan, Bunting, Therriault, & Minkoff, 2002; Conway & Engle, 1996; Deary, 1986; Engle, Cantor, &

Carullo, 1992; Engle, Kane, & Tuholski, 1999; Engle, Tuholski, Laughlin, & Conway, 1999; Jensen,

1982a, 1982b, 1985, 1987; Kyllonen & Christal, 1990; Kyllonen & Stephens, 1990; Luo & Petrill, 1999;

Luo, Thompson, &Detterman, 2003a, 2003b;Miller &Vernon, 1992;Miyake, Friedman, Rettinger, Shah,

& Hegarty, 2001; Nettlebeck & Lally, 1976; Vernon, 1983, 1988; Vernon, Nador, & Kantor, 1985; see also

Brody, 1992; Jensen, 1998; Deary, 1980; Vernon, 1988 for comprehensive reviews). They also seem to

transcend modalities, whether visual or auditory, and are adaptable to content domains of verbal, spatial,
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and numeric stimuli, suggesting they are general to different intellectual activities. The strong relations

between the TBCP-based components and g, along with the more explicit cognitive mechanisms of TBCP

and their generality, make TBCP in theory a plausible set of indicators for intelligence, although the

seemingly weak g loadings and criterion validity of individual TBCP remain to be a concern for the

practical testing of intelligence.

The seemingly poor psychometric properties of individual TBCP may be overcome by properly

aggregating TBCP according to their known mechanisms (Detterman, 1982, 1984, 1986, 1992, 1994).

Individual TBCP are predominantly controlled by specific cognitive processes, and are associated with g

and other complex omnibus abilities only through these specific processes. The process-specific

variances of TBCP, however, can contribute to g and other complex abilities in an additive manner when

tasks measuring different fundamental processes are aggregated. TBCP also typically consist of

substantial method-specific variances, which tend to arise from tasks measuring bpurerQ processes as task
performance reflecting such processes can be easily influenced by other factors such as the format of

stimulus presentation, the modality of stimulus presentation, response requirement, the content of

stimuli, etc. The method-specific variances depress not only the correlations of TBCP with g and other

complex abilities, but also the correlations of TBCP with each other. The method-specific variances of

TBCP can also be effectively reduced by aggregating measures of TBCP. TBCP that involve a common

cognitive mechanism but have different stimulus presentation formats, stimulus modalities, response

requirements, or stimulus contents, can be aggregated to strengthen the variability of the shared

mechanism. In other words, TBCP could have both clearly defined cognitive mechanisms and strong g

loadings when they are properly aggregated.

TBCP that follow closely a rigorous experimental paradigm may have still other merits. These tasks

use readily manipulated stimuli and task demands, which may facilitate the design and application of test

items. For example, one can vary stimulus and demand features of these tasks, while still maintaining the

same cognitive mechanisms underlying the tasks, to easily generate item banks. Experimental TBCP

may also provide richer testing information than their less experimental, adapted counterparts. For

example, information processing speed tasks presented in a rigorous experimental paradigm, e.g., choice

reaction time, stimulus discrimination time, allow a dissociation between decision time and movement

time, which is not possible for less experimental processing speed tests, such as Digit Symbol and

Symbol Search in conventional test batteries. Experimental manipulations may also permit a separation

of the accuracy component from the speed component in information processing speed tasks (Dosher,

1979; Smith, Kounios, & Osterhout, 1997). For working memory tasks, experimental manipulations are

sometimes used to differentiate between the subcomponent of short-term storage and the subcomponent

of central executive, and the two subcomponents seem to have disparate relations with intellectual

abilities (Engle et al., 1999). Such task parameter information from more experimental TBCP may be of

practical value in diagnoses and assessments. Moreover, using experimental tasks for the practical

testing of intellectual abilities may to a certain degree bring closer the psychometric tradition and the

experimental tradition, and help integrate the two main branches of scientific psychology. These

advantages notwithstanding, tasks with a rigorous experimental paradigm may have properties that are

deemed undesirable in practical testing of intelligence. One property of experimental tasks is that they

tend to appear more bimpersonalQ than individually administered tests, and may thus give rise to

confounding psychological affects, e.g., anxiety or weakened motivation. Another likely concern is that

experimental tasks typically have predetermined, rigid procedures, oftentimes controlled by a computer.

Once started, these procedures may not be stopped at will as the interruptions may mitigate the testing
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results. The need for interruptions may nonetheless arise in practical testing when testees, particularly

testees young in age or low in ability, need to clarify task demands, causing a conflict between the rigidly

designed experimental procedures and the required flexibility in individual treatment. Given that most

TBCP have unmistakably simple and non-intimidating task demands, these concerns about experimental

TBCP may not be actually relevant. Still, empirical evidence is needed to demonstrate that aggregated

TBCP in a more rigorous experimental paradigm have acceptable psychometric properties.

The objectives of the present study were: (1) to demonstrate that processing speed and working

memory aggregates could have criterion validity comparable to that of conventional ability test scores;

(2) to examine whether these aggregates of TBCP can provide supplemental explanatory power to

conventional measures of intelligence; and (3) to assess specifically the criterion validity of aggregated

TBCP that incorporate rigorous experimental tasks. We chose to examine the criterion validity of TBCP

measuring information processing speed and those measuring working memory, because both cognitive

components have been found to play a very salient role in g and other complex intellectual abilities. The

two components, while sharing a sizable amount of variability, also appear to represent distinct

psychological mechanisms. Processing speed has been found to play a dominant mediating role in

developmental changes in intelligence (Fry & Hale, 1996; Salthouse, 1996, 2000), whereas working

memory seems to outperform processing speed in predicting the within-age individual differences,

customarily termed as age-normed differences, in intellectual abilities (Conway et al., 2002; Kyllonen &

Christal, 1990). It is therefore prudent to place both components under scrutiny for their criterion

validity, and evaluate the joint as well as the unique contributions of the two components to criterion

measures. We adopted measures of scholastic achievement as the criterion measures in the present study,

because scholastic achievement is widely accepted as the primary criterion for intellectual ability tests,

especially for school age children and adolescents.

Previous studies have shown that TBCP measuring processing speed and working memory have

significant correlations with scholastic achievement measures (Benton, Kraft, Glover, & Flake, 1984;

Carlson & Jensen, 1982; Daneman & Carpenter, 1980, 1983; Daneman & Green, 1986; King & Just,

1991; Luo et al., 2003a, 2003b; MacDonald, Just, & Carpenter, 1992; Ormrod & Cochran, 1988). These

correlations, however, were typically observed on a limited scale, both in terms of age range and in terms

of sample size, and were not evaluated in comparison to conventional tests of intelligence. Despite the

theoretical merits of TBCP, a wider adoption of these tasks in practical testing of intelligence still needs

to be implemented with caution, as these tasks have not been used as major assessment instruments of

intelligence in clinical and educational settings, and may have properties not fully known. Large-scale

evaluations of TBCP for their criterion validity, with conventional tests of intelligence serving as

comparison standards, are needed to demonstrate that TBCP are qualified instruments to be used widely

in future testing of intelligence.

In the present study, the conventional ability measures to which the aggregates of TBCP were

compared were indexes of crystallized intelligence, fluid intelligence, and general intelligence. We

intended to compare the aggregates of TBCP to these indexes of intelligence because these indexes

represent the most pervasive latent constructs underlying intellectual ability tests, and the variances they

each share with the criterion of scholastic achievement reflect distinct sources of influence on the

criterion. Of particular interest in our comparison is the evaluation of TBCP in conjunction with fluid

ability measures. The two families of measures are similar in that both putatively tap abilities less

affected by cultural and educational backgrounds, and are thus more likely to reflect an individual’s

bpotentialQ rather than his/her acquired knowledge and skills. We attempted to compare TBCP to two
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specific kinds of fluid ability measures, namely, measures of more strictly defined reasoning abilities,

including those of induction and deduction, and measures of more broadly defined problem-solving

skills, such as those indicated by the Performance subscales employed in the Wechsler Scales of

Intelligence. The two kinds of fluid ability measures represent the most commonly adopted means of

testing fluid abilities, and the comparison between TBCP and fluid ability measures needs to be

conducted with reference to both kinds of fluid ability measures. The extent to which the TBCP

aggregates supercede and surpass the conventional indexes of intelligence in the explanation for the

criterion will reveal a great deal not only the practical value of the TBCP aggregates in the testing of

intelligence, but also the cognitive nature of the conventional indexes.

The measures of TBCP in the present study were taken from two data sources, Woodcock-Johnson III

Cognitive Abilities and Achievement Tests (W-J III; Woodcock et al., 2001a, 2001c;Woodcock, McGrew,

&Mather, 2001b) normative data and theWestern Reserve Twin Project (WRTP) data. TheW-J III battery

includes two TBCP aggregates, the Processing Speed cluster and theWorkingMemory cluster. The TBCP

in theWRTP study includedmostly experimental tasks, whichmeasured information processing speed and

working memory/short-term memory processing. The fluid reasoning cluster of W-J III includes an

inductive reasoning test and a deductive reasoning test, whereas the fluid ability tests adopted byWRTP are

the Wechsler Intelligence Scale for Children-Revised (WISC-R) Performance subscales. The aggregated

TBCP of the WRTP data could be used to evaluate the criterion validity of TBCP that follow a rigorous

experimental paradigm, and the WISC-R Performance subscales used by the WRTP provide an additional

dimension of the fluid ability in our comparison between TBCP and fluid ability measures. For both data

sets, the criterion validity of aggregated TBCP was examined in comparison to composite scores of

crystallized intelligence and fluid intelligence, as well as indexes of general intelligence.

The aggregates of TBCP were formed on different composition levels in the present study. Aggregates

of TBCP can be made separately according to their respective underlying mechanisms, e.g., the

processing speed aggregate, the working memory aggregate, and aggregates of other cognitive processes.

They can also be incorporated into a single TBCP composite, or together with certain conventional test

composites (crystallized ability composite, fluid ability composite, etc.). The overall criterion validity of

aggregated TBCP may vary with the level of composition. When separate aggregates of TBCP are used as

individual predictors in a multiple regression model, these aggregates are combined according to a set of

optimal weights. When these aggregates are used to form a single total score, the explanatory power of

such a single total score is generally not the same as, and typically lower than, that of an optimally

weighted sum. Since optimal weights obtained from multiple regression models are susceptible to

extraneous sampling features, simple sums instead of optimally weighted sums are more often used in

practice. In other words, if TBCP are to be posited as potent contenders against conventional ability tests,

they are more likely to be presented in a form of simple composites rather than optimally weighted

composites, and the criterion validity of such simple sums of aggregated TBCP needs to be evaluated and

compared to that of conventional tests. Similarly, a simple sum combining both aggregates of TBCP and

certain conventional test composites, particularly those of crystallized abilities, may be of practical value

because such a hybrid of TBCP and conventional measures is a likely form of test battery in practical

settings, covering most comprehensively the cognitive foundation of criterion performance. The criterion

validity of such a hybrid with a concentration in aggregates of TBCP therefore needs to be examined.

In the present study, we examined the criterion validity of aggregated TBCP on three levels of

composition. On Level 1, aggregates of TBCP were formed according to their known cognitive

mechanisms (e.g., processing speed, short-term memory/working memory, etc.), and these aggregates
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were used as separate predictors in multiple regression models to examine their predictive power (R2s) for

scholastic performance. Moreover, the separate TBCP aggregates were compared to counterparts of fluid

abilities on the first level of composition to see whether they provide incremental validity over fluid ability

tests. On the second level, TBCP aggregates were further combined into a simple sum, and the explanatory

power of the sum, which can be viewed as the criterion validity of a test battery consisting exclusively of

TBCP, was evaluated and compared to that of conventional ability tests. On the third level, a total score

was obtained from both aggregates of TBCP and certain composites of conventional ability tests, and the

criterion validity of such a hybrid is indicative of the power of a possible new kind of battery made of both

an extensive collection of aggregated TBCP and a selected type of conventional ability measures.

To further validate the results obtained using the aggregated tests and composite scores, the explanatory

power of TBCP for scholastic achievement was also evaluated and compared to that of the crystallized and

fluid abilities using the structural equation modeling (SEM) method (Jöreskog, 1973). In the structural

equation models, latent factors of processing speed, working memory, crystallized ability, fluid ability, and

scholastic achievement were specified, and the explanatory power of the processing speed and working

memory factors for the achievement factor was evaluated in a way analogous to the evaluation of observed

TBCP aggregates and composite scores. The results based on the manifest composites and those from the

SEM analyses each are important in their own right, and the consistency between the two sets of results

can provide cross-validation as well. Assessment of criterion validity on the basis of the observed

aggregates and composite scores is necessary, as in practical testing only the observed measures, not the

latent factors, are used. The SEM analyses, on the other hand, were intended to provide a more theoretical

account for the explanatory power of processing speed and working memory, because the latent factors are

theoretically not interwoven with measurement errors of the manifest variables. In other words, a latent

factor can be viewed as an ideally aggregated composite that only pertains to the shared variability among

the aggregated manifest variables, but not the specific variances of these variables. The merit of latent

factors as ideal aggregates is of particular relevance in the present study, because, as discussed above, the

strength of TBCP typically is not fully displayed until they are sufficiently aggregated. The results from

the SEM analyses, if commensurate with those based on the observed aggregates and composite scores,

will theoretically confirm the conclusions drawn from the observed variables.
1. Method

1.1. The W-J III normative data

The W-J III was normed in a nationally representative sample and consists of a wide range of

cognitive and scholastic performance variables. It has a number of characteristics that are important for

the present study: (a) it includes tests measuring basic cognitive processes such as those of processing

speed and working memory, as well as complex intellectual abilities such as crystallized intelligence,

fluid intelligence, and scholastic achievement; (b) tests are aggregated into clusters according to their

hypothetical latent constructs; (c) the Tests of Cognitive Ability battery of W-J III was co-normed with

the Tests of Achievement battery, permitting an evaluation of the criterion validity of the cognitive

ability tests; (d) the normative sample of W-J III was large (total size: 8818) and was obtained using a

quota sampling scheme to represent the characteristics of region, sex, race, age, school grade, and

occupation of the US population.
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1.2. Selected variables of the W-J III

The W-J III clusters selected for the present study were the clusters of Processing Speed (WJ

Processing Speed Cluster), Working Memory (WJ Working Memory Cluster), Knowledge-Comprehen-

sion (WJ Comprehension Knowledge Cluster), Fluid Reasoning (WJ Fluid Reasoning Cluster), and some

clusters of the Achievement Tests battery. In addition, a general index of W-J III General Intellectual

Ability-Standard (WJ General Intellectual Ability) was included in the analyses with the cluster scores.

1.2.1. Aggregates of TBCP

The WJ Processing Speed and WJ Working Memory clusters are aggregates of cognitive tasks

measuring basic cognitive processes. WJ Processing Speed Cluster is a composite of two tests, Visual

Matching and Decision Speed. Both are easy tasks of symbol matching, requiring largely the speed of

perception and stimulus discrimination. The WJ Working Memory Cluster consists of Numbers Reversed

and AuditoryWorkingMemory, which require actively operating on the information held in awareness. In

Numbers Reversed, the testee is asked to listen to a list of numbers recorded on a tape, and recall these

numbers in a reversed order after the completion of the list presentation. The list length varies from 2

digits to as many as 8 digits. In Auditory Working Memory, the testee is required to listen to a tape

recording that reads numbers and objects alternately and to recall the read items after the termination of

each list by grouping the numbers and objects in two categories and arranging them in their respective

presentation orders (see Woodcock et al., 2001a, 2001b, 2001c, for a detailed description of these tasks).

The W-J III working memory tasks, such as the memory span task of Numbers Reserved, may be

suspected to be mainly short-term storage processing measures but not central executive processing

indicators (Engle et al., 1999), and may thus not adequately represent working memory processing, but

such a suspicion may only be valid for the college student and adult populations. With younger age

testees, such as those included in the present study, whose short-term storage capacity is not fully

developed, an extra attention management effort may be needed in these tasks, and the tasks may still tap

effectively central executive processing of the testees. Furthermore, since working memory tasks with

more intensive central executive processing typically have higher correlations with complex intellectual

abilities (Engle et al., 1999), memory span tasks such as Numbers Reversed may provide a conservative

estimate of the criterion validity of working memory tasks. In other words, it is possible to further

strengthen the criterion validity of TBCP demonstrated by the working memory tasks in the present

study by employing working memory tasks with a more intensive central executive component.

1.2.2. Conventional tests of intelligence

TheW-J III Comprehension Knowledge and Fluid Reasoning clusters (WJ Comprehension Knowledge

Cluster and WJ Fluid Reasoning Cluster) were designed to mainly represent the two major categories of

intellectual abilities, crystallized intelligence and fluid intelligence. WJ Comprehension Knowledge

Cluster is a composite of Verbal Comprehension, a test of synonyms and antonyms, and General

Information, a test assessing general knowledge, similar to the WISC-R Information. WJ Fluid Reasoning

Cluster is based on Concept Formation, a test of inductive reasoning, and Analysis Synthesis, a test of

deductive reasoning. Questions in Concept Formation consist of objects that can be classified according to

their colors or shapes, and the testee is asked to identify in each question one object that does not quite fit

the classification. In Analysis Synthesis, a number of colored objects are first presented to the testee, and

the rules governing the relations between the objects are described. The testee is then shown objects with a
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missing piece and asked to identify the missing object according to the rules described before. The tests of

WJ Comprehension Knowledge Cluster and WJ Fluid Reasoning Cluster have high g loadings, with a

median g loading of 0.77 in the 6 to adult age range. The median g loading of the WJ Processing Speed

Cluster and WJ Working Memory Cluster tests is 0.51. The disparity in g loading between the complex

intellectual ability tests and the TBCP is nonetheless expected to diminish with the aggregation of TBCP,

as the aggregation would decrease the method-specific variances of the TBCP variables on the one hand,

and increase the breadth of the cognitive processes represented by the TBCP on the other.

In addition to WJ Comprehension Knowledge Cluster and WJ Fluid Reasoning Cluster scores, a

general score, WJ General Intellectual Ability, was also used for the analysis. The WJ General

Intellectual Ability index is the first principal component score from a collection of tests. It is a weighted

sum of seven W-J III standard tests, including one test each from the WJ Comprehension Knowledge,

WJ Fluid Reasoning, WJ Processing Speed, and WJ Working Memory clusters as well as tests from

three other clusters. The general score can be considered as a proxy of general intelligence, or g, and

could serve as a reference for the evaluation of the criterion validity of aggregated TBCP.

1.2.3. Achievement measures

The W-J III achievement measure used in the present study as the criterion measure is Total

Achievement (WJ Total Achievement), which is a summary score for a number of achievement test

clusters, including Broad Reading, Broad Math, and Broad Written Language.1

1.2.4. Manifest variables for the SEM analyses

The same individual tests that made up the clusters, i.e., Visual Matching and Decision Speed for WJ

Processing Speed, Numbers Reversed and Auditory Working Memory for WJ Working Memory, Verbal

Comprehension and General Information for WJ Comprehension Knowledge, Concept Formation and

Analysis Synthesis for WJ Fluid Reasoning, and Broad Reading, Broad Written Language, and Broad

Math for WJ Total Achievement, were used as manifest variables in the structural equation models to

define their respective latent constructs. Broad Reading, Broad Written Language, and Broad Math are

cluster scores each made of a number of subtest scores, and the correlations/covariances between these

achievement cluster scores and the test scores of the other factors were determined analytically (Johnson

& Wichern, 1992, pp. 117–118) on the basis of the reported correlations in the W-J III technical manual

among all individual subtest scores.

1.3. Subgroups of W-J III normative sample

The total W-J III normative sample contain all age ranges from the primary school years to senior years.

We analyzed data from three school age groups, 6–8 (N=1095), 9–13 (N=2241), and 14–19 (N=1641).

The selection of these age groups is based on the consideration that scholastic achievement constitutes the

best criterion performance for these age groups, but less so for older age groups.2 Results from these
1 Results based on the subcomposites of the W-J III Total Achievement, Broad Reading, Broad Math, and Broad Written

Language composites, were largely the same as the results based on the W-J III Total Achievement, and were omitted in the

paper. These results can be obtained upon request.
2 Similar results were found from the older age groups of the W-J III normative sample (20–39 and 40+), but are not presented

based on the consideration that scholastic achievement is less relevant as criterion performance for the older age groups.
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groups could be used to demonstrate the strength of TBCP in predicting criterion measures throughout

the pre-college school age span.

1.4. Analysis

1.4.1. Analyses of observed aggregates and composites

Based on the reported correlations among the adopted measures (McGrew & Woodcock, 2001), the

multiple regression analysis method was used to evaluate the criterion validity of WJ Processing Speed

and WJ Working Memory clusters on three composition levels. On the first level, WJ Processing Speed

Cluster, WJ Working Memory Cluster, and WJ Fluid Reasoning Cluster each were treated as individual

predictors, and their zero-order and higher-order contributions to the variability of WJ Total

Achievement were assessed in terms of R2 and R2 changes.

On Level 2, the TBCP clusters were combined into a more agglomerated composite, the WJ

Processing Speed and WJ Working Memory composite (WJ Processing Speed+Working Memory

Composite). The criterion validity of this TBCP composite was compared to that of WJ Comprehension

Knowledge Cluster, WJ Fluid Reasoning Cluster, and of the WJ Comprehension Knowledge and WJ

Fluid Reasoning combination (WJ Comprehension Knowledge+Fluid Reasoning Composite). These

composites were made of equally weighted sums of member clusters, and their intercorrelations and

correlations with the other measures could be analytically determined on the basis of Level 1 cluster

correlations. Multiple regression analyses relating the Level 2 TBCP composite to WJ Total

Achievement were conducted based on the Level 2 correlations. R2s and R2 changes from these

regression models could be evaluated in relation to WJ Comprehension Knowledge Cluster, WJ Fluid

Reasoning Cluster, and WJ Comprehension Knowledge+Fluid Reasoning Composite with WJ Total

Achievement as the criterion measure.

On Level 3, the aggregates of TBCP were combined with some of the complex ability composites.

Three Level 3 composites were formed, the WJ Processing Speed, WJ Working Memory, and WJ

Comprehension Knowledge composite (WJ Processing Speed+Working Memory+Comprehension

Knowledge Composite), the WJ Processing Speed, WJ Working Memory, and WJ Fluid Reasoning

composite (WJ Processing Speed+Working Memory+Fluid Reasoning Composite), and the WJ

Processing Speed, WJ Working Memory, WJ Comprehension Knowledge, and WJ Fluid Reasoning

composite (WJ Processing Speed+Working Memory+Comprehension Knowledge+Fluid Reasoning

Composite). Member clusters were equally weighted in each of the composites. The composites were

created to examine whether batteries using mainly aggregates of TBCP would have criterion validity

comparable to that of conventional batteries, which typically use more omnibus ability measures than

TBCP measures. Comparisons could also be made on Level 3 to see whether conventional fluid

intelligence measures are expandable when sufficient TBCP measures are employed. R2s resulted from

the simple regression models using each of these third level composites and the WJ General Intellectual

Ability index as predictors for achievement measures were compared.3
3 To ensure that the results of the present study were not seriously affected by the reliability of the predictors, analyses were

also conducted on correlations corrected for test reliability. These results were very similar to those based on the uncorrected

correlations. In fact, the corrections had a more positive impact on the criterion validity of the aggregated TBCP than on that of

the conventional test composites. Since the estimation of the theoretical correlations between perfectly reliable measures could

be achieved more effectively on the basis of the SEM analyses than on the basis of corrected correlations, these results were not

presented. Interested readers can request the results based on the corrected correlations from the authors.
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1.4.2. The SEM analyses

Five latent factors were specified for the SEM analyses, a processing speed factor (WJ Speed Factor)

indicated by Visual Matching and Decision Time, a working memory factor (WJ Working Memory

Factor) manifested by Numbers Reversed and Auditory Working Memory, a crystallized intelligence

factor (Gc) defined by Verbal Comprehension and General Information, a fluid intelligence factor (Gf)

with loadings on Concept Formation and Analysis Synthesis, and an achievement factor (WJ

Achievement) underlying Reading, Written Language, and Math.

Based on these latent factors, four mathematically equivalent structural equation models (Models 1A,

1B, 1C, and 1D) were specified. In Model 1A, WJ Speed Factor, WJ Working Memory Factor, Gf, and

Gc are all treated as correlated explanatory variables for the WJ Achievement Factor, and thereby have

one-way paths from these factors to the Achievement Factor and two-way paths between each other. The

model is analogous to a multiple regression model with four predictors for the dependent measure, and

the standardized residual variance in Achievement, or alternatively, one minus the residual (R2),

indicates the amount of total variability in Achievement explained by these factors (see Fig. 1a for a

graphic description).

In Model 1B, the Speed, Working Memory, and Gf factors have one-way paths to Achievement, but

not Gc, which has two-way paths with all the other factors (Fig. 1b). Such a model is comparable to a

multiple regression model with three instead of four predictors, and the resultant R2 can be compared to

that of the model with 4 explanatory variables described above to attain a R2 change indicating the

unique contribution from Gc to Achievement over and above WJ Speed Factor, WJ Working Memory

Factor, and Gf.

Similarly, the R2 change caused by Gf over WJ Speed Factor and WJ Working Memory Factor for WJ

Achievement can be obtained by comparing the model with only two explanatory factors, WJ Speed and

Working Memory, in Model 1C (see Fig. 1c) to that in Model 1B.

In Model 1D, WJ Speed Factor, WJ Working Memory Factor, Gf, and Gc are all covariates of the WJ

Achievement Factor, with two-way paths among all five latent factors (Fig. 1d). In the model, the

estimated correlation between the Achievement Factor and each of the other four factors can be squared

to provide the related R2, which may be compared to the R2 obtained from Model 1A, Model 1B, or

Model 1C to evaluate the R2 change of interest. For example, the unique contribution from WJ Speed

Factor and WJ Working Memory Factor to WJ Achievement Factor after controlling the influence of Gf

can be evaluated by obtaining the change in R2 from Model 1B with WJ Speed Factor, WJ Working

Memory Factor, and Gf as the explanatory variables to the R2 ascribed to Gf only in Model 1D. By the

same token, the incremental explanatory power of the Working Memory factor beyond the Speed factor

for WJ Achievement can be gauged by obtaining the counterpart R2 change from Model 1C to Model

1D.

Although the R2s and R2 changes aforementioned can be analytically determined from model

parameter estimates from any one of the four models, for instance, from the zero-order factorial

correlation estimates of Model 1D, specifying these models has an advantage of testing statistically

unique contributions made by certain predictors controlling the others in these models. In Models 1A,

1B, and 1C, one or more predictor-to-criterion one-way paths (beta weights) can be fixed to zero to

evaluate the chi-square changes caused by the zero constraints and the magnitude of the changes can

indicate the impact of one or more predictors over that of the others for the explanation for the

Achievement Factor. For example, fixing a beta weight associating Gc with the Achievement Factor in

Model 1A leads to the chi-square change indicative of the unique impact of Gc over that of the other
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Fig. 1. (a) The five-factor model with WJ Speed Factor, WJ Working Memory Factor, Gf, and Gc as explanatory variables for

WJ Achievement Factor. Note: Parameter estimates shown in the diagram are all standardized values. Variables symbolized by

ovals are latent factors, and those in rectangles are manifest variables. The open-ended one-way arrow to a manifest or latent

variable represents the residual variance to the variable. Variable acronyms: Auditory WkMem—Auditory Working Memory;

Verbal Comp—Verbal Comprehension; General Inform.—General Information, Reading—Broad Reading; Written Lan-

guage—Broad Written Language; Math—Broad Math; WJ Wk Memory—WJ Working Memory Factor; WJ Achiev.—WJ

Achievement Factor. Estimates in regular font: 6–8 age group; italics: 9–13 age group; boldface: 14–19 age group. (b) The five-

factor model with WJ Speed Factor, WJ Working Memory Factor, and Gf as explanatory variables for WJ Achievement Factor.

(c) The five-factor model with WJ Speed Factor and WJ Working Memory Factor as explanatory variables for WJ Achievement

Factor. (d) The five-factor model with correlated factors but no explanatory variable for WJ Achievement Factor. Note: The

models described in b–d are mathematically equivalent to that depicted in a, and parameter estimates associated with the

manifest variables are thus identical in all these models. The diagrams only present model parameters related to the latent

factors.
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three predictors, whereas the chi-square change caused by the zero constraints placed on the beta weights

related to the Speed and Working Memory factors in the same model indicates the unique impact of the

Speed and Working Memory factors beyond that of Gc and Gf. Beta weights in Models 1B and 1C can

also be fixed to zero to evaluate the related unique impacts of the predictors.

Models 1A through 1D are mathematically equivalent in that they yield the same expected

covariance/correlation matrix with identical model fit indexes. The four predictors in Model 1A are

progressively converted to covariates of the Achievement Factor in the other three models without

changing the model fit (Stelzl, 1986; Rule 3). The R2 values estimated from these models are all based

on the breduced formQ (Jöreskog & Sörbom, 1996), and can be interpreted directly as proportions of

variability explained without any adjustment. The four mathematically equivalent models constitute a

model sequence with a theorized decrease in the cognitive complexity of the predictors from Model A

to Model C. In Model 1A, one of the predictors, Gc, presumably reflects a hybrid of acquired

knowledge/skills and bculture-fairQ fluid abilities and is thus on the highest level of complexity in

underpinning, with Gf on the next complexity level representing only bculture-fairQ, although

psychologically complex, traits, and with the basic processing factors on the lowest complexity level

for their apparent simplicity in cognitive mechanisms. The sequence therefore decreases in the

predictor complexity level from Model A to Model C (no predictor in Model D) because the most

complex predictor in a preceding model is converted to a covariate in the next model. The sequence

permits one to evaluate the relative importance of complex processing and basic processing for the

Achievement Factor according to the magnitude of the R2 changes and the chi-square changes

obtained from the model sequence.

All these mathematically equivalent models were fitted to the covariance matrices from the 6–8, 9–

13, and 14–19 age groups using the multi-group maximum likelihood estimation method. To facilitate

the evaluation of the R2s and R2 changes described above, all factors in these models were constrained

to have unit variances. For the explained Achievement Factor, the unit variance constraint was set

according to the rationale described by McDonald, Parker, and Ishizuka (1993) so that the estimated

residual variance can be understood as 1�R2. The SEM analyses were conducted using the MX

program (Neale, 1999).
2. The WRTP data

The Western Reserve Twin Project was a study of cognitive abilities and scholastic achievement in

elementary school twins. It included variables from TBCP, conventional intellectual ability tests, and

measures of scholastic performance. One important characteristic of the TBCP employed in the WRTP

was that most of the TBCP were standard experimental tasks. The characteristic is of particular relevance

to the present study because we intended to evaluate the criterion validity of TBCP that follow closely an

experimental paradigm. Another notable feature of the WRTP is that it employed the Performance

subscales of WISC-R. These subscales presumably measure, among other things, the ability of spatial

relations, and are also commonly considered tests of fluid intelligence, albeit more loosely defined. It

would be of interest to compare the criterion validity of TBCP to that of these fluid ability tests. Two

other features of the WRTP are further worth noting. The WRTP included a wider selection of

processing speed variables than W-J III, and used mostly visuospatial memory span tasks instead of

verbal and numerical working memory tasks.
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2.1. Participants

Participants in the WRTP were twins recruited through public, private, and parochial schools within a

six-county area surrounding the city of Cleveland, Ohio. The 568 participants were in the first through

sixth grade at the time of participation, with an age rage from 6 to 13. The sample represented the full

range of individual differences in general intelligence with a WISC-R Full Scale IQ mean of 104.5 and a

standard deviation of 15.8.

To obtain covariances and correlations for the present study, all twin pairs were split and randomly

assigned into two nonoverlapping subsamples. Correlations and covariances were then pooled from the

two subsamples so that subjects were treated as though they were unrelated individuals. Correlations/

covariances between all variables were based on 512 observations after listwise deletion of cases with

missing values. Multiple regression and SEM analyses were conducted using these correlations and

covariances.

2.2. Measures

Each child in the study was tested a total of 8.5 h over three sessions, the psychometric ability test

session, the elementary cognitive task session, and the achievement test session.

2.2.1. Aggregates of TBCP

Six tasks from the Cognitive Abilities Test (CAT; Detterman, 1988) were administered to all

participants. They were: Learning, Probe Recall, Reaction Time, Stimulus Discrimination, Self-Paced

Probe Recall, and Tachistoscopic Threshold (TT).

Stimulus presentation was similar in Probe Recall, Learning, and Self-Paced Probe Recall. In each

trial, a participant was presented with a row of blank windows slightly below the center of the computer

screen, and a probe window centered above this row. Stimuli comprised of matrix diagrams were shown

one by one in each blank window. Each diagram appeared and disappeared before the presentation of the

next diagram. After the last diagram disappeared on the screen, one of the previously presented diagrams

reappeared in the probe window, and participants were asked to indicate which bottom window

contained the probed diagram.

In Probe Recall, only one of the six previously presented diagrams appeared after the

presentation, and the participant was required to identify which of the six windows originally

presented the target diagram. In Learning, the presented diagrams varied in number (3, 5, 7, or 9)

during each trial, and each of the presented diagrams was probed after the presentation. The

participants were asked to respond to all of the probed diagrams. Both Probe Recall and Learning

are presumed to tap largely visuospatial short-term memory, or visuospatial sketchpad, to use the

epithet in the literature of working memory studies (Baddeley & Logie, 1999). Self-Paced Probe

Recall was the same as Learning, except that participants could control the presentation time of

each stimulus diagram. The control over the stimulus presentation time allows the participant to

perceive and remember each new stimulus while rehearsing in short-term memory the items already

presented. In other words, there is putatively an additional central executive component involved in

Self-Paced Probe Recall, although, as indicated by a previous study (Miyake et al., 2001) and also

by the highly similar observed correlations of Learning and Self-Paced Probe Recall with other

intellectual ability tests in the WRTP data, visual–spatial working memory tasks tapping the
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additional central executive component may not be highly distinguishable from those only engaging

the visuospatial sketchpad component.

In the Reaction Time task, an array of 1, 2, 4, 6, or 8 empty windows appeared on the screen and one

of the windows would light up in each trial. The participant was required to touch the lit window as

quickly as possible.

Participants in Stimulus Discrimination were presented with six blank windows in the bottom portion

of the screen, and a probe window in the upper portion of the screen. The six windows each displayed a

different diagram, and the probe window presented a diagram identical to one of the six diagrams below

it. The participant’s task was to find the match to the probe, and touch it as quickly as possible.

In both Reaction Time and Stimulus Discrimination, the participant was instructed to keep a finger on

the home button in the lower part of the touch screen before the diagrams appeared. The diagrams then

came on after a randomly varied waiting period. The total response time was the time from the onset of

the diagram presentation to the touching of the target diagram on the screen. In both tasks, the total

response time was decomposed into two disjointed time components, decision time and movement time.

The time from the onset of the diagram presentation to the movement of the finger from the home button

was the decision time. The time from the release of the finger on the home button to the target diagram

was the movement time, recorded separately from the decision time. The decision time is known to have

a more pronounced correlation with intelligence than the movement time.

In Tachistoscopic Threshold, two diagrams were presented simultaneously for a very brief duration

and were then masked, and participants were asked to determine whether they were the same. The

presentation time varied until a threshold duration for correct identification, presumably measuring

inspection time, was determined.

All participants during the CAT sessions used a touch screen device to make their responses to the

stimuli, and both their response times and response choices were automatically recorded by a computer.

Six measures of elemental cognitive processes were obtained from the six CAT tasks. These measures

were: percent correct from Probe Recall, percentage correct from Learning, percent correct from Self-

Paced Probe Learning, decision time from Reaction Time, decision time from Stimulus Discrimination,

and threshold time from Tachistoscopic Threshold. Threshold Time of the Tachistoscopic Threshold task

indicates the minimum stimulus presentation time needed for a participant to respond correctly 75% of

the times for the task. The six variables selected were the most informative indicators of their respective

tasks. All six CAT variables were age and gender adjusted standardized multiple regression residuals.

In addition to the CAT variables, three more variables, the Wechsler Intelligence Scale for Children-

Revised (Wechsler, 1974) Coding and Digit Span scale scores and Perceptual Speed of the Colorado

Specific Cognitive Ability Test (SCA) were also used as variables of TBCP. Digit Span requires the

recall of number lists both in the forward fashion and in the backward fashion, and is thus very similar to

the W-J III working memory test of Numbers Reversed. Coding measured the speed of pattern

perception/recognition. Perceptual Speed measured the subject’s total number of correct and incorrect

responses within a given time when they searched for a set of target stimuli from a list of symbols. Of the

three variables not taken from the CAT, Digit Span could be easily adapted to an experimental paradigm.

Coding and Perceptual Speed were similar to Visual Matching in the W-J III, and may also be rigorously

analyzed in experimental studies, particularly when they are used in conjunction with some other

experimental tasks, such as Reaction Time and Stimulus Discrimination. The participant in Reaction

Time and Stimulus Discrimination responded to only a single target stimulus per trial, but in Coding and

Perceptual Speed the participant needed to attend to multiple target stimuli simultaneously, thereby
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initiating additional cognitive processing. The processing components in Coding and Perceptual Speed

not shared by Reaction Time and Stimulus Discrimination may be isolated if Coding and Perceptual

Speed are adapted to an experimental paradigm similar to those of Reaction Time and Stimulus

Discrimination, and used along with Reaction Time and Stimulus Discrimination.

Two aggregated variables were created according to the known mechanisms of the nine TBCP

variables. One of them, a processing speed variable (WRTP Processing Speed Aggregate), was an

aggregate of Stimulus Discrimination, Reaction Time, Tachistoscopic Threshold, Coding, and Perceptual

Speed, and presumably represented the speed of information processing. The aggregate was constructed

in two steps, with Stimulus Discrimination, Reaction Time, Tachistoscopic Threshold, Coding added to

form an initial aggregate in the first step, and then with the initial aggregate and Perceptual Speed both

standardized and summed in the second step. The rationale for the stepwise aggregation was that

Perceptual Speed has a noticeably higher g loading than those of the other WRTP Speed variables, and

aggregating variables with disparate g loadings in a stepwise fashion ensures that the final aggregate has

a g loading higher than any of its ingredients’.4 The other TBCP aggregate was made of four memory

tasks, Probe Recall percent correct, Learning percent correct, Self-Paced Probe Recall percent correct,

and Digit Span scaled score. All four tasks involved mostly short-term memory and working memory

processing, so the aggregate could be construed as mainly a short-term memory/working memory

aggregate (WRTP STM/Working Memory Aggregate). The weights of the aggregation were determined

by the inverse of the variable standard deviations.

2.2.2. Conventional tests of intelligence

The WISC-R IQ scores (WISC Verbal IQ, WISC Performance IQ, and WISC Full IQ) were used to

represent traditional measures of intelligence to which the aggregated TBCP were compared. WISC

Verbal IQ and WISC Performance IQ were often treated as estimates of crystallized and fluid

intelligence, and WISC Full IQ was usually used as a proxy of general intelligence. The WISC-R

Performance subscales were originally designed as measures of non-verbal, problem-solving abilities,

and loosely fit the definition of bculture-fairQ and beducation-liteQ fluid intelligence (Horn & McArdle,

1992). They have been used in clinical settings to provide an additional dimension of assessment beyond

the WISC-R Verbal subscales, which closely fit the definition of crystallized intelligence. WISC-R Full

IQ as a general index is different from WJ General Intellectual Ability in that it is made of a different

type of fluid abilities. Moreover, WISC-R Full IQ is more heavily weighed by conventional measures of

intelligence than WJ General Intellectual Ability. It is therefore possible that the WRTP Processing

Speed and STM/Working Memory Aggregates may add sizable additional explanatory power to WISC

Full IQ for the criterion measures of scholastic performance, as the aggregates of TBCP may reflect

certain cognitive aspects of the criterion measures not fully measured by the composite of crystallized

intelligence and fluid intelligence measures.
4 The rationale for the increment in g loading through a sufficient aggregation of initially moderate or low g loaded TBCP can

be construed in light of the classic Spearman–Brown formula (McDonald, 1999), which ensures the g loading to be an

increasing function of aggregation. The formula stipulates, however, that the to-be-aggregated items have the same true score

variance, or in the context of g variability, the same g loading. If this assumption is not met, the aggregation may not increase or

may even decrease the resultant g loading. On the other hand, given a large enough item (task) pool, one may always start with

items with lower but similar g loadings to form preliminary aggregates that have g loadings higher than any of their

ingredients’, and progressively include additional items with higher g loading into the aggregate. The process will finally create

an aggregate with a g loading higher than those of all its ingredients.
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2.2.3. Measures of scholastic achievement

The total score (MAT Total Achievement) summing over the scores of the Language, Math, and

Reading subscales of the Metropolitan Achievement Test 6 battery was used as the criterion measure for

the analyses.

The MAT scores were grade-normed, and thus had a substantial within-grade age variability, i.e.,

younger pupils scoring consistently lower than their older grade peers. Although grade-normed

scholastic measures have their merits, correlations between intelligence and scholastic achievement tend

to be suppressed by the within-grade age variability inherent in the grade-normed scholastic measures.

To remove this suppressing age effect, we used the age-adjusted multiple regression residuals of the

MAT Total Achievement, Language, Math, and Reading scores in our analyses.5

2.2.4. Manifest variables for the SEM analyses

The nine TBCP variables that were aggregated to form the WRTP Processing Speed and STM/

Working Memory Aggregates were also used as manifest variables for their respective latent constructs

(WRTP Speed and STM/Working Memory Factors). Four WISC-R Verbal subscales, Information,

Similarity, Vocabulary, and Comprehension were used to indicate a verbal factor (Verbal Factor), and

four Performance subscales, Picture Completion, Picture Arrangement, Block Design, and Object

Assembly, were treated as manifest variables for a performance factor (Performance Factor). The MAT

Language, Math, and Reading scores were treated as observed indicators of an achievement factor (MAT

Achievement Factor).

2.3. Analysis

2.3.1. Analyses of observed aggregates and composites

Correlations, multiple R2s, and R2 changes were computed from the pooled subsamples to evaluate

the criterion validity of the aggregated TBCP. Similar to the analysis of the W-J III data, the analysis of

the WRTP data was also conducted on three levels. On Level 1, the WRTP Processing Speed and STM/

Working Memory Aggregates were treated as two separate predictors for the scholastic criterion

measures, and the R2 changes controlling the WISC-R Performance IQ score reflect the higher-order

variability shared between the aggregates of TBCP and the scholastic measure. Alternatively, the higher-

order variability shared between the conventional Performance IQ measure and the scholastic criterion

index controlling for the TBCP predictors was also assessed according to the R2 changes. Results of the

analysis on this level could indicate, in addition to the explanatory power of the respective TBCP

aggregates, whether the aggregates of TBCP provide incremental validity over the fluid ability measure

of WISC-R Performance IQ.

On Level 2, the two aggregates were simply added to form a single WRTP Processing Speed+STM/

Working Memory Composite, and on the third level, the TBCP composite was added to the WISC-R

Verbal, Performance, and Full IQ scores, respectively, to create more agglomerated composites (WRTP

Processing Speed+STM/Working Memory+WISC Verbal IQ Composite, WRTP Processing Speed+-
5 Results of the analyses using the age-adjusted subtest scores of MAT Language, MAT Math, and MAT Reading were very

similar to those using the age-adjusted total score of the MAT. Similar results were also obtained from the grade-normed MAT

scores, and from the Wide Range Achievement Test Reading, Spelling, and Math scores. These results are not presented, but

can be attained upon request.
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Working Memory+WISC Performance IQ Composite, and WRTP Processing Speed+Working

Memory+WISC Full IQ Composite) as hybrids of TBCP and selected conventional tests. The criterion

validity of the Level 2 and Level 3 composites could be compared to that of their W-J III counterparts to

examine the influence of a rigorous experimental paradigm on the tasks’ criterion validity.

2.3.2. SEM analyses

The SEM approach adopted for the W-J III data was also adopted for the WRTP data. Five

factors, WRTP Speed Factor, STM/Working Memory Factor, Verbal Factor, Performance Factor, and

MAT Achievement Factor, were specified by their respective observed indicators. Four mathemati-

cally equivalent models (Models 2A, 2B, 2C, and 2D) that are analogous to Models 1A through 1D

were fitted to the observed covariances using the maximum likelihood estimation procedure. R2s

and R2 changes indicating the proportion of variability in MAT Achievement Factor explained by

some or all of the other factors, as well as the unique contribution made by one of the explanatory

factors beyond any of the others, were evaluated through these models. The unique impacts of

predictors were also evaluated by gauging the chi-square changes caused by the zero constraints

placed on the related beta weights in these models. Fig. 2a–d provide figural descriptions of these

models.
3. Results

3.1. The Woodcock-Johnson III normative data

3.1.1. Results based on observed aggregates

On Composition Level 1, where the two aggregates of TBCP, WJ Processing Speed Cluster and WJ

Working Memory Cluster, were treated as separate predictors, the explanatory power of the two

separate TBCP predictors for the general scholastic performance score, WJ Total Achievement, was as

strong as, or greater than, that of the fluid intelligence index. This is indicated by the multiple

correlations (R2s) in Table 1.

In Table 1, the R2 for models using WJ Processing Speed Cluster and WJ Working Memory Cluster as

predictors and WJ Total Achievement as the predicted variable ranges from 0.336 to 0.397. The

counterpart R2 based on WJ Fluid Reasoning Cluster is between 0.281 and 0.410. Moreover, WJ

Processing Speed Cluster and WJ Working Memory Cluster both provide substantial incremental

validity over the fluid ability index with the R2 increments varying between 0.110 and 0.164 beyond WJ

Fluid Reasoning Cluster. WJ Processing Speed Cluster and Working Memory Cluster add substantial

explanatory power to one another: average increments in proportion of explained variability are,

respectively, 0.125 and 0.149.

More noteworthy are the results related to WJ Fluid Reasoning Cluster on Composition Level 2. WJ

Fluid Reasoning Cluster as a predictor for WJ Total Achievement not only results in a lower R2 than the

predictor of the TBCP composite, but also makes a rather meager exceptional contribution to WJ Total

Achievement after the TBCP composite is statistically controlled. On the other hand, the TBCP

Composite, WJ Processing Speed+Working Memory Composite, substantially surpass the contribution

made by WJ Fluid Reasoning Cluster to WJ Total Achievement. The average R2 increment induced by

WJ Fluid Reasoning Cluster beyond WJ Processing Speed+Working Memory Composite is 0.049,
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Fig. 2. (a) The five-factor model with WRTP Speed Factor, WRTP STM/Working Memory Factor, Performance, and Verbal as

explanatory variables for MAT Achievement Factor. Note: Parameter estimates shown in the diagram are all standardized

values. Variables symbolized by ovals are latent factors, and those in rectangles are manifest variables. The open-ended one-

way arrow to a manifest or latent variable represents the residual variance to the variable. Variable acronyms: Stimulus

Discrim.—Stimulus Discrimination; TT Threshold—Tachistoscopic Threshold Threshold Time; Percept. Speed—Perceptual

Speed, Self-Paced Probe Rec—Self-Paced Probe Recall; Language—MAT Language; Math—MAT Math; Reading—MAT

Reading; STM/WkMem—WRTP STM/Working Memory Factor; MATAchiev—MATAchievement Factor. (b) The five-factor

model with WRTP Speed Factor, WRTP STM/Working Memory Factor, and Performance as explanatory variables for MAT

Achievement Factor. (c) The five-factor model with WRTP Speed Factor and WRTP STM/Working Memory Factor as

explanatory variables for MAT Achievement Factor. (d) The five-factor model with correlated factors but no explanatory

variable for MAT Achievement Factor. Note: The models described in b–d are mathematically equivalent to that depicted in a,

and parameter estimates associated with the manifest variables are thus identical in these models. The diagrams only present

model parameters related to the latent factors. Values in parentheses are estimated 95% confidence intervals for the related

parameters.
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Table 1

R2s and R2 increments on composition levels 1, 2, and 3 of the W-J III data analysis

Criterion measure: WJ Total Achievement

Age: 6–8, N=1095 Age: 9–13, N=2241 Age: 14–19, N=1641

R2 DR2 R2 DR2 R2 DR2

Composition Level 1

Working Memory Cluster 0.360 0.360 0.397

Processing Speed and Working Memory Clusters 0.475 0.115 0.494 0.134 0.523 0.126

Processing Speed Cluster 0.348 0.336 0.360

Processing Speed and Working Memory Clusters 0.475 0.127 0.494 0.158 0.523 0.163

Processing Speed Cluster 0.348 0.336 0.360

Processing Speed and Fluid Reasoning Clusters 0.436 0.088 0.467 0.131 0.539 0.179

Fluid Reasoning Cluster 0.281 0.303 0.410

Processing Speed and Fluid Reasoning Clusters 0.436 0.155 0.467 0.164 0.539 0.129

Fluid Reasoning Cluster 0.281 0.303 0.410

Working Memory and Fluid Reasoning Clusters 0.423 0.142 0.438 0.135 0.520 0.110

Working Memory Cluster 0.360 0.360 0.397

Working Memory and Fluid Reasoning Clusters 0.426 0.063 0.438 0.078 0.520 0.113

Composition Level 2

Fluid Reasoning Cluster 0.281 0.303 0.410

Processing Speed+Working Memory Composite

and Fluid R Cluster

0.504 0.223 0.538 0.235 0.597 0.187

Processing Speed+Working Memory Composite 0.475 0.494 0.522

Processing Speed+Working Memory Composite

and Fluid R Cluster

0.504 0.029 0.538 0.044 0.597 0.075

Comprehension Knowledge Cluster 0.348 0.462 0.563

Processing Speed+Working Memory Composite

and Comp K Cluster

0.554 0.179 0.645 0.183 0.715 0.152

Processing Speed+Working Memory Composite 0.475 0.494 0.522

Processing Speed+Working Memory Composite

and Comp K Cluster

0.554 0.079 0.645 0.151 0.715 0.193

Comprehension Knowledge+Fluid Reasoning

Composite

0.410 0.488 0.596

Processing Speed+Working Memory Composite

and Comp K+Fluid R Composite

0.551 0.141 0.623 0.135 0.698 0.102

WJ Processing Speed+Working

Memory Composite

0.475 0.494 0.522

Processing Speed+Working Memory

Composite and Comp K+Fluid

R Composite

0.551 0.076 0.623 0.129 0.698 0.176

Composition Level 3

General Intellectual Ability Index 0.518 0.563 0.656

Processing Speed+Working Memory+Fluid

R Composite

0.498 0.535 0.597

Processing Speed+Working

Memory+Comp K+Fluid R Composite

0.548 0.623 0.696

Note: The R2 values listed in two adjacent rows are obtained from two multiple regression models employing the indicated

predictors. The model in the bottom row employs an additional predictor not included in the model above, and the DR2 value

stands for the R2 increment caused by the additional predictor.
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amounting to 1/11 of the mean total explained variability in WJ Total Achievement (0.049 versus mean

total R2 of 0.546). In contrast, the R2 increment provided by WJ Processing Speed+Working Memory

Composite over WJ Fluid Reasoning Cluster averages 0.215, equivalent to more than 1/3 of the total

explained variability in WJ Total Achievement. It seems that the relation-educing fluid intelligence tests

provide little more to scholastic performance than the composite of TBCP, whereas the composite of

TBCP far surpasses the explanatory power of the fluid intelligence index.

It can also be seen on Composition Level 2 that the TBCP composite and WJ Comprehension

Knowledge Cluster are complementary to each other for the prediction of WJ Total Achievement. WJ

Processing Speed+WJ Working Memory Composite on average adds 0.170 of explained variability

above WJ Comprehension Knowledge Cluster, while WJ Comprehension Knowledge Cluster provides a

mean additional explanatory power of 0.141 in variability over WJ Processing Speed+WJ Working

Memory Composite for the same criterion measure.

On Composition Level 3, the aggregates of TBCP were combined with the conventional indexes of

crystallized intelligence and fluid intelligence to seek for an optimal combination of aggregated TBCP

and conventional ability tests. WJ Processing Speed+Working Memory+Comprehension Knowledge

Composite, WJ Processing Speed+Working Memory+Fluid Reasoning Composite, and WJ Processing

Speed+Working Memory+Comprehension Knowledge+ Fluid Reasoning Composite were formed on

this level, and were used as single predictors for the criterion measures.

Values in Table 1 indicate that the composites consisting of the aggregated TBCP and the

crystallized intelligence index, WJ Processing Speed+Working Memory+Comprehension Knowledge

Composite, and WJ Processing Speed+Working Memory+Comprehension Knowledge+Fluid Reason-

ing Composite lead to very similar R2s for WJ Total Achievement, averaging 0.628 and 0.622,

respectively. The lack of influence from the fluid intelligence index, WJ Fluid Reasoning Cluster, is

again evident when comparing the R2s between composites without WJ Fluid Reasoning Cluster and

those employing WJ Fluid Reasoning Cluster, i.e., WJ Processing Speed+Working Memory+Com-

prehension Knowledge Composite versus WJ Processing Speed+Working Memory+Comprehension

Knowledge+Fluid Reasoning Composite. Adding the Fluid Reasoning cluster to the composite

comprising the aggregates of TBCP and the crystallized intelligence index does not lead to any R2

increments. In fact, including WJ Fluid Reasoning into the composite slightly depresses the total R2 in

two of the age groups. The role of the conventional fluid intelligence index seems to be both

insufficient in its own right and redundant when used along with aggregates of TBCP and crystallized

intelligence indexes.

It is also of interest to compare these composites to WJ General Intellectual Ability as these

composites may provide alternatives to the latter. In Table 1, the mean R2 relating WJ General

Intellectual Ability to WJ Total Achievement is 0.579, which is not higher than any of the R2s based on

the Level 3 composites. It appears that test composites containing both aggregates of TBCP and

crystallized intelligence tests, with similar weights on both classes of measures, such as the WJ

Processing Speed+Working Memory+Comprehension Knowledge Composite, could do equally well in

predicting general scholastic performance as conventional general intelligence indexes, which typically

are more heavily weighted by conventional complex ability tests than by TBCP.

3.1.2. Results based on SEM analyses

Three alternative multi-group models were specified and tested, (1) a model with equivalent

factorial relations (factor loadings, factorial correlations, and latent structural relations) across the three
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age groups, (2) a model with invariant residual variances and residual covariances for the observed

indicators across age groups, and (3) a model without any equality constraints on the factorial

relations or the residuals of the observed indicators (congeneric). The chi-square statistic and several

derived fit indexes from the three models are listed in Table 2. The derived indexes were used to

offset the bias of the chi-square statistic that tends to inflate with the sample size for models that are

btrueQ approximately, but not exactly. The derived indexes listed include the Tucker–Lewis Index

(TLI; Bentler & Bonett, 1980; Marsh, Balla, & McDonald, 1988; Tucker & Lewis, 1973), the

Comparative Fit Index (CFI; Bentler, 1990), and the Root Mean Square Error of Approximation

(RMSEA, Steiger & Lind, 1980). The TLI and CFI values for the multi-group models were derived on

the basis of a null model described by Widaman and Thompson (2003). It can be seen from the

derived indexes that the congeneric five-factor model described in Method, with three pairs of

correlated residuals (see Fig. 1a), fits the data reasonably well, with both TLI and CFI in a well-fitting

range (0.973 and 0.987), and an adequate RMSEA (0.058). The two crystallized ability variables, Verbal

Comprehension and General Information, have residual correlations with Reading, and Reading and

Written Language also have a residual correlation. These correlated residuals probably represent the

specific academic skills shared between these tests. The derived fit indexes of the equivalent-factorial-

relations model and the equivalent-residuals model are also in the well-fitting and adequate ranges, but

the chi-square values of the two more constrained models are noticeably worse than that of the

congeneric model. Moreover, model estimates from the congeneric model seem to indicate certain

notable between-age differences in relations among the predictor factors and the Achievement Factor. To

more fully describe the outcomes from the SEM analyses of the W-J III data, results based on the

congeneric model were reported.

Table 2 also presents the R2s and R2 increments indicating the explanatory power of WJ Speed Factor,

WJ Working Memory Factor, WJ Gc and WJ Gf for the criterion measure of WJ Achievement Factor,

and the unique contributions made by some of the explanatory factors controlling for some of the other

factors. These results confirm the general conclusion drawn from the observed aggregates and

composites that the basic processing components of processing speed and working memory provide the

explanatory power for scholastic achievement comparable to, or even stronger than, that offered by the

conventionally measured crystallized and fluid abilities.

In particular, the two basic components jointly explain substantially more of scholastic

achievement than fluid reasoning in the primary school age range. When both WJ Speed Factor

and WJ Working Memory Factor are explanatory variables, they together account for about 90% of

the variability in the WJ Achievement Factor in the 6–8 and 9–13 age groups, and over 70% in the

14–19 age group. On the other hand, when Gf is the only explanatory variable, it accounts for lower

than 60% of the variability in the Achievement Factor in the primary school age range, and over 70%

in the 14–19 age group. Such direct comparisons suggest that the basic processing factors outperform

the fluid reasoning factor by 30% in predictive power in the primary school age range, and are

comparable to the latter as predictors in the 14–19 age range. Values of the R2 changes provide a

similar picture. In the primary school age range, when Gf is controlled, the basic processing factors

still explain more than 30% of the variability in the criterion factor, whereas Gf offers little when the

factors of TBCP are controlled. Table 2 (the third section) also shows that the zero constraints placed

on bSpeed and bWorking Memory in the 6–8 and the 9–13 age groups in Model 1B resulted in highly

significant chi-square changes whereas such constrains on bGf do not cause significant changes at

pb0.01.



Table 2

Results from SEM analyses of W-J III Data (Age: 6–19, N=4979)

Multi-group model fit indexes of the five-factor model

v2 df TLI CFI RMSEA (95% confidence interval)

Null 35126.626 198

Inv. Factorial Rel. 1026.455 138 0.964 0.975 0.060 (0.056, 0.064)

Inv. Observed Resid. 1009.364 121 0.958 0.975 0.064 (0.059, 0.068)

Congeneric 741.926 94 0.973 0.987 0.058 (0.052, 0.063)

Contributions of the WJ Speed, WJ Working Memory, Gf, and Gc Factors to the WJ Achievement Factor

Predictors in model R2 changes in achievement factor

6–8 9–13 14–19

R2 DR2 R2 DR2 R2 DR2

Speed, Working Memory, Gf (Model 1B) 0.924 0.906 0.856

Speed, Working Memory, Gf, Gc (Model 1A) 0.927 0.003 0.917 0.011 0.939 0.083

Speed, Working Memory (Model 1C) 0.887 0.904 0.730

Speed, Working Memory, Gf (Model 1B) 0.924 0.037 0.906 0.002 0.856 0.126

Gf (Model 1D) 0.580 0.598 0.767

Speed, Working Memory, Gf (Model 1B) 0.924 0.344 0.906 0.308 0.856 0.089

Working Memory (Model 1D) 0.868 0.887 0.676

Speed, Working Memory (Model 1C) 0.887 0.019 0.904 0.017 0.730 0.054

Speed (Model 1D) 0.575 0.465 0.454

Speed, Working Memory (Model 1C) 0.887 0.312 0.904 0.439 0.730 0.276

Note: R2 is based on 1 minus the estimated residual variance of the Achievement Factor in the related model. The R2 values

listed in two adjacent rows are obtained from two models employing the indicated predictors. The model in the bottom row

employs one or more predictors not included in the model above, and the DR2 value stands for the R2 increment caused by the

additional predictor(s).

Changes in model fit

6–8 9–13 14–19

Dv2/Ddf Dv2/Ddf Dv2/Ddf

(1) Equivalent Model A: four predictors (Speed, Working Memory, Gf, and Gc)

Impact of bGc 0.342y/1 8.031/1 76.224/1

Impact of bSpeed and bWorking Memory 192.840/2 240.168/2 116.473/2

(2) Equivalent Model B: three predictors (Speed, Working Memory, and Gf)

Impact of bGf 5.207y/1 0.872y/1 89.396/1

Impact of bSpeed and bWorking Memory 95.689/2 309.044/2 104.191/2

(3) Equivalent Model C: two predictors (Speed and Working Memory)

Impact of bWorking Memory 117.444/1 385.097/1 202.498/1

Impact of bSpeed 4.862y/1 12.503/1 66.321/1

Note: The impact of b coefficient(s) was evaluated by fixing the relevant b parameter(s) to zero, and calculating the chi-square

change induced by the zero constraint(s) placed on the full model. Symbol y indicates the related chi-square change is

insignificant at p=0.01.
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Results in Fig. 1d and Table 2 seem to indicate that on the level of latent factors, the two omnibus

ability factors, Gc and Gf, have an increased impact on the Achievement Factor, and the two basic

processing factors have a decreased impact in the 14–19 age group. Gc and Gf both have correlations

lower than 0.80 with the Achievement Factor in the two primary school age groups, but the correlations

increase to above 0.85 in the 14–19 group. Working Memory has correlations over 0.90 with

Achievement in the younger groups, but a correlation of 0.82 with the Achievement Factor in the 14–19

age group. One possible explanation is that scholastic performance may be more related to the complex

skills and abilities of Gc and Gf in the high school age range. Meanwhile, as was posited by Engle and

Tuholski et al., tasks of working memory such as those employed in the W-J III may tap more of

memory span than central executive control in older age groups, leading to a decrease in the predictive

power of the WJ Working Memory factor. It should be noted, however, that the basic processing factors

still have explanatory power close to that of the omnibus abilities in this age range, and account for over

70% of the variability in the Achievement Factor. Furthermore, the increased impact of the omnibus

factors and the decreased impact of the basic processing factors are largely theoretical, as the changes are

notable mostly on the level of latent factors. On the level of observed aggregates and composites, the

TBCP composite still substantially exceeds the fluid reasoning index in explanatory power in this age

range (R2 change: 0.187), whereas the fluid reasoning index only adds a moderate amount of explained

variance (0.075) above the TBCP composite.

Of the two basic processing factors, the Working Memory factor is apparently more powerful than

the Speed factor, although the latter also accounts for over 45% of the Achievement variability. The

Speed factor does not seem to provide a lot of unique contribution to the criterion factor over

Working Memory. The related R2 changes are all less than 0.10, and the chi-square changes caused by

the zero constraints on bSpeed in Model 1C are moderate or insignificant in the primary school age

range.

3.2. The WRTP data

Table 3 lists the pooled zero-order correlations among the WRTP Processing Speed and the STM/

Working Memory Aggregates, the WISC-R IQ scores, and the MAT Total Achievement score. The two

aggregates of TBCP have correlations with both the WISC-R IQ scores and the MAT Total Achievement

score that are comparable to correlations typically observed among conventional ability tests and

scholastic measures, indicating that the aggregates of mainly experimental TBCP have appropriate

psychometric properties for practical testing of intelligence. The age-adjusted MAT Total Achievement
Table 3

Zero-order correlations between aggregates of TBCP, WISC-R IQ scores, and MAT total scores based on WRTP data (Age:

6–13, N=512)

WISC-R

Verb. IQ

WISC-R

Perf. IQ

WISC-R

Full IQ

Age-adjusted

MAT Total

WRTP processing

speed aggregate

WISC-R Perf. IQ 0.661

WISC-R Full IQ 0.820 0.878

Age-adjusted MAT Total 0.677 0.505 0.678

WRTP Processing Speed Aggregate 0.464 0.575 0.571 0.635

WRTP STM/Working Memory Aggregate 0.563 0.539 0.616 0.600 0.506
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score has correlations with the WISC-R crystallized and fluid intelligence indexes, WISC Verbal IQ and

WISC Performance IQ, (0.677 and 0.505, respectively) close to those of WJ Total Achievement with WJ

Comprehension Knowledge Cluster and WJ Fluid Reasoning Cluster (averaged 0.636 and 0.540,

respectively, in the same age range of 6 to 13), indicating MAT Total Achievement is a similar scholastic

measure to WJ Total Achievement.

3.2.1. Results based on observed aggregates and composites

The results of analyses on Composition Levels 1, 2, and 3 are displayed in Table 4, which lists the R2

and R2 changes using the MAT Total Achievement score as the explained variable and the WISC-R IQ

scores and the WRTP Processing Speed and STM/Working Memory Aggregates as the explanatory

variables.
Table 4

R2s and R2 increments on Composition Levels 1, 2, and 3 of WRTP data analysis (Age: 6–13, N=512)

Criterion measure: age-adjusted MAT Total Achievement

R2 DR2

Composition Level 1

STM/Working Memory Aggregate 0.360

Processing Speed and STM/Working Memory Aggregates 0.505 0.135

Processing Speed Aggregate 0.404

Processing Speed and STM/Working Memory Aggregates 0.505 0.101

Performance IQ 0.255

Processing Speed Aggregate and Perf. IQ 0.433 0.178

Processing Speed Aggregate 0.404

Processing Speed Aggregate and Perf. IQ 0.433 0.029a

Performance IQ 0.255

STM/Working Memory Aggregate and Perf. IQ 0.406 0.151

STM/Working Memory Aggregate 0.360

STM/Working Memory Aggregate and Perf. IQ 0.406 0.046

Composition Level 2

Performance IQ 0.255

Processing Speed+STM/Working Memory Composite and Perf. IQ 0.507 0.252

Processing Speed+STM/Working Memory Composite 0.503

Processing Speed+STM/Working Memory Composite and Perf. IQ 0.507 0.004a

Verbal IQ 0.458

Processing Speed+STM/Working Memory Composite and Verb IQ 0.605 0.147

Processing Speed+STM/Working Memory Composite 0.503

Processing Speed+STM/Working Memory Composite and Verb IQ 0.605 0.102

Composition Level 3

Processing Speed+STM/Working Memory+Verb IQ Composite 0.604

Processing Speed+STM/Working Memory+Full IQ Composite 0.561

Processing Speed+STM/Working Memory+Perf. IQ Composite 0.449

Note: The R2 values listed in two adjacent rows are obtained from two multiple regression models employing the indicated

predictors. The model in the bottom row employs an additional predictor not included in the model above, and the DR2 value

stands for the R2 increment caused by the additional predictor.
a Refers to non-significance at p=0.01.
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Table 4 shows that, on Composition Level 1 when WRTP Processing Speed Aggregate and STM/

Working Memory Aggregate are treated as separate predictors, the proportions of variability in MAT

Total Achievement explained are 0.404 and 0.360, respectively, higher in magnitude than the

variability in MAT Total Achievement explained by the fluid intelligence index of the WISC-R, WISC

Performance IQ (R2=0.255). The incremental explanatory power that the TBCP aggregates provide

above WISC Performance IQ for MAT Total Achievement is equivalent to 0.178 for WRTP

Processing Speed Aggregate and 0.151 for WRTP STM/Working Memory Aggregate in proportion.

The two WRTP TBCP aggregates each add over 0.100 (0.135 and 0.101) over the other in predicting

the MAT Total Achievement score.

On Composition Level 2, where WRTP Processing Speed Aggregate and STM/Working Memory

Aggregate were summed to form a composite, WRTP Processing Speed+STM/Working Memory

Composite added 0.252 of explained variability above WISC Performance IQ for MAT Total

Achievement, which was almost one half of the total explained variability of 0.507, whereas WISC

Performance IQ’s unique contribution over the TBCP composite is negligible (0.004).

Also on Composite Level 2, when WRTP Processing Speed+STM/Working Memory Composite

was used together with WISC-R Verbal IQ as predictors, the TBCP composite added 0.147 over the

crystallized ability index to the explained variability in the criterion measure, or close to 1/4 of the

total explained variability of R2=0.605. Such a pattern of R2s and R2 increments are quite similar to

that observed for WJ Total Achievement in the W-J III normative sample data where the processing

speed and working memory composite and the crystallized intelligence index each add about 0.150 or

1/5 of total explained variability beyond the other for the total achievement score—the TBCP

composite and the crystallized intelligence index are supplemental to each other in predicting

scholastic performance in both data sets.

On Composition Level 3, the TBCP composite, WRTP Processing Speed+STM/Working Memory

Composite, was further combined with either WISC-R Full IQ, WISC-R Verbal IQ, or WISC-R

Performance IQ, to explore the best form of combination consisting of TBCP and selected types of

conventional tests. Once again, the composite of processing speed, short-term memory/working

memory, and crystallized intelligence variables, WRTP Processing Speed+STM/Working Memo-

ry+WISC-R Verbal IQ Composite has the highest correlations with the criterion variable, followed

by the TBCP and WISC Full IQ composite, WRTP Processing Speed+STM/Working Memory+-

WISC Full IQ Composite. The TBCP and fluid intelligence composite, WRTP Processing

Speed+STM/Working Memory+WISC Performance IQ Composite, has the weakest correlations

with the scholastic measures. All Level 3 composites have higher correlations with the criterion

measure than their conventional member indexes, namely, WISC-R Verbal IQ, WISC-R Full IQ, and

WISC-R Performance IQ. For example, WRTP Processing Speed+STM/Working Memory+WISC

Verbal IQ has a R2 of 0.604 with regard to the criterion measure of MAT Total Achievement,

which is a 0.146 increase in explanatory power compared to the R2 based on WISC Verbal IQ

alone.

WISC Full IQ has a slightly lower correlation with MAT Total Achievement (r=0.665 or R2=0.442)

than the TBCP composite (R2=0.503). Unlike the W-J III general index, WJ General Intellectual Ability,

which is an optimally weighed composite of both TBCP and conventional crystallized and fluid

intelligence indexes, WISC-R Full IQ is a sum of mostly conventional crystallized and fluid intelligence

tests. As a result, its explanatory power is not as strong as WJ General Intellectual Ability. Adding the

WRTP TBCP composite to WISC-R Full IQ noticeably increases the explanatory power from R2=0.442
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to R2=0.561, although the R2 is still not as high as that associated with the best hybrid, the TBCP and

crystallized ability composite.

The findings on all three composition levels of the WRTP data were analogous to those based on the

W-J III data, demonstrating that experimental TBCP, while being readily analyzable to explicate their

underpinnings, have desirable criterion validity for the practical testing of intelligence.
Table 5

Results from SEM analyses of WRTP data (Age: 6–13, N=512)

Model fit indexes of the five-factor model

v2 df TLI CFI RMSEA (95% confidence interval)

367.893 159 0.945 0.958 0.051 (0.043, 0.059)

Contributions of the WRTP Speed, WRTP STM/Working Memory, WISC Performance, and WISC Verbal Factors to the MAT

Achievement Factor

R2 changes in Achievement Factor

Predictors in model R2 DR2

Speed, STM/Working Memory, Performance (Model 2B) 0.678

Speed, STM/Working Memory, Performance, Verbal (Model 2A) 0.773 0.095

Speed, STM/Working Memory (Model 2C) 0.662

Speed, STM/Working Memory, Performance (Model 2B) 0.678 0.016

Performance (Model 2D) 0.277

Speed, STM/Working Memory, Performance (Model 2B) 0.678 0.401

STM/Working Memory (Model 2D) 0.564

Speed, STM/Working Memory (Model 2C) 0.662 0.098

Speed (Model 2D) 0.629

Speed, STM/Working Memory (Model 2C) 0.662 0.039

Note: R2 is based on 1 minus the estimated residual variance of the Achievement Factor in the related model. The R2 values

listed in two adjacent rows are obtained from two models employing the indicated predictors. The model in the bottom row

employs one or more predictors not included in the model above, and the DR2 value stands for the R2 increment caused by

the additional predictor(s).

Changes in model fit

Dv2/Ddf

(1) Equivalent Model A: four predictors (Speed, STM/Working Memory, Performance, and Verbal)

Impact of bVerbal 29.162/1

Impact of bSpeed and bSTM/Working Memory 147.703/2

(2) Equivalent Model B: three predictors (Speed, STM/Working Memory, and Performance)

Impact of bPerformance 1.589y/1
Impact of bSpeed and bSTM/Working Memory 156.020./2

(3) Equivalent Model C: two predictors (Speed and STM/Working Memory)

Impact of bSTM/Working Memory 7.695/1

Impact of bSpeed 18.849/1

Note: The impact of b coefficients was evaluated by fixing the relevant b parameter(s) to zero, and calculating the chi-square

change induced by the zero constraint(s) placed on the full model. Symbol y indicates the related chi-square change is

insignificant at p=0.01.
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3.2.2. Results based on SEM analyses

The sequence of mathematically equivalent five-factor models, with correlated residuals between

Reaction Time and Stimulus Discrimination (Fig. 2a), fit the data adequately, as indicated by the fit

indexes in Table 5. TLI and CFI are close to or above 0.95, and RMSEA is 0.051.

The evaluation of R2s and R2 increments shown in Table 5 validates the basic findings from the

WRTP observed aggregates and composites. The cognitive components of processing speed and short-

term memory/working memory seem to relate to the criterion performance of scholastic achievement

at least as strongly as, and probably even more so than, the conventionally determined intellectual

abilities, particularly the fluid ability defined by the WISC-R Performance tests. For example, WRTP

Speed Factor and WRTP STM/Working Memory Factor jointly account for 0.662 of the MAT

Achievement Factor variance in Model 2C, and including Performance Factor as an additional

explanatory variable in Model 2B adds little (R2 change: 0.016) to it. Performance Factor explains

0.277 of variability in MAT Achievement Factor (Model 2D, Fig. 2d), which is considerably weaker

in strength than the variance explained by the WRTP Speed and STM/Working Memory factors

together (R2=0.662).

An inspection of individual roles of the WJ Speed and STM/Working Memory factors reveals that

the two factors are similar in strength (correlations 0.793 and 0.754 as shown in Fig. 2d), with

neither substantially exceeding the other in explaining for MAT Achievement Factor. However, both

appear to do substantially better than Performance Factor (correlation with MAT Achievement:

0.526), and the chi-square increment after fixing bSpeed and bSTM/Working Memory to zero in Model 2B

is 156.020 (df=2) whereas the counterpart chi-square change when bPerformance is fixed to zero is

insignificant.

The explained variance in MAT Achievement Factor is moderately increased, from R2=0.678 to

R2=0.773 when Verbal Factor joins force with the WRTP Speed Factor, WRTP STM/Working Memory

Factor and the Performance factor as explanatory variables in Model 2A. The chi-square change caused

by the zero constraint on bVerbal in Model 2A is also moderate (29.162 with df=1). On the other hand, the

basic processing factors seem to exercise an substantial unique impact above Verbal Factor on scholastic

achievement, as the chi-square increases by 147.703 (df=2) after bSpeed and bSTM/Working Memory are fixed

to zero in Model 2A.
4. Discussion

Despite recent evidence indicating a dominant role of basic cognitive components in g, and in the

g-scholastic performance correlation, TBCP designed to measure these components are still under-

represented in current test batteries of intelligence. A major concern over the practical use of TBCP is

that individual TBCP are predisposed to be both process-specific and method-specific, and thus do not

have high g loadings or strong criterion validity. High g loadings and strong criterion validity can

nonetheless be achieved from TBCP if they are properly aggregated. In the present study, we

demonstrated that aggregates of the processing speed and working memory tasks could have criterion

validity comparable to that provided by traditional IQ measures. In the present study, we used the W-J

III processing speed and working memory aggregates as predictors for the criterion measure of

scholastic achievement, and obtained evidence for a desirable criterion validity of aggregated TBCP in

all pre-college school age groups. We used TBCP aggregates tapping similar mechanisms but with
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more rigorous experimental paradigms in the WRTP sample, and observed comparable results

regarding the criterion validity of the TBCP aggregates. These TBCP aggregates, whether treated as

separate predictors or as simple sums, have substantial correlations with scholastic performance, and

these correlations are similar to correlations between conventional test composites and scholastic

performance.

We compared these aggregates of TBCP to the crystallized intelligence indexes in both the W-J III

normative sample and the WRTP sample, and found that the two families of measures were

complementary to each other for the explanation of scholastic performance. The incremental predictive

power of processing speed and working memory beyond crystallized intelligence was also confirmed on

the level of latent traits in both samples. Since some of the basic processes measured by TBCP are likely

to be the cognitive determinants for both crystallized intelligence and scholastic performance, the

primary emphasis probably should be placed on TBCP rather than on tests of crystallized intelligence.

Furthermore, conventional tests of crystallized intelligence as measures of accumulated knowledge and

skill through formal instruction are good predictors mainly for one particular criterion, scholastic

achievement. TBCP, on the other hand, tap basic processes more general to various intellectual activities,

and are likely to be more versatile predictors for other criteria.

The moderate to substantial supplemental explanatory power of the processing speed/working

memory variables and of the crystallized intelligence measures to one another for scholastic performance

are revealing theoretically in that they shed light on the cognitive underpinnings of scholastic

achievement. The mutual supplementing power from the two classes of measures seems to implicate a

partitioning of four variability components in scholastic performance, i.e., variability attributable to both

basic processes and crystallized intelligence, variability contributed exclusively by the basic processes,

variability only ascribable to crystallized intelligence, and variability explained by neither basic

processes nor crystallized intelligence. It should be noted that the basic processes are likely to play a

causal role in the accumulation of knowledge and skills, thereby also causally determining to a degree

the variability they share with crystallized intelligence. Considering that the basic processes and

crystallized intelligence could jointly account for about 60% of the variability in scholastic achievement

on the level of observed aggregates and composites, and up to 70% or more on the level of latent traits in

the present study, the total amount of variability in scholastic performance attributable to the basic

processes is remarkable.

Our analyses of both the W-J III normative data and the WRTP data also suggest that the optimal

criterion validity for scholastic performance could be achieved by combining the aggregates of TBCP

with the index of crystallized intelligence. Such a hybrid is at least as good as the general indexes of the

W-J III and the WISC-R, and slightly outperforms the composite of crystallized intelligence and fluid

intelligence indexes. This brings about the possibility for a new class of intelligence batteries. These

batteries will include an extensive collection of TBCP, and a selection of crystallized intelligence tests,

whose content may vary with the cultural, educational and occupational background of the targeted

testees, and will have both explicit underlying cognitive mechanisms and desirable criterion validity.

The outcome from our analyses of the observed WRTP TBCP aggregates and composites largely

paralleled that of the W-J III data, suggesting that aggregates of TBCP following more closely an

experimental paradigm also have desirable criterion validity. Since these TBCP have the advantage of

being more readily subjected to experimental analysis, thereby having better defined processing

mechanisms and providing richer task parameter information, and with the advance of computer

technology they also become increasingly easier to design and administer, their use in the practical
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testing of intelligence should be encouraged. From a broader perspective, the use of experimental TBCP

in the practical testing of intelligence may help bridge the two long divided psychological traditions, the

experimental tradition and the psychometric tradition, leading to an integrated science of psychology.

One of the most notable findings of the present study is that the value of fluid ability tests in

predicting scholastic achievement appears to be doubtful. Fluid intelligence tests are thought to reflect a

person’s relatively bculture-fairQ, intellectual potential, and seem to measure a dimension of intelligence

more general than that of crystallized intelligence. Their cognitive underpinnings, however, are not as

readily explicable as those of TBCP, and are thus theoretically vague. In the present study, we found

them both redundant and insufficient, particularly in the primary school age range, for explaining

scholastic achievement when compared to the aggregated TBCP that have more basic and explicable

processing mechanisms. The results from the SEM analyses further add to the suspicion that

conventional fluid ability measures may not add much more to scholastic achievement beyond the TBCP

of processing speed and working memory. Moreover, the questionable role of fluid abilities was

manifested both by more strictly constructed reasoning ability tests, as those in the W-J III battery, and

by tests measuring more broadly defined problem solving abilities, such as those of the WISC-R

Performance subscales employed in the WRTP. It seems that the practical value and the theoretical

significance of fluid intelligence tests need to be critically reexamined.

It is possible that the apparent weakness of the fluid ability measures arises from certain measurement

properties of these measures. For example, in younger age groups, questions in conventional fluid ability

tests may largely measure children’s comprehension of task requirements, but not truly their problem

solving abilities. It also appears plausible, however, that the majority of general variability in human

intelligence is determined by certain basic cognitive processing components, and tests of fluid abilities are

to a considerable degree indirect, and therefore oftentimes inept, measures of these basic components. The

fluid ability tests are mostly designed to indicate a person’s ability to educe correlates and relations, and

are arguably better measures of g than other tests. The TBCP analyzed in the present study apparently did

not engage the higher-order processes hypothesized for reasoning, such as rule abstraction, rule mapping,

etc., yet they almost exhaustively mediate the observed correlations between fluid reasoning and

scholastic achievement, both of which are analytical-skills laden. Individual differences in reasoning may

be mainly ascribable to the basic components of processing speed and working memory, and higher-order

processes such as those of rule abstraction and mapping do not constitute the main source of individual

differences. This possibility has been contemplated by those who observed a dominant influence of

working memory on the reasoning ability (Carpenter, Just, & Shell, 1990; Kyllonen & Christal, 1990),

and the results of the present study seem to empirically support the conjecture. Moreover, the TBCP of

processing speed and working memory appear to uncover sources of individual differences not tapped

effectively by tests of fluid abilities. The seeming superiority of TBCP in criterion validity may stem from

a wider range of processing mechanisms reflected by these tasks, including mechanisms that control

stimulus encoding, memory span, and central executive, whereas the range for the fluid ability tests may

be more restrictive, putatively focusing on only the central executive component engaged in reasoning. A

wider range of cognitive processing may nonetheless be crucial for the success in scholastic achievement,

making the TBCP more effective predictors than tests of fluid abilities. Such a theoretical account,

however, is still largely speculative, as studies supporting a bottom-up notion of fluid abilities, the present

one included, have been mostly correlational in nature, and the correlations are typically observed from

concurrent measures. Evidence for concurrent criterion validity has its limitations in that the concurrent

correlations may to a degree stem from the similarity in the concurrent test settings. More compelling
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evidence for predictive validity needs to be obtained from longitudinal studies in which TBCP

administered at an earlier date are shown to effectively predict criterion measures at a later data.

Ultimately, however, the causal account that explains how and why TBCP predict criterion measures can

only be established through experimental analyses of fluid abilities and scholastic achievement, and with

systematic manipulations of mechanisms controlling processing speed and working memory tasks.

The results of the study may have important implications for educators and practitioners. Scholastic

achievement represents acquired knowledge and skills, and the acquisition of the knowledge and skills is

the ultimate goal of formal instruction. When there are difficulties in the acquisition, instructional

resources are more customarily devoted to higher-order mental processing, whereas the difficulties may

actually come from processing mechanisms that are rather basic. The results of the present study suggest

that instructional resources may be better spent if they are directed to where the difficulties really exist,

namely, in basic information processing, and are dedicated to those who need support and compensation

in this regard.

The results of the present study also give rise to a few unanswered questions. They are: (1) how

processing speed and working memory relate to one another; (2) whether visuospatial working memory

differs from verbal–numerical working memory in criterion validity; and (3) to what extent the

explanatory power found in TBPC of processing speed and working memory is applicable to criterion

performance other than scholastic achievement.

The possible relationship between processing speed and working memory has been an issue of

discussion in recently years (Conway et al., 2002; Kyllonen & Christal, 1990). The processing speed

component extracted from the W-J III normative data seems to have a weaker explanatory power than

the working memory component, but the explanatory power of processing speed may be strengthened

with a wider selection of processing speed variables to reduce the method variances arising from the

procedures of specific tasks. The larger criterion related R2s contributed by the WRTP Processing Speed

Aggregate and their latent factor seem to result from such a wider variable selection. Still, processing

speed does not appear to far exceed working memory in accounting for the criterion variance,

implicating that processing speed may represent cognitive underpinnings encompassed by working

memory, while working memory may pertain to additional mechanisms. The W-J III working memory

factor can explain as much as 90% of the variability in the achievement factor, and such strong

explanatory power, although obtained on the level of latent factors and thus only theoretical, is unlikely

to be observed from a latent processing speed factor even with the widest possible selection of

processing speed variables. On the other hand, the strength of processing speed variables in practical

testing of intellectual abilities needs to be reckoned, as they are not only relevant to criterion

performance in their own right, but appear to supplement the explanatory power of working memory

measures on the level of observed aggregates as well. Processing speed also seems to be a distinct

theoretical component, with tasks measuring the component typically involving neither intensive

memory span nor central executive required by prototypical working memory tasks. Some of the

processing speed tasks, stimulus discrimination for instance, are found to evoke neurological activities

highly similar to those of analogical reasoning (Duncan et al., 2000), and, as noted earlier, they also

appear to mediate age changes in intellectual abilities more effectively than working memory tasks. It is

possible that processing speed represents a set of highly age-related cognitive mechanisms that partly

constitute working memory. These mechanisms mediate most of the age changes in working memory,

and also account for a sizable proportion of the within-age variability in working memory. Working

memory, however, seem to comprise mechanisms additional to those of processing speed. These
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additional mechanisms, while adding a considerable amount of variability to the within-age individual

differences above processing speed mechanisms, are relatively stable across age groups, and thus reduce

the total between-age variability in working memory. A thorough explication of the roles of the two

basic components needs to be conducted experimentally, preferably with the aid of neurological

techniques, and the explication may shed important light on the foundation of human intelligence.

The possible differential relations of visuospatial working memory and verbal–numerical working

memory with other intellectual abilities are another issue of discussion in recent research of working

memory and intelligence (Miyake et al., 2001). The results of the present study seem to indicate stronger

criterion validity of verbal–numeric working memory tasks than that of visuospatial working memory

tasks. The visuospatial short-tem memory and working memory tasks adopted by WRTP, Probe Recall,

Learning, and Self-Pace Probe Recall have lower correlations with the achievement tests than the WISC-

R Digit Span, a numeric working memory task. Their correlations with the scholastic achievement

measures also seem to be weaker than those of the W-J III verbal–numerical working memory tests,

whose criterion validity is comparable in magnitude to that of the WISC-R Digit Span. The stronger

explanatory power of WJ Working Memory Factor than that of WRTP STM/Working Memory Factor

may also reflect the difference between the two types of working memory tasks. Because a direct

comparison between the two types of working memory tasks was not possible on the level of aggregates

or factors in the present study, and the differences noted between the two working memory types on the

level of individual tests are confined to the primary school age group only (6–13), it is still unclear as

how they actually differ in criterion validity in general. A direct comparison of this kind will be both

theoretically and practically informative. It should also be noted that the predictive strength of verbal–

numeric working memory may be underestimated in the present study, as even the strongest verbal–

numeric working memory predictors in the present study, WJ Numbers Reversed and WISC-R Digit

Span, may be argued as representing mainly the short-term memory subcomponent in older age groups.

With a strengthened representation of the central executive subcomponent in working memory tasks, the

tasks’ criterion validity is likely to further increase (Engle et al., 1999). On the other hand, working

memory tasks emphasizing the central executive component may sometimes be contended as engaging

complex thinking processes not easily distinguishable from those of reasoning tests, rendering the

implication of the criterion validity provided by TBCP ambiguous, whereas the short-term memory and

working memory tasks employed in the present study stand clearly apart from reasoning tests,

demonstrating more unequivocally the power of basic processes in criterion performance.

The present study only assessed the criterion validity of aggregated TBCP with regard to scholastic

performance. There are other criterion measures of intelligence, e.g., skills in various occupations and

social settings, and their relations with aggregates of TBCP should also be examined. TBCP may have

differential criterion validity depending on the nature of the criterion adopted, and for different criteria

there may be different aggregates of TBCP that are more predictive. Investigations in the possible

relationship between aggregated TBCP and various criteria may provide insights into the cognitive

underpinnings of a wide range of intellectual aptitudes.
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Appendix A. Correlations between W-J III observed variables
W-J III clusters

Age: 6–8 (N=1095)

WJ Processing

Speed Cluster

WJ Working

Memory Cluster

WJ Comprehension

Knowledge Cluster

WJ Fluid

Reasoning

Cluster

WJ General

Intellectual

Ability Index

WJ Working Memory Cluster 0.49

WJ Comprehension

Knowledge Cluster

0.38 0.49

WJ Fluid Reasoning Cluster 0.45 0.53 0.53

WJ General Intellectual

Ability Index

0.64 0.77 0.74 0.79

WJ Total Achievement 0.59 0.60 0.59 0.53 0.72

Age: 9–13 (N=2241)

WJ Processing

Speed Cluster

WJ Working

Memory Cluster

WJ Comprehension

Knowledge Cluster

WJ Fluid

Reasoning

Cluster

WJ General

Intellectual

Ability Index

WJ Working Memory Cluster 0.41

WJ Comprehension

Knowledge Cluster

0.34 0.47

WJ Fluid Reasoning Cluster 0.37 0.52 0.55

WJ General Intellectual

Ability Index

0.57 0.74 0.76 0.79

WJ Total Achievement 0.58 0.60 0.68 0.55 0.75

Age: 14–19 (N=1641)

WJ Processing

Speed Cluster

WJ Working

Memory Cluster

WJ Comprehension

Knowledge Cluster

WJ Fluid

Reasoning

Cluster

WJ General

Intellectual

Ability Index

WJ Working Memory Cluster 0.45

WJ Comprehension

Knowledge Cluster

0.37 0.51

WJ Fluid Reasoning Cluster 0.43 0.55 0.62

WJ General Intellectual

Ability Index

0.61 0.77 0.78 0.81

WJ Total Achievement 0.60 0.63 0.75 0.64 0.81



W-J III tests (Age: 6–8, N=1095)

Visual

Matching

Decision

Speed

Numbers

Reversed

Auditory

Working Memory

Verbal

Comprehension

General

Information

Decision Speed 0.55

Numbers Reversed 0.46 0.30

Auditory Working Memory 0.35 0.26 0.39

Verbal Comprehension 0.34 0.29 0.44 0.43

General Information 0.27 0.28 0.36 0.33 0.70

Analysis Synthesis 0.38 0.28 0.45 0.44 0.55 0.47

Concept Formation 0.37 0.28 0.39 0.36 0.45 0.37

Broad Reading 0.58 0.39 0.53 0.47 0.65 0.55

Broad Written Language 0.62 0.39 0.50 0.45 0.55 0.44

Broad Math 0.64 0.42 0.57 0.50 0.54 0.43

W-J III tests (Age: 913, N=2241)

Visual

Matching

Decision

Speed

Numbers

Reversed

Auditory

Working Memory

Verbal

Comprehension

General

Information

Decision Speed 0.56

Numbers Reversed 0.38 0.25

Auditory Working Memory 0.34 0.25 0.39

Verbal Comprehension 0.30 0.27 0.40 0.47

General Information 0.28 0.27 0.33 0.43 0.77

Analysis Synthesis 0.31 0.27 0.40 0.41 0.58 0.49

Concept Formation 0.30 0.24 0.35 0.36 0.49 0.42

Broad Reading 0.48 0.34 0.50 0.50 0.74 0.68

Broad Written Language 0.55 0.38 0.40 0.50 0.64 0.61

Broad Math 0.50 0.37 0.53 0.51 0.59 0.52

Analysis Synthesis Concept Formation Broad Reading Broad Written Language

Concept Formation 0.57

Broad Reading 0.54 0.44

Broad Written Language 0.52 0.41 0.86

Broad Math 0.56 0.53 0.73 0.75

Analysis Synthesis Concept Formation Broad Reading Broad Written Language

Concept Formation 0.51

Broad Reading 0.50 0.49

Broad Written Language 0.47 0.45 0.88

Broad Math 0.50 0.49 0.77 0.78
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W-J III tests (Age: 1419, N=1641)

Visual

Matching

Decision

Speed

Numbers

Reversed

Auditory

Working Memory

Verbal

Comprehension

General

Information

Decision Speed 0.52

Numbers Reversed 0.42 0.25

Auditory Working Memory 0.39 0.29 0.56

Verbal Comprehension 0.34 0.29 0.45 0.51

General Information 0.31 0.28 0.36 0.47 0.83

Analysis Synthesis 0.36 0.29 0.44 0.47 0.61 0.53

Concept Formation 0.36 0.28 0.43 0.43 0.55 0.50

Broad Reading 0.51 0.36 0.56 0.54 0.79 0.77

Broad Written Language 0.54 0.37 0.53 0.52 0.72 0.70

Broad Math 0.54 0.32 0.52 0.50 0.67 0.63

D. Luo et al. / Intelligence 34 (2006) 79–120114
Analysis Synthesis Concept Formation Broad Reading Broad Written Language

Concept Formation 0.59

Broad Reading 0.60 0.56

Broad Written Language 0.58 0.54 0.85

Broad Math 0.57 0.61 0.72 0.74
Appendix B. Correlations between WRTP observed tests
Reaction

Time

Stimulus

Discrimination

Tachistoscopic

Threshold

Perceptual

Speed

Coding Probe

Recall

Stimulus Discrim. 0.483

Tachis. Threshold 0.178 0.318

Perceptual Speed 0.264 0.387 0.279

Coding 0.261 0.287 0.179 0.405

Probe Recall 0.244 0.333 0.233 0.324 0.234

Learning 0.260 0.316 0.317 0.302 0.235 0.340

Self-Paced Probe Rec. 0.194 0.215 0.274 0.300 0.236 0.405

Digit Span 0.218 0.198 0.208 0.348 0.191 0.286

Information 0.252 0.341 0.230 0.317 0.197 0.266

Similarity 0.207 0.252 0.232 0.269 0.158 0.233

Vocabulary 0.169 0.270 0.245 0.264 0.165 0.228

Comprehension 0.202 0.214 0.237 0.282 0.149 0.264

Picture Completion 0.152 0.245 0.294 0.182 0.152 0.162

Picture Arrangement 0.147 0.249 0.321 0.207 0.155 0.200

Block Design 0.177 0.287 0.313 0.389 0.273 0.316

Object Assembly 0.171 0.277 0.310 0.235 0.215 0.299

MAT Language 0.354 0.355 0.256 0.471 0.354 0.306

MAT Math 0.355 0.365 0.294 0.502 0.382 0.366

MAT Reading 0.386 0.394 0.271 0.493 0.356 0.380



Learning Self-Paced

Probe Recall

Digit

Span

Information Similarity Vocabulary Comprehension

Self-Paced Probe Recall 0.465

Digit Span 0.291 0.367

Information 0.337 0.299 0.425

Similarity 0.305 0.297 0.375 0.626

Vocabulary 0.297 0.304 0.400 0.660 0.646

Comprehension 0.294 0.305 0.403 0.574 0.597 0.690

Picture Completion 0.340 0.249 0.278 0.371 0.349 0.391 0.337

Picture Arrangement 0.252 0.204 0.260 0.400 0.394 0.408 0.396

Block Design 0.417 0.405 0.338 0.444 0.428 0.407 0.410

Object Assembly 0.383 0.334 0.224 0.385 0.374 0.388 0.355

MAT Language 0.353 0.356 0.468 0.523 0.426 0.471 0.420

MAT Math 0.361 0.415 0.494 0.512 0.463 0.454 0.474

MAT Reading 0.370 0.393 0.531 0.582 0.483 0.543 0.460
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Picture

Completion

Picture

Arrangement

Block

Design

Object

Assembly

MAT

Language

MAT

Math

Picture Arrangement 0.378

Block Design 0.440 0.440

Object Assembly 0.497 0.495 0.627

MAT Language 0.259 0.235 0.368 0.275

MAT Math 0.256 0.241 0.433 0.297 0.758

MAT Reading 0.313 0.305 0.446 0.352 0.791 0.740

Note: Correlations related to Reaction Time, Stimulus Discrimination, Tachistoscopic Threshold, Perceptual Speed, Probe

Recall, Learning, and Self-Paced Probe Reccall, are based on the age- and sex-adjusted regression residuals of these variables.
Appendix C. Reliability estimates
Reliability estimates of the W-J III composites

Composite/age 68 913 1419

WJ Processing Speed Cluster 0.937 0.915 0.919

WJ Working Memory Cluster 0.905 0.898 0.911

WJ Comprehension Knowledge Cluster 0.924 0.939 0.954

WJ Fluid Reasoning Cluster 0.956 0.947 0.947

WJ General Intellectual Ability 0.963 0.962 0.968

WJ Total Achievement 0.973 0.972 0.972



Reliability estimates of the WRTP composites

WRTP Processing Speed Aggregate 0.90

WRTP STM/Working Memory Aggregate 0.86

WISC Verbal IQ 0.94

WISC Performance IQ 0.90

WISC Full IQ 0.96

Age-adjusted MAT Total Achievement 0.91

Note: The reliability estimates of the W-J III composites were weighted age group averages on the basis of the W-J III reported

cluster reliability estimates (McGrew & Woodcock, 2001). The reliability estimates of the WISC Verbal IQ, WISC Performance

IQ, and WISC Full IQ were reported in the manuals of the WISC-R (Wechsler, 1974). The reliability estimates of WRTP

Processing Speed Aggregate were based on the split-half reliability estimates of the decision time of Reaction Time (0.97), the

decision time of Stimulus Discrimination (0.85), the threshold time of Tachistoscopic Threshold (0.62), the testretest reliability

of Coding (0.72), and the testretest reliability estimate of Perceptual Speed (0.81). The reliability estimate of WRTP STM/

Working Memory Aggregate was obtained on the basis of the four member tests, the percent correct of Probe Recall (split-half

reliability: 0.60), the percent correct of Learning (internal consistency reliability: 0.68), the percent correct of Self-Paced Probe

Recall (split-half reliability: 0.79), and Digit Span (testretest reliability: 0.78). The composite reliability estimates of WRTP

Processing Speed Aggregate and STM/Working Memory Aggregate were computed according to the following formula:

rcc ¼ 1�
P

s2j �
P

s2j rjjP
s2j þ 2

P
sjskrjk

where rcc is the reliability of a composite; sj is the standard deviation of test j; sk is the standard deviation of test k; rjj is the

reliability of test j; and rjk is the correlation between tests j and k. The reliability estimates for the age-adjusted MAT Total

Achievement is the Crobach alpha coefficient obtained on the basis of the correlations among the age-adjusted MAT Language,

Math, and Reading subscales.
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Appendix D. Descriptive Statistics
Descriptive statistics of the W-J III variables (N=4979)

Test name Mean Standard deviation

Visual Matching 98.66 14.03

Decision Time 98.80 14.31

Numbers Reversed 98.86 14.68

Auditory Working Memory 98.74 14.26

Verbal Comprehension 98.85 14.44

General Information 97.99 13.88

Concept Formation 98.77 14.99

Analysis Synthesis 99.64 14.16

Broad Reading 99.36 13.77

Broad Written Language 99.62 13.77

Broad Math 99.40 14.12

Note: The descriptive statistics of the W-J III tests are based on the age-normed standardized scores. For Broad Reading, Broad

Writing, and Math, the statistics are determined as the equally weighted-composites of the means and variances of their

ingredient tests (5 subtests for Broad Reading, 4 for Broad Writing, and 4 for Math). To reduce the disparity in scaling between

the manifest variables (standard deviations close to 15) and their latent factors (standard deviations constrained to be 1.0), the

manifest variables are rescaled to have 1/15 of their original standard deviations (close to 1.0) in the SEM analyses.



Descriptive statistics of the WRTP variables (N=512)

Variable name Mean Standard deviation

Standardized Residual of Decision Time for Reaction Time 0.00 1.01

Standardized Residual of Tachistoscopic Threshold Threshold Time 0.01 1.00

Standardized Residual of Decision Time for Stimulus Discrimination 0.02 0.97

WISC-R Coding Scale Score 10.24 3.50

Standardized Residual of Perceptual Speed 0.01 0.99

Standardized Residual of Percent Correct of Probe Recall 0.02 0.99

Standardized Residual of Percent Correct of Learning 0.01 0.99

Standardized Residual of Percent Correct of Self-Paced Probe Recall 0.02 0.99

WISC-R Digit Span Scale Score 9.96 3.14

WISC-R Information Scale Score 10.11 3.13

WISC-R Vocabulary Scale Score 11.74 3.26

WISC-R Similarity Scale Score 10.59 3.18

WISC-R Comprehension Scale Score 10.67 3.18

WISC-R Picture Completion Scale Score 10.92 2.74

WISC-R Picture Arrangement Scale Score 11.63 3.09

WISC-R Block Design Scale Score 10.54 3.35

WISC-R Object Assembly Scale Score 10.25 3.24

Standardized Residual of MAT Language Scale Score 0.01 0.99

Standardized Residual of MAT Math Scale Score 0.02 0.99

Standardized Residual of MAT Reading Scale Score 0.03 0.97

Note: The standardized residuals of the WRTP variables are age-adjusted regression residuals that partial out the age effect from

the original variables.
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