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This study extends previous research examining the relations between Cattell-Horn-Carroll
cognitive abilities and math achievement. The cognitive profiles of children with normative
weaknesses in Math Calculation Skills or Math Reasoning were compared to those of their
average-achieving peers. The cognitive profile of the low Math Calculation Skills group (n � 68)
was similar to that of their average-achieving peers. The low Math Reasoning group (n � 52)
scored lower than their average-achieving peers on the cognitive abilities as a set and on Fluid
Reasoning and Comprehension–Knowledge. When individual profiles were considered, approx-
imately half of the children with normative math weaknesses demonstrated commensurate weak-
nesses in one or more cognitive abilities, which may inform diagnostic models of learning
disabilities. © 2005 Wiley Periodicals, Inc.

Current estimates indicate that approximately 5 to 7% of the school-age population has remark-
able difficulty in math achievement, a statistic that presents a challenge for a society that demands
at least minimal math competency for success in formal schooling, daily living, and employment
(Geary & Hoard, 2001; Light & DeFries, 1995). However, the complex array of mathematical
domains obfuscates understanding of the general population of poor math learners (Geary, Hoard,
& Hamson, 1999). A useful schema for thinking parsimoniously about the array of math domains
is to group them into two factors: math calculation skills and math reasoning (Flanagan, Ortiz,
Alfonso, & Mascolo, 2002; Individuals with Disabilities Education Act, 1997). Math Calculation
Skills refers to the application of mathematical operations (e.g., addition, subtraction) and basic
axioms (e.g., commutative property, inverse operations) to solve mathematical problems. Math
Reasoning, in contrast, refers to the ability to problem solve using knowledge about math opera-
tions and axioms, numerical relationships, and quantitative concepts.

The origins of proficiency in these two math factors are complex. They include ecological
variables such as home environment (Mullis, Dossey, Owen, & Phillips, 1991; Walberg, 1984)
and math instruction, including quality of textbooks (Carnine, 1991; Mullis et al., 1991; Russell &
Ginsburg, 1984). Far less is known about the underlying cognitive abilities that contribute to math
calculation skills and math reasoning (Geary, 1994; Rourke & Conway, 1997). The cognitive
abilities that have been the focus of most investigations of math skills are information retrieval
(Geary, 1990, 1994; Geary, Brown, & Samaranayake, 1991), working memory (Geary, 1994;
Hitch & McAuley, 1991; Shafir & Siegel, 1994; Swanson, 1994), and speed of processing (Bull &
Johnston, 1997; Geary, 1994).

Assimilating research on the cognitive abilities underlying math performance has been dif-
ficult, primarily because researchers have used varying models of cognitive abilities to guide their
studies. That is, one researcher may explore the relationship between math and visual–auditory
processing whereas another is interested in the connection between math and memory functions.
This lack of consistency renders it difficult to draw conclusions about which cognitive abilities are
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the most closely associated with math performance. Furthermore, it has been posited that many
important cognitive abilities (e.g., inductive reasoning) have been omitted entirely from the math-
ematics literature (Floyd, Evans, & McGrew, 2003). Thus, to examine the relative contribution of
varying cognitive abilities to mathematics performance and to avoid the exclusion of potentially
important explanatory variables, well-validated models must be used to guide our understanding
of which cognitive abilities may contribute to or help explain math proficiency. The Cattell–Horn–
Carroll (CHC) theory of cognitive abilities provides one such model (Carroll, 1993). The CHC
theory is a hierarchical framework of cognitive abilities that consists of three strata describing
varying levels of generality: general intelligence or g (stratum III), approximately 10 broad cog-
nitive abilities (stratum II), and over 60 narrow cognitive abilities (stratum I).

Several studies have examined the relations between CHC cognitive abilities and math achieve-
ment. Both Floyd et al. (2003) and McGrew and Hessler (1995) found that the broad cognitive
ability clusters of Comprehension–Knowledge, Fluid Reasoning, and Processing Speed displayed
the most consistent relations with measures of math calculation skills and math reasoning. In
addition, Floyd et al. found that Short-Term Memory also was a consistent, significant predictor of
math achievement. These four factors have been associated with math achievement in several
other instances, as has general intelligence (Hale, Fiorello, Kavanaugh, Hoeppner, & Gaitherer,
2001; Keith, 1999; McGrew, Flanagan, Keith, & Vanderwood, 1997; Williams, McCallum, &
Reed, 1996).

The aforementioned studies have helped establish a good foundational understanding of the
CHC general and broad cognitive abilities that are most predictive of math performance in the
general population of children and adults (i.e., a normal population). However, research guided
by CHC theory has not focused much attention on the patterns of cognitive abilities displayed
by individuals with notable normative weaknesses in math. Only a recent study by Prevatt and
Proctor (2003) found that college students presenting with math difficulty had a relative strength
in Visual Processing and a relative weakness in Long-Term Retrieval, yet they displayed no
normative strengths or weaknesses.

Using operational measures of the CHC broad cognitive abilities, the purpose of this study is
to examine the broad cognitive ability profiles of children who display normative weaknesses in
either math calculation skills or math reasoning. Profile analysis was used to compare the group
profiles of the exceptionality groups to samples of children with average mathematics achieve-
ment. In addition to profile analysis conducted at the group level, the normative patterns of per-
formance in the individual profiles of the two exceptionality groups (i.e., math calculation skills
and math reasoning) were examined to identify the extent to which normative weaknesses in
mathematics were accompanied by commensurate weaknesses in one or more broad cognitive
ability areas. By focusing solely on the normative patterns of performance in the cognitive profile,
many of the limitations of traditional profile analysis focusing on ipsative or interindividual pat-
terns of performance are overcome (Carroll, 2000; Watkins, 2000).

This line of research is important for a couple of reasons. First, it contributes to the research
examining the CHC broad cognitive abilities associated with math achievement. Studying
exceptionality groups, such as those with normative weaknesses in mathematics, will likely add to
the existing research designed to predict the full range of mathematics ability. Second, it assists in
understanding whether there exists a “typical” CHC broad cognitive ability profile(s) for children
with mathematics weaknesses. Understanding the group and individual profiles of children with
mathematics weaknesses is a particularly important contribution for clinicians and researchers
who ascribe to a diagnostic model of learning disabilities that necessitates identifying cognitive
weaknesses that have empirically supported relationships with achievement (see Flanagan et al.,
2002; Sternberg & Grigorenko, 2002).
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Method

Participants

All participants were drawn from the school-age portion of the nationally representative
Woodcock–Johnson III (WJ III) standardization sample (Woodcock, McGrew, & Mather, 2001a).
Participants in the WJ III standardization sample were selected from the population using a strat-
ified random sampling design that controlled for 10 individual (e.g., race, sex, educational level,
occupational status) and community (e.g., community size, socioeconomic status) variables.

Procedure

Three clusters from the WJ III Tests of Achievement (Woodcock, McGrew, & Mather,
2001b) were used to select participants from the WJ III standardization sample: Math Calculation
Skills (MCS), Math Reasoning (MR), and Broad Reading. Reliability estimates and validity evi-
dence supporting the use and interpretation of these clusters are presented in McGrew and Wood-
cock (2001).

Math calculation skills. To select participants who demonstrated math calculation skills in
the lowest 16th percentile for their age group, children with age-based standard scores of 85 or
below on the MCS cluster were placed in the Low Achievement MCS group (LA MCS). In an
effort to focus on normative achievement weaknesses specific to math, this sample was limited to
children with standard scores in the average range and above (i.e., standard score � 90) on the
Broad Reading cluster. A total of 129 children met these two criteria. When cases with complete
data for the CHC factor clusters (see Measures section) were considered, a sample of 68 children
(31 girls and 37 boys) was selected for analysis. Children ranged in age from 6 to 18 years (M �
13.4, SD � 3.3). Approximately 66% of the sample were White (n � 45), 25% were Black (n �
17), 6% were Asian or Pacific Islander (n � 4), and 3% were American Indian (n � 2). Using
father’s education level as an index of socioeconomic status (SES), 15% of fathers did not com-
plete high school (n � 10), 31% completed high school (n � 21), and 54% either attended college
or obtained a college degree (n � 36). Father’s education level was not available for 1 child.

Math reasoning. Consistent with the selection of participants for the LA MCS group, chil-
dren with age-based standard scores of 85 or below on the MR cluster were placed in the Low
Achievement MR group (LA MR). This sample also was limited to children who scored in the
average range and above on the Broad Reading cluster. A total of 88 children met these criteria.
When cases with complete data for the CHC factor clusters were considered, a sample of 52
children (27 girls and 25 boys) was selected for analysis. Children ranged in age from 6 to 18 years
(M � 13.5, SD � 3.5). Approximately 61% of the sample were White (n � 32), 29% were Black
(n � 15), 6% were Asian or Pacific Islander (n � 3), and 4% were American Indian (n � 2).
Analysis of SES revealed that 33% of fathers did not complete high school (n � 17), 27% grad-
uated from high school (n � 14), and 40% either attended college or obtained a college degree
(n � 21).

Average Achievement group. To provide a comparison group that displayed no normative
mathematics or reading weaknesses, children with age-based standard scores in the average range
(i.e., scores between 90–110) on the MCS, MR, and Broad Reading clusters were first selected. A
total of 342 children (164 girls and 178 boys) met these criteria. From this group, a sample of 68
children was randomly selected (via the SPSS 11.0.1 Select Cases subprogram) to compare to the
LA MCS group. Children in this selected sample ranged in age from 6 to 18 years of age (M �
12.2, SD � 3.3). Approximately 79% of the sample were White (n � 54), 15% were Black (n �
10), and 6% were American Indian (n � 4). Analysis of SES revealed that 12% of fathers did not
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complete high school (n � 8), 46% graduated from high school (n � 31), and 42% either attended
college or obtained a college degree (n � 28). Father’s education level was not available for 1
child. From the total Average Achievement group, another sample of 52 children was randomly
selected to compare to the LA MR group. Children in this selected sample ranged in age from 6 to
18 years of age (M � 12.9, SD � 3.4). Approximately 75% were White (n � 39), 19% were Black
(n � 10), and 6% were American Indian (n � 3). Analysis of SES revealed that 14% of fathers did
not complete high school (n � 7), 44% graduated from high school (n � 23), and 42% either
attended college or obtained a college degree (n � 22).

To ensure adequate selection of groups, preliminary analyses were computed to compare
each low math achievement group to its respective Average Achievement group on the selection
variables (see Table 1). As expected, the mean score on the MCS cluster of the Low MCS group
was significantly below that of the Average Achievement group, t(67) � 127.49, p � .001, and
there was no significant difference between the groups on the Broad Reading cluster, t(67) �
123.96, p � .001. Similarly, the mean score on the MR cluster of the Low MR group was signif-
icantly below that of the Average Achievement group, t(51) � 143.79, p � .001, and there was no
significant difference between the groups on the Broad Reading cluster, t(51) � 85.88, p � .001.

Measures

Seven clusters from the WJ III Tests of Cognitive Abilities (Woodcock, McGrew, & Mather,
2001c) were used as dependent variables in the profile analyses: Comprehension–Knowledge,
Long-Term Retrieval, Visual–Spatial Thinking, Auditory Processing, Fluid Reasoning, Processing
Speed, and Short-Term Memory. Descriptions of the CHC factor clusters appear in Table 1. Reli-
ability and validity information for the CHC factor clusters is presented in McGrew and Wood-
cock (2001). For reference, reliability estimates for the CHC factor clusters appear in Table 1.
Validity evidence supporting the use and interpretation of these clusters is summarized in Floyd,
Shaver, and McGrew (2003).

Table 1
CHC Factor Cluster Means and Standard Deviations for the Low-Achievement Groups
and the Average-Achievement Groups

LA MCS
(n � 68)

Average-achievement
group: MCS

LA MR
(n � 52)

Average-achievement
group: MR

M SD Range M SD Range M SD Range M SD Range

Cluster
MCS 80.16 5.18 58–85 100.90 5.53 90–110 – – – – – –
MR – – – – – – 81.15 4.07 65–85 100.33 5.36 90–110
BR 98.34 6.54 90–118 100.31 5.49 90–110 98.31 8.25 90–134 100.90 5.33 90–110

Gc 99.90 10.51 70–122 100.91 10.66 81–133 95.58 10.95 76–125 101.10 8.75 87–128
Glr 100.03 10.34 81–125 102.63 13.36 76–144 99.08 9.55 78–126 103.77 11.07 77–137
Gv 99.06 13.08 70–139 99.43 12.48 64–125 95.63 11.95 75–121 100.94 11.88 64–127
Ga 100.68 13.68 74–142 102.66 13.12 78–144 100.31 14.45 74–136 104.08 12.88 72–150
Gf 96.16 13.57 59–139 99.56 14.11 63–136 90.94 12.72 59–125 100.77 12.14 69–136
Gs 95.94 12.57 65–124 100.19 13.46 77–134 100.25 13.35 65–133 97.04 12.13 57–123

Note. LA MCS � Low-Achievement Math Calculation Skills; LA MR � Low-Achievement Math Reasoning; MCS �
Math Calculation Skills; MR � Math Reasoning; BR � Broad Reading; Gc � Comprehension–Knowledge; Glr � Long–
Term Retrieval; Gv � Visual–Spatial Thinking; Ga �Auditory Processing; Gf � Fluid Reasoning; Gs � Processing Speed;
Gsm � Short-Term Memory.
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Analyses

Statistical tests grouped under the profile analysis rubric were conducted to compare the
cognitive profiles of each LA group to the cognitive profiles of their average-achieving counter-
parts (Tabachnick & Fidell, 2001). First, the parallelism test was used to determine if the pat-
terns of highs and lows on the CHC factor clusters were similar across groups (i.e., if the shape
of the profiles were similar). Second, the flatness test was used to determine if the combined
groups’ scores were notably higher or lower on any of the CHC factor clusters (i.e., profile
scatter). Third, the levels test was used to determine if the LA groups scored significantly lower
than the Average Achievement groups on the CHC factor clusters as a set. In addition, planned
comparisons were conducted to examine the degree of normative deviation of each CHC factor
cluster for each group.

The individual cognitive profiles of children in the LA groups also were examined. To deter-
mine the extent to which individual children with normative mathematics weaknesses exhibited
commensurate weaknesses in any of the measures of broad cognitive abilities, the percentage of
children displaying standard scores of 85 or below on each CHC factor cluster was examined. To
provide a contrast to the percentage of normative weaknesses, the percentage of children display-
ing normative strengths (standard scores of 115 and above) also was examined.

Results

Data screening procedures were conducted before computing each profile analysis, and assump-
tions regarding multivariate normality, absence of outliers, linearity, and homogeneity of variance–
covariance matrices were met for both analyses (Tabachnick & Fidell, 2001). Table 1 presents the
CHC factor cluster means and standard deviations for the four groups.

Group-Level Profile Analysis

L A MCS versus Average Achievement group. When the cognitive profiles of the groups
were compared, the test for parallelism was nonsignificant, indicating that the LA MCS and the
Average Achievement group exhibited similar high and low points in their profiles, F(6,129) �
.60, p � .73, �2 � .03. When averaged over groups, the CHC factor scores deviated significantly
from flatness, F(6,129) � 3.42, p � .004, �2 � .14, indicating variability among cluster scores.
The levels test indicated that the groups performed similarly on the CHC factor clusters as a set,
F(1,134) � 2.98, p � .09, �2 � .02. When respective CHC factor clusters were compared between
groups, no significant differences were found.

Individual contrasts were conducted within each group to determine whether mean scores for
the CHC factor clusters differed significantly from those of the normative population (M � 100,
SD � 15). To control for multiple comparisons and reflect an experimentwise alpha of .05, the
alpha rate was set at .007. A series of one-sample z tests were conducted using a criterion z value
of 62.69. No significant differences were noted in either group.

L A MR versus Average Achievement group. The test for parallelism was significant, indi-
cating that the LA MR and Average Achievement groups exhibited different high and low points in
their profiles, F(6,97) � 2.62, p � .02, �2 � .14. To evaluate deviation from parallelism, confi-
dence limits were computed around the CHC factor cluster means of both groups combined. The
alpha rate was set at .0036 for each confidence interval to control for multiple comparisons and to
reflect an experimentwise alpha of .05. The LA MR group demonstrated reliably lower perfor-
mance on the Processing Speed cluster than that of the pooled mean for that cluster.

When averaged over groups, the CHC factor cluster scores deviated significantly from flat-
ness, F(6,97) � 4.20, p � .001, �2 � .21. The levels test indicated that the LA MR group scored
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significantly lower than the Average Achievement group on the CHC factor clusters as a set,
F(1,102) � 8.98, p � .003, �2 � .08. When respective CHC factor clusters were compared between
groups using an adjusted alpha rate of .007, the LA MR group scored significantly lower than the
Average Achievement group on the Fluid Reasoning and Comprehension–Knowledge clusters.

Individual contrasts were conducted within each group to determine whether mean scores for
the CHC factor clusters differed significantly from those of the normative population. Using an
adjusted alpha rate of .007, a series of one-sample z tests were conducted using a criterion z value
of 62.69. No significant score deviations were found within the Average Achievement group, but
the LA MR group scored significantly lower than the normative population on the Fluid Reasoning
cluster.

Individual-Level Normative Profile Analysis

Math calculation skills. Although all children in the LA MCS group displayed normative
weaknesses in performing calculations and completing basic operations, only 36 children (53%)
displayed at least one CHC factor cluster score of 85 or below, and 17 of these 36 children (25%
of the total sample) displayed scores in this range on more than one CHC factor cluster. As
evidenced by Figure 1a, children in the LA MCS group most frequently demonstrated cognitive
weaknesses commensurate with low achievement on the Fluid Reasoning cluster (14 children or
21%), the Short-Term Memory cluster (21%), and Visual–Spatial Thinking cluster (11 children
or 16%).

When normative strengths of children in the LA MCS group are considered, 34 children
(50%) displayed at least one CHC factor cluster score of 115 or higher. The most frequent areas of
normative strength for the LA MCS group were on the Short-Term Memory cluster (14 children or
21%) and the Auditory Processing cluster (11 children or 16%). For this sample, the percentage of

Figure 1. Frequencies of normative weaknesses and strengths for the Low Achievement Math Calculation Skills
group (a). Frequencies of normative weaknesses and strengths for the Low Achievement Math Reasoning group (b).
Gc � Comprehension-Knowledge, Glr � Long-Term Retrieval, Gv � Visual-Spatial Thinking, Ga � Auditory Process-
ing, Gf � Fluid Reasoning, Gs � Processing Speed, Gsm � Short-Term Memory.
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children with normative weaknesses for any CHC factor cluster was largely similar to the percent-
age of children with normative strengths for that CHC factor cluster for five of the seven clusters
(the exceptions being the Fluid Reasoning and Processing Speed clusters). In fact, normative
strengths were more commonly demonstrated on the Long-Term Retrieval, Auditory Processing,
and Short-Term Memory clusters than were normative weaknesses.

Math reasoning. Similar to the number of normative weaknesses demonstrated by the LA
MCS group across the CHC factor clusters, 30 children (58%) in the LA MR group demonstrated
at least one CHC factor cluster score of 85 or below. Furthermore, 16 of these 30 children (16% of
the total sample) displayed scores in this range on more than one CHC factor cluster. As evident in
Figure 1b, normative weaknesses for the LA MR group most frequently occurred on the Fluid
Reasoning cluster (15 children or 29%), the Visual–Spatial Thinking cluster (12 children or 23%),
the Comprehension–Knowledge cluster (9 children or 17%), and the Short-Term Memory
cluster (17%).

When normative strengths of children in the LA MR group are considered, 26 children (50%)
displayed at least one CHC factor cluster score of 115 or higher. As evident in Figure 1b, the LA
MR group most frequently obtained scores in this range on the Auditory Processing cluster (9
children or 17%), the Processing Speed cluster (7 children or 14%), and the Short-Term Memory
cluster (14%). Again, the percentage of children with normative weaknesses in any CHC factor
cluster was largely similar to the percentage of children with normative strengths in that same
CHC factor cluster for four of the seven clusters (with the notable exceptions of Comprehension–
Knowledge, Visual–Spatial Thinking, and Fluid Reasoning). In fact, there were more normative
strengths than there were weaknesses at this level for the Long-Term Retrieval, Auditory Process-
ing, and Processing Speed clusters.

Discussion

The purpose of this study was threefold: to contribute to the research examining the CHC
broad cognitive abilities associated with math calculation skills and math reasoning, to shed light
on the cognitive ability weaknesses that presumably contribute to math weaknesses, and to assist
in answering the question of whether there is a “typical” CHC cognitive profile for children with
calculation and math reasoning weaknesses. Previous CHC research had primarily implicated the
broad cognitive ability clusters of Comprehension–Knowledge, Fluid Reasoning, Processing Speed,
and Short-Term Memory in the explanation of math performance; however, using a different
methodology and statistical analysis, we found notably different results.

Math Calculation Skills Profiles

First, we looked at students with achievement weaknesses in math calculation skills or math
reasoning and compared their cognitive profiles to those with average math and reading skills.
When students who performed poorly on math calculation were compared to the average-
achieving group, no difference in the overall level of performance across abilities was indicated.
The comparative analyses also showed that none of the specific cognitive abilities “separated” the
low-achievement group from the average-achieving group. This lack of significant differences
between the LA MCS group and the average-achieving group was surprising, given the results of
previous CHC studies. Additionally, none of the CHC factor clusters for this group was signifi-
cantly below the population mean (M � 100); thus, as a group, they demonstrated no normative
cognitive weaknesses.

Although the group-level profile analysis revealed that the mean CHC factor cluster scores
for the LA MCS group were similar to an average-achieving group and to the normative population,
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their individual profiles indicated that approximately half of the children displayed commensurate
weaknesses on at least one CHC factor cluster. As evident based on the group-level profile analy-
sis, there was little consistency in the normative weaknesses identified within this group of 36
children. In fact, the normative weaknesses in some participants (e.g., Short-Term Memory) were
just as likely to be normative strengths in others. The only exception to this finding was that
notably more normative weaknesses than strengths were found in Fluid Reasoning and Processing
Speed. Each was a weakness for only 1 in 5 children sampled.

What else, then, might explain these students’ poor math calculation skills? Perhaps the
most likely explanation is that the poor math calculation skills in this sample are not due pri-
marily to underlying cognitive weaknesses. Rather, they may be attributable to noncognitive
influences such as lack of experience, poor motivation, anxiety, poor instruction, or mediocre
textbooks. Indeed, in their studies, Geary and colleagues (e.g., Geary, 1990; Geary, Bow-
Thomas, & Yao, 1992) found that roughly half of the children who had been identified as having
a learning problem in mathematics did not show any form of cognitive weakness. Research on
noncognitive influences related to mathematical underachievement has indicated, for example,
that there is a tremendous amount of variability in the level of difficulty in math curricula around
the United States (Travers & Westbury, 1989), thus implying that not all same-grade children are
receiving comparable math instruction. Not all educators have embraced the importance of explicit
instruction, drill, and practice in the acquisition of basic mathematical skills (Briars & Siegler,
1984). Apart from formal instruction, the home environment plays a role in early numerical
skills (e.g., understanding the concept of quantity, counting, and arithmetic), as these skills often
develop within the context of parent–child interactions (Saxe, Guberman, & Gearhart, 1987).
Finally, lower levels of mathematical ability are associated with higher levels of mathematics
anxiety, although math anxiety is not strongly related to general intelligence (Geary, 1994). It is
therefore very possible that many children in the LA MCS sample had math calculation weak-
nesses due to some of the aforementioned noncognitive factors rather than weaknesses in a CHC
broad cognitive area.

A second plausible explanation for our findings is related to how the sample was selected. In
identifying participants for the LA MCS group, the requirement was an unusually low score on the
Math Calculation Skills cluster coupled with at least an average score on the Broad Reading
cluster. However, in reality, many students with math difficulty, or even math learning disabilities,
also exhibit difficulties in reading and other academic areas. Investigators frequently describe two
types of math underachievement associated with learning disabilities (Fleischner & Manheimer,
1997; Silver, Pennett, Black, Fair, & Balise, 1999; Strawser & Miller, 2001). The first dysfunction
is a primary math disability, also called nonverbal learning disability, right-hemisphere disability,
or dyscalculia. It is described as a primary impairment that specifically affects math (Matte &
Bolaski, 1998; Rourke & Conway, 1997). A second dysfunction is described as a math achieve-
ment weakness related to verbal learning disabilities (Fleischner & Manheimer, 1997), and it is
associated with reading difficulties that consequently impede the ability to complete math word
problems. Thus, it is likely that, for many children, reading and math difficulties co-occur because
of underlying cognitive weaknesses (Geary, 1994). These cognitive weaknesses, however, may
not have appeared in our select sample of children with math-only problems. This might also
explain why previous studies (e.g., Floyd et al., 2003; Hale et al., 2001; Keith, 1999; McGrew
et al., 1997; McGrew & Hessler, 1995; Williams et al., 1996) found relationships between math
calculation and specific cognitive abilities. They not only included scores across the range of
mathematical abilities but also most likely included scores from participants with low achieve-
ment in both math and reading. Hence, the relationship between math calculation and Processing
Speed, Comprehension–Knowledge, Fluid Reasoning, and Short-Term Memory found in previous
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studies may be tenable only for those with at least average skills in math calculation or for those
with “double weaknesses” in both math and reading.

Additional explanations are that (a) the WJ III clusters that were included as dependent
variables in this analysis did not adequately measure the cognitive abilities that underlie poor math
calculation skills, and (b) low math achievers are such a heterogeneous group that it is impossible
to identify a cognitive profile that is generalizable to even a small subset of low math achievers
(Strang & Rourke, 1985). Additional research in this area is clearly indicated before we can begin
to draw any strong conclusions.

Math Reasoning Profiles

The profile analysis using Math Reasoning as the grouping variable painted a different pic-
ture. Overall, the LA MR group scored lower than the Average Achievement group on the aggre-
gate measure of CHC abilities, which may suggest group differences in g. As a group, their scores
on Fluid Reasoning and Comprehension–Knowledge were lower than those of the Average Achieve-
ment group. In addition, their mean score on the Fluid Reasoning cluster was significantly lower
than the population mean, indicating a normative weakness. Regarding the individual profiles,
similar to the findings of the LA MCS group, more than half of the children in the LA MR group
demonstrated at least one cognitive weakness. Most weaknesses were found in the areas of Fluid
Reasoning, Visual–Spatial Thinking, Comprehension–Knowledge, and Short-Term Memory. Addi-
tionally, exactly half of the LA MR students had normative strengths in one or more CHC areas.
The most frequent areas of strength were Auditory Processing, Processing Speed, and Short-Term
Memory. The fact that Short-Term Memory emerged as a strength and a weakness for approxi-
mately the same number of children, coupled with the fact that it was not identified as a group
weakness for the sample of LA MR children, suggests that individual differences in Short-Term
Memory may not be as involved in poor math reasoning as previously thought. Fluid Reasoning,
on the other hand, emerged as a consistent weakness for the group as a whole, in addition to being
the most frequent normative weakness (and the least common strength) in the individual profiles.
The relationship between math reasoning and Fluid Reasoning resonates with the findings of
previous studies examining the statistical relations between math skills and underlying cognitive
abilities of reasoning and novel problem-solving skills.

The findings regarding the relationships between Comprehension–Knowledge and math rea-
soning, and Visual–Spatial Thinking and math reasoning are the most difficult to interpret within
the context of the present study. Comprehension–Knowledge emerged as a frequent normative
weakness (and an infrequent strength) in the individual profiles, and it was a group weakness for
the LA MR group when compared to that of the Average Achievement group. However, there were
no group differences when comparing the LA MR score to those of the normative population.
Previous studies on the relations between CHC cognitive abilities and math achievement have
consistently identified Comprehension–Knowledge as one of the clusters with the strongest rela-
tionships with math achievement. Therefore, additional studies using children with normative
weaknesses in math reasoning are probably necessary before we can draw any firm conclusions
about the role that Comprehension–Knowledge plays within this subpopulation.

Like Comprehension–Knowledge, Visual–Spatial Thinking emerged as a frequent normative
weakness and an infrequent normative strength. However, unlike Comprehension–Knowledge, no
group differences were found for this cluster. A strong link between math reasoning and Visual–
Spatial Thinking has not been found in previous CHC research, although it has been indicated
elsewhere (e.g., Geary, 1994; Padget, 1998; Rourke, 1993; Shafir & Siegel, 1994; Strawser &
Miller, 2001). In his meta-analysis of studies investigating the correlation between spatial skills
and math skills, Friedman (1995) concluded that there is no convincing evidence that spatial skills
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are strongly related to math ability. However, there seems to be very little consistency in the way
that visual–spatial thinking (i.e., spatial skills, visual processing) is defined and measured. This
inconsistency in conceptualization and measurement is one likely explanation for the disparate
findings regarding the relationship between math skills and visual–spatial thinking, in addition to
methodological differences among the various studies.

Although previous CHC research consistently demonstrated a relationship between math
reasoning and the underlying cognitive ability of Processing Speed, we were unable to reproduce
those findings in the current study. The reasons for these results are not completely understood, but
a tentative conclusion is that Processing Speed underlies average or above-average skills in math
reasoning, but is unrelated to below-average math reasoning. These results also may have surfaced
because students with double weaknesses in mathematics reasoning and reading were omitted
from this study. Finally, note that Long-Term Retrieval has not been identified as an important
factor for math reasoning in either the present or the previous CHC studies.

Limitations

The results of this research are limited in several ways. First, because the low-achievement
groups were empirically derived and excluded children with concomitant reading weaknesses,
results of this study may not be directly applicable to the population of children with severe
learning difficulties or learning disabilities in mathematics. The results also may not be general-
izable to students with learning disabilities who were diagnosed using models or criteria that differ
dramatically from the low-achievement model employed in this study (i.e., math achievement
score �16th percentile, with other achievement scores falling in the average range). Future research
should include samples of children who are diagnosed with learning disabilities under competing
diagnostic models. Second, several CHC factor clusters may measure some of the same cognitive
abilities as the mathematics clusters. For example, the Quantitative Reasoning test, which is included
in the MR cluster, probably measures both Quantitative Knowledge and Fluid Reasoning (McGrew
& Woodcock, 2001). These relations may have contributed to the finding of frequent concomitant
normative weaknesses in Fluid Reasoning when MR was a normative weakness.

Implications for Practice

Together, the results of the group and individual profile analyses suggest that there may not
be a unique profile of cognitive abilities for children with normative weaknesses in math calcula-
tion skills. In contrast, a common cognitive profile of children with normative weaknesses in math
reasoning may show commensurate weaknesses in the areas of Fluid Reasoning and, perhaps,
Comprehension–Knowledge. The results of the profile analyses, particularly those performed at
the individual level, are problematic for clinicians and researchers who ascribe to a diagnostic
model of learning disabilities that necessitates identifying cognitive weaknesses that have empir-
ically supported relationships with underachievement.

In our sample, 1 in 2 children with severe weaknesses in math calculation skills displayed at
least one commensurate weakness in a CHC factor cluster area. Similarly, for the math reasoning
sample, approximately 1 in 2 children had commensurate cognitive weaknesses. The finding that
approximately 50% of our low achievement samples had no normative cognitive weaknesses was
surprising. Had we been evaluating this sample of 120 children for the presence of a learning
disability as defined by a normative weakness in an academic area and a commensurate weakness
in at least one specific cognitive ability, only 60 would even be eligible for proceeding in the
diagnostic process. For the other 60 children not eligible for a learning disability diagnosis, three
options remain: (a) decide that the achievement weakness is not due to a learning disability but
rather due to some variable unrelated to the child’s cognitive processing, (b) suggest that models
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requiring both low achievement and at least one concomitant specific cognitive weakness are not
valid for diagnosing learning disability in mathematics, or (c) conclude that the tests administered
did not accurately capture the child’s cognitive abilities, and retest the child using different
instruments.

We wish to make a final, positive point regarding an implication of these findings for practice.
If, as in the current samples, half of the children with weaknesses in math calculations or math
reasoning do not have commensurate cognitive weaknesses, perhaps this bodes well for the prob-
ability that interventions will succeed in improving the academic skill. After all, if the cause of the
underachievement is not due to a cognitive factor intrinsic to the child, then perhaps the poorly
developed math skills are amenable to interventions that modify or enhance instruction or that
alter the academic environment. This amenability to intervention is exactly what researchers and
practitioners espousing a response to intervention model of diagnosing learning disabilities are
targeting (e.g., see National Association of School Psychologists, 2003). Perhaps the children
without cognitive ability weaknesses are those who will respond to empirically supported inter-
ventions, and the sample of those children who fail to respond will present with a more consistent,
discernable profile (or profiles) of cognitive abilities.
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