A STUDY OF SPEED FACTORS IN TESTS AND ACADEMIC GRADES*

Frederic M. Lord
EDUCATIONAL TESTING SERVICE

Abstract

Speeded and unspeeded tests of vocabulary, spatial relations, and arithmetic reasoning were factorially analyzed, together with certain reference tests and academic grades. Lawley's maximum likelihood method was used, the computations being carried out on the Whirlwind electronic computer, Four different speed factors were isolated, together with a second-order general speed factor. Consistent small positive correlations between the academic grades and the speed factors were found.

The speed with which an examinee responds to the items in a test frequently affects his score. Almost all achievement and aptitude tests are to some extent measures of "speed." Tests for factor analyses are frequently speeded because many tests must be given in a limited time.

Much remains to be learned about "speed," in spite of the fact that it is commonly an element in test scores. Is speed on cognitive tests a unitary trait? Or are there different kinds of speed for different kinds of tasks? If so, how highly correlated are these different kinds of speed? How highly correlated are speed and level on the same task? How do various criteria relate to speed, and how speeded should tests to predict these criteria be? These are the questions which the present study attacks.

Some Previous Results

Factor analytic studies have often isolated a "perceptual-speed factor," usually measured by tests requiring simple, rapid visual discriminations. "This factor is characterized by the task of (quickly) finding in a mass of distracting material a given configuration which is borne in mind during the search" (6). Any speed test composed of very easy items is likely to have a loading on this factor. A more recent publication (7) breaks down "perceptual speed" into at least two factors, "speed of symbol discrimination" and "form

[^0]perception," the former relating to familiar symbols, the latter to unfamiliar figures.

Other factors related to speed include finger dexterity, fluency of expression, ideational fluency, reaction time, speed of association, speed of judgment, tapping, word fluency (6). Speed of closure and motor speed are included in (7). Rimoldi (20) finds a "speed of judgment," a "speed of cognition," and a second-order "personal tempo" factor; but his subjects, like those in many earlier studies, were to work at a "natural, congenial" speed rather than at the maximal speed required by most tests.

Since many tests in factor analytic studies are speeded, many of the factors are speed factors, although not always so described. An example is the "number" factor, which is commonly measured by highly speeded tests of addition, subtraction, multiplication, and division. This factor will here be referred to as the number-speed factor.

In spite of the presence of both speeded and unspeeded tests in most factor analysis batteries, a general intellectual-speed factor has not routinely been found. Studies designed to investigate the existence of both general and specific speed factors in ordinary aptitude test batteries have been few and have yielded conflicting evidence ($3,4,17,18,21,22$).

For further consideration of "speed factors," the reader is referred to (24, pp. 80-85) and to the 33 references in (8).

Data for the Present Study

The Subjects

All measures in this study were obtained on 649 students in the entering class at the United States Naval Academy at Annapolis. This large number of cases was used to obtain clearly interpretable results.

The Tests

The study centers around tests of the verbal factor, of spatial ability, and of arithmetic reasoning, because of the widespread use of tests in these areas.

In each area, seven tests were administered. One was the regular admissions examination, denoted by (A), which is only slightly speeded. The remaining six were short experimental tests administered at the beginning of the school year. These were parallel in content, but different in degree of speededness. Two were "level" tests, denoted by (L), involving virtually no speed. One was moderately speeded (M). The remaining three tests were highly speeded (S). In order to confound practice effect insofar as possible, the tests were administered in scrambled order, as follows: LSMSLS. The examinee was told the degree of speededness that would be required.

Six reference-factor tests (number, perceptual speed, word fluency) also were administered. These are designated by (R).

A more complete description of all the tests follows.

1. Word Fluency (R). The examinee writes as many words and their opposites as he can in four minutes. This test was included so as to determine its relation to the verbal factor and to the verbal-speed factor, if such were found.
2. Verbal (A). This test contained both word-analogies and "doubledefinitions" items. The latter item type is essentially a sentence with two missing words to be selected from alternative pairs of words provided, thus producing a simple definition of one of the missing words.

3, 4. Vocabulary (L). These tests require finding among the choices a word opposite in meaning to the given key word. Also 5. Vocabulary (M) and 6, 7, 8. Vocabulary ((5). [9. Vocabulary (LIA) is merely the "last-itemattempted score" on test 7, to be discussed below.]
10. Spatial Relations (A) contained block-counting and "identicalblocks" items. The latter require the examinee to indicate which of five drawings represents a key block drawn from a different angle.

11, 12. Intersections (L). These tests require the examinee to visualize the two-dimensional outline of the intersection of a solid geometric object cut by a plane. Also 13. Intersections (M) and 14, 15, 16. Intersections (S). [17. Intersections (LIA) is merely the "last-item-attempted score" on test 15.]
18. Mathematics (A) is composed of arithmetic reasoning, algebra, and geometry items.

19, 20. Arithmetic Reasoning (L) consist entirely of the usual arithmeticreasoning items. Also 21. Arithmetic Reasoning (M) and 22, 23, 24. Arithmetic Reasoning (S). [25. Arithmetic Reasoning (LIA) is merely the "last-itemattempted score" on test 23.]

26, 27. Number Speed (R) are highly speeded reference tests for the number-speed factor. 26 consists of simple addition and division, 27 of easy subtraction and multiplication.

28, 29, 30. Perceptual Speed (R) are reference tests for the perceptualspeed factor. 28. Cancellation requires the examinee to cross out as many letter A 's in a paragraph as he can in two minutes. 29. Picture Discrimination requires him to indicate which of three very sketchily drawn faces is different from the other two. 30. Number Checking requires him to indicate whether two multi-digit numbers are the same or different.

TABIE 1
Background Information and Data on Speededness for the "Experimental" Tests

	Tests	Speededness	Number of Items	$\begin{aligned} & \text { Test- } \\ & \text { ing } \\ & \text { Time } \end{aligned}$	Items per Hour	Per cent* of Examinees Finishing
3,4	Vocabulary	L	15	7	129	97
5		M	30	5	360	71
6,7,8	"	5	75	5	900	2
11,12	Intersections	L	15	20	45	98
13	"	M	20	12	100	75
14,15,16	"	5	35	9	233	11
19,20	Arithmetic Ressoning	L	10	20	30	94
21	"	M	15	15	60	50
22,23,24	" "	S	30	10	180	4

*The mean of two values in the case of the level tests, of three in the case of the speed tests.

Table 1 summarizes the background information about the "experimental" tests and shows the proportion of examinees who answered the last item in each test. The speeded tests were in fact very highly speeded. There is reason to believe that many or all of the examinees who answered the last item of the speeded tests skipped many items or responded at random.

Scoring

The three admissions tests are composed of multiple-choice items having five (in a few cases, eight) alternative responses. The score obtained for each test was the number of items answered correctly.

The eighteen experimental vocabulary, intersections, and arithmeticreasoning tests were all composed of five-choice items and were scored numberright minus one-fourth-number-wrong. This "correction for guessing" was made in order that any speed factor that might be found should not be open to the challenge that it was merely a "willingness-to-guess-wildly" factor. It would have been wrong to include both corrected and uncorrected scores on the same test in a straightforward factor analysis, because of their experimental dependence. Some further investigation of the effect of the correction for guessing was nevertheless planned. For this purpose, number-right (NR) scores were obtained for tests 7, 15, and 23, these new scores being designated as variables 37,38 , and 39 .

The score on each of the six reference tests was the number of right answers, because this is the usual method for scoring these tests. Scored in any other way, they might no longer represent the same reference factors.

In addition to the regular score, a "last-item-attempted score" (LIA) for one speeded test in each of the three areas gives a crude measure of rate-of-work. Inclusion of such scores in the present study was considered desirable, although in general the study is primarily concerned with the type of scores normally used in work with aptitude tests. The statistical method used to deal with the experimental dependence of these scores and of the NR scores on the other scores obtained from the same tests will be outlined later.

School Grades

During their first year, all students at Annapolis normally receive grades in each of the following:
31. English Composition and Literature.
32. Foreign Language. (Each student selects one of several available.)
33. Engineering Drawing and Descriptive Geometry.
34. Chemistry.
35. Mathematics. (Plane trigonometry, college algebra, plane and solid analytic geometry, and calculus.)
36. Conduct. (The method by which these grades are assigned need not concern us, since no factor loadings of interest were found for this variable.)

In the present study, each numerical grade is averaged over two semesters. Each semester course grade represents a combination of day-to-day course work and final-examination performance weighted in the ratio of three to two. The instructors could not have had knowledge of the test scores, with the possible exception of the three admissions tests.

The final examinations were virtually unspeeded, almost every student finishing. The day-to-day work in class varied but was not in general compulsorily speeded. It is not known whether students felt pressed for time while doing their homework assignments.

Statistical Analysis

Normalizing

All variables were normalized before product-moment correlations were computed. This was considered desirable since otherwise any speed factors that might be found might conceivably have been attributable to certain common features in the shapes of the score distributions of the speeded tests (e.g., skewness), rather than to a real speed factor.

The Correlations

The use of product-moment correlations is required by the significance tests to be described later. The correlation matrix is presented as Table 2.

TABLE 2
Hatrix of Intercorrolations (decimal point omitted)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1		264	200	262	249	281	341	321	314	056	121	100	064	136	80	090	122	181	156
2	264		720	720	790	666	732	679	388	178	174	135	165	153	138	126	063	413	341
3	200	Teo		669	706	620	693	641	328	134	50	55	102	119	093	079	087	87	300
4	262	T20	669		690	648	697	650	343	126	181	144	84	17	128	121	054	310	316
5	249	790	76	690		660	745	700	393	138	II	082	115	93	082	075	046	326	265
6	281	666	620	648	660		775	757	531	176	162	237	176	188	174	161	240	323	276
7	341	732	693	697	745	775	---		671)	135	122	061	103	27	107	100	130	37	291
8	321	679	641	650	700	757	855	---	609	13	094	067	17	135	10	114	126	334	273
9	314	388	328	343	393	531	(671)	609		078	060	026	031	127	086	109	291	290	198
10	056	178	134	126	138	176	13	138	076		48	541	548	543	53	553	23		90
12	111	174	150	181	11	162	122	094	060	480		72	72	696	701	696	270	312	337
12	100	135	055	144	082	137	061	067	026	541	722	---	767	72	73	750	246	255	295
13	064	165	102	184	115	176	103	117	031	548	74	767	---	748	760	770	262	274	337
14	136	153	119	17	093	188	127	135	127	543	696	724	748		796	788	428	266	322
15	880	138	093	128	082	174	107	104	86	534	701	738	760	796		833	(481)	25	332
16	090	126	079	12	075	161	100	124	109	553	69	750	770	788	833	---	449	295	335
17	122	063	087	054	046	140	130	126	291	236	270	246	262	428	(481)	449		132	105
18	181	413	287	310	326	323	337	334	290	349	312	255	274	266	253	295	132		555
19	156	341	300	316	265	276	291	273	19	290	337	295	337	322	312	335	105	555	
20	165	324	25	311	258	290	270	288	176	271	357	302	362	300	286	31	09	596	588
21	154	363	285	33	299	323	313	348	208	331	295	29	344	309	289	324	12	638	606
2	183	335	279	255	300	357	353	384	303	309	289	280	334	310	291	361	174	628	551
23	174	329	275	286	29	333	350	347	282	321	337	280	338	345	338	370	198	602	532
24	216	364	276	30	314	380	364	388	316	275	257	230	25	266	254	307	15	96	514
25	233	195	160	1.47	194	226	24	29	455	171	12	112	105	192	177	19	394	355	U10
26	258	051	047	013	086	133	196	205	339			-068		-018	-028	004	102	260	155
27	200	050	044	013	088	165	178	202	358	05	-018	-022	-045	012	-028	037	070	351	193
28	223	058	052	043	097		223	233	316	068	103	76	065	114	072	123	250	160	100
29	212	121	084	085	100	245	254	250	35	247	15	243	231	292	283	277	23	194	115
30	122	-062	-038	-023	-056	093	105	112	249	-016	-028	-049	-080	-048	-02	005	05	113	026
31	30	560	497	568	537	519	590	40	373	120	143	093	102	073	037	058	003		309
32	184	210	172	205	192	186	220	226	204	082	136	125	100	110	100	10	019	177	198
33	17	184	084	186	138	247	192	221	182	476	546	582	605	574	568	584	225	308	355
34	249	230	172	238	198	270	258	248	228	238	321	320	318	327	292	320	141	376	424
3	207	156	119	145	128	213	211	210	258	218	328	288	300	308	283	326	143	435	41
36	-082	-051	-106	-017	-064	-034	-038	-019	-020	055	019	025	056	023	023		-05	059	072
37	346	707	665	6	,		(986)	856	(745)	12	111	049	087	127	102	099	17	334	277
38	097	135	099	124	082	181	120	118	139	522	678	698	T22	790	(977)	825	(625)	256	295
39	216	325	257	271	295	341	362	362	368	326	329	272	327	352	340	366	297	597	507

TABLE 2 (cont.)
Matrix of Intercorrelations (decimal point ondttad)

Variables $9,17,25,37,38$, and 39 , which were not used in the factoring, are experimentally dependent on variables 7,15 , and 23 . The consequent spuriously high correlations are placed in parentheses in the table.

Lawley's Maximum Likelihood Method of Factor Analysis

Factors were extracted by Lawley's maximum likelihood method. Since this important method has not often been mentioned in this country and since it (or a modification) is likely to become widely used in the near future, some references are listed. The basic development was given in (12). Extensions and further developments appeared in (13, 15, 1, 2, and 23). [A maximum likelihood Method II, avoiding the assumption of multivariate normality, was developed in (13). This second method will not be considered here, since the usual optimum properties of maximum likelihood estimates do not appear to hold (1,11). Whittle (25) derived a relatively simple solution for a similar situation in the special case where the variables are of known reliability.] Henrysson (10) reported an empirical sampling study supporting Lawley's test of significance. Bartlett (1,2) gave a significance test that is superior to Lawley's whenever the number of examinees is not large compared to the number of variables. Some recent papers (in English) by Bartlett, Lawley, and others appeared in (26). Very recently Rao (19) discussed the basic differences between Hotelling's principal-component analysis and common-factor analysis and described further developments related to those of Lawley.

Lawley's method and Thurstone's centroid method are both concerned with estimating common-factor loadings, specific-factor variance being systematically set aside. Certain characteristics of the maximum likelihood method are:

1. The number of common factors is tentatively hypothesized in advance.
2. The procedure in effect determines the population correlation matrix, having the hypothesized rank, for which the likelihood of occurrence of the observed sample in the course of random sampling is a maximum. The matrix of factor loadings exactly reproducing this matrix of population correlation coefficients is the basic result obtained by the maximum likelihood method. The result is obtained by iterative procedures.
3. The usual matrix of residuals is computed; a rigorous large-sample significance test is made to determine whether or not the residuals may plausibly be attributed solely to sampling fluctuations in the correlation coefficients.
4. If the residuals are statistically significant, the research worker repeats the foregoing process, starting with different tentative hypotheses as to the number of common factors required to explain the data, until he is ready finally to accept one of these hypotheses.
5. The usual problem of estimating the communalities ceases to be a serious cause for concern, since the maximum likelihood estimates of the communalities are one of the outcomes of the procedure.

The practical application of the maximum likelihood method is discussed in $(5,16,14)$. Until now, the method has not been applied to other than very
small correlation matrices because of the large amount of computations required. From a computational point of view, Lawley's method can be described essentially as equivalent to the task of finding the latent roots and vectors of a modified correlation matrix, the correlations being modified by dividing them by a simple function of the unknown latent vectors.

Extraction of Factors

The application of Lawley's method to the actual data was carried out on Whirlwind I, a high-speed digital electronic computer. The computing program was written by the author with a view to minimizing the use of computer time in case convergence should require hundreds of iterations. A single iteration with this program required roughly 12 seconds, the time varying somewhat with the number (m) of factors hypothesized.

The original hypothesis of the author suggested that m should be at least 9 for the 33 -variable matrix analyzed. However, application of Lawley's method to the initial set of trial values for the factor loadings failed because the computations generated imaginary numbers. Extremely close initial approximations to the solution were necessary whenever m was at all large.

The problem was dealt with as follows. Computations were first carried out with $m=4$. Initial trial values of the factor loadings were arbitrary except that (a) calculated loadings on the first centroid factor were used for the first column, (b) the remaining trial values were selected so that the sum of squares of the trial values for any one variable was equal to the highest correlation with that variable. The iterations were successfully completed for $m=4$. The resulting estimates of the factor loadings were used as the first four columns of the trial values needed to start the iterations with $m=5$; the fifth column of these trial values was set up in accordance with informed guesses based on the matrix of residuals. The trial values for $m=6$ were set up in the same way from the results obtained with $m=5$, and so forth. In every case after $m=4$, the initial trial values proved to be close approximations to the corresponding final factor loadings. No further imaginary numbers were encountered.

Convergence of the iterative process was rapid, as shown by the second column of Table 3. The criterion used for stopping iteration required that the largest discrepancy between the corresponding factor loadings produced by two successive iterations should remain less than .002 throughout ten successive iterations.

The matrix of residuals obtained with each value of m was tested for significance by means of Lawley's chi-square test. Information about the progress of the computations and about the chi-square significance tests is given in Table 3. Although arguments could be advanced for extracting an eleventh factor, it was decided to stop with ten.

The orthogonal unrotated matrix of the maximum likelihood estimates
table 3

Tests of Significance and Other Information According
to the Number (m) of Factors Hypothesized

Number of Factors Hypothesized (m)	Number of Iterations Required for Convergence	Sum of Latent Roots	Chi-Square Calculated from Residuals	Degrees of Freedom for Chi-Square	Probability Level-Square
4	35	61	2,605	402	$<.01$
5	22	69	893	373	$<.01$
6	23	75	662	345	$<.01$
7	28	78	530	318	$<.01$
8	26	80	436	292	$<.01$
9	25	83	357	267	$<.01$
10	28	88	284	243	.07

of the factor loadings is given in Table 4. The communality for each test and the latent root for each factor are also shown. Each latent root is the weighted sum of the squares of the loadings on the corresponding factor, the weight for each test being the reciprocal of its uniqueness.

Estimation of Unrotated Factor Loadings for Experimentally Dependent Variables

The six variables in Table 4 with loadings enclosed in parentheses were not included in the 33 -variable correlation matrix from which the factors were extracted. These loadings were estimated by the method briefly outlined in the following paragraphs.

The usual factor equation, $R \cong F F^{\prime}$ (œ is used to indicate approximate equality), may be written

$$
\left[\begin{array}{c:c}
P & Q \tag{1}\\
\hdashline Q^{\prime} & S
\end{array}\right] \cong\left[\begin{array}{c}
G \\
\hdashline H
\end{array}\right] \quad\left[\begin{array}{lll:l}
& G^{\prime} & H^{\prime}
\end{array}\right]
$$

where P is the 33 -variable matrix of correlations used for extracting the factors, Q is the matrix of the correlations of these thirty-three variables with the six variables that were omitted from P, S is the matrix of the intercorrelations of these six variables, G is the matrix of the factor loadings of the thirty-three variables and H is the matrix of the factor loadings of the six variables. Assuming that the entire matrix, R, has the same common factors as does P, it follows that G is the matrix of factor loadings obtained by analyzing P. H can then be determined from the equations

$$
\begin{align*}
& H G^{\prime} \cong Q^{\prime} \tag{2}\\
& H H^{\prime} \cong S \tag{3}
\end{align*}
$$

TABLE 4
Unrotated Factor Coefficients
(decimal points omitted)

$\begin{gathered} \text { Variable } \\ \text { No. } \end{gathered}$	I	II	III	IV	V	VI	*VII	VIII	D	X	$\begin{aligned} & \text { Commu } \\ & \text { nality } \end{aligned}$
1	34	16	. 09	-04	17	08	-04	-04	-07	-02	192
2	65	51	-25	-03	-17	18	01	12	10	-02	832
3	56	51	-24	-04	-10	12	12	04	-06	-03	672
4	61	46	-25	-10	-12	08	-05	∞	-12	-02	691
5	60	55	-24	-04	-07	14	05	04	12	05	774
6	66	46	-16	-03	13	-10	∞	01	-02	03	699
$?$	68	59	-15	-04	17	-09	04	-02	-04	0	875
8	67	56	-12	∞	19	-19	01	-06	01	-06	853
9	(48)	(34)	(11)	(06)	(38)	(-11)	(03)	(-04)	(02)	(-02)	(519)
10	49	-36	-16	11	01	02	-14	05	13	01	446
11	57	-52	-22	-03	-02	11	-02	02	-15	07	689
12	55	-59	-26	-03	02	10	-11	-02	-03	13	765
13	60	-58	-29	-01	-02	-01	-07	-03	-03	12	790
14	60	-57	-26	01	10	01	06	-03	-01	-04	761
15	58	-61.	-31	02	11	01	12	-02	02	-12	847
16	60	-61	-24	06	11	01	08	-05	03	-05	826
17	(30)	(-24)	(-12)	(07)	(25)	(-05)	(28)	(-02)	(05)	(-31)	(406)
18	62	02	24	38	-25	02	-04	14	∞	01	669
19	59	-07	16	22	-31	-06	-03	03	-10	-12	556
20	59	-07	23	24	-29	-01	04	01	-13	12	580
21	62	-02	17	37	-27	-06	-12	00	-08	-04	642
22	64	-02	23	43	-13	-11	-02	-08	08	02	684
23	63	-05	21	33	-14	-11	02	03	-01	-11	601
24	61	04	24	39	-11	-05	-01	-06	06	-04	604
25	(39)	(04)	(21)	(19)	(16)	(-04)	(21)	(03)	(08)	(-13)	(297)
26	24	12	52	26	39	22	06	-08	06	02	618
27	28	10	55	38	32	21	∞	-13	06	09	696
28	26	03	25	05	42	02	-11	13	-12	-02	358
29	36	-09	08	09	48	∞	-14	26	-01	-09	483
30	13	04	43	09	49	09	-09	19	-14	-08	532
31	58	39	12	-28	-09	14	-24	-19	-08	-11	718
32	38	04	34	-32	-03	14	-06	-21	01	-11	446
33	64	-41	10	-26	07	-11	-22	08	15	01	754
34	62	-15	48	-35	-12	-05	02	01	03	-04	781
35	60	-20	62	-28	-05	-01	13	04	-01	05	887
36	05	-09	15	-05	-05	-11	-20	-10	15	-09	127
			(-11)	(-03)	(20)	(-07)		(-02)	(-01)	(∞)	(827)
38	(57)	(-58)	(-29)	(03)	(14)	(01)	(14)	(-02)	(02)	(-13)	(807)
39	(64)	(-04)	(23)	(32)	(-07)	(-09)	(02)	(04)	(02)	(-14)	(600)
Latent Roots	40.92	21.90	11.28	5.10	4.09	1.34	1.08	0.83	0.65	0.58	

Since (1) and (2) never hold exactly in practice, (2) represents an inconsistent set of simultaneous linear equations, there being more equations than unknowns. In practice, (3) is totally ignored. A least-squares (but not a maximum likelihood) approximate solution for (2) can be obtained (9) by postmultiplying both sides by $G\left(G^{\prime} G\right)^{-1}$, the result being

$$
\begin{equation*}
H=Q^{\prime} G\left(G^{\prime} G\right)^{-1} . \tag{4}
\end{equation*}
$$

It seemed more appropriate, however, and also computationally easier, in the present case where maximum likelihood procedures had been employed, to post-multiply (2) by $S^{-2} G\left(G^{\prime} S^{-2} G\right)^{-1}, S^{2}$ being the 33×33 diagonal matrix whose elements are the uniquenesses of the 33 variables in P. The result is

$$
\begin{equation*}
H=Q^{\prime} S^{-2} G\left(G^{\prime} S^{-2} G\right)^{-1} \tag{5}
\end{equation*}
$$

A rigorous justification for (5) is not immediately available. Sufficient justification is apparent, however, when it is pointed out that in Lawley's method of analysis $G^{\prime} S^{-2} G$ is the diagonal matrix whose elements are the latent roots, and further that the basic equation of Lawley's method can be written

$$
\begin{equation*}
G=\left(P-S^{2}\right) S^{-2} G\left(G^{\prime} S^{-2} G\right)^{-1} \tag{6}
\end{equation*}
$$

The best justification lies in the clarity of the results obtained, as will be seen presently.

Rotation

The rotation of the original factor matrix toward psychologically meaningful oblique factors was carried out on the matrix rotator at The Adjutant General's Office. Extensive final rotations were made by desk calculator. Variables 37,38 , and 39 (scores not "corrected for guessing") were not available during the rotations.

The main guiding principle in all rotations was psychological meaningfulness, as interpreted according to the notions of the writer. The facility with which rotations could be made on the matrix rotator encouraged persistence in the ultimately unsuccessful attempt to find an arithmetic-reasoning speed factor. A total of 497 rotations were carried out, each involving the shift of only one axis.

Table 5 gives the orthogonal projections of the thirty-nine variables on the reference axes-frequently referred to as the "loadings on the rotated factors." Since the term "factor loading" has been used with various meanings in oblique analyses, these projections will hereafter be referred to as "factor coefficients." Table 6 gives the transformation matrix for rotating Table 4 into Table 5. Table 7 gives the intercorrelations among the primary vectors.

TABLE 5
Rotated Factor Coefficients
(decimal points and initial zeros omitted)

		$\begin{aligned} & V \\ & I \end{aligned}$	$\begin{array}{r} \mathrm{S} \\ \mathrm{II} \end{array}$	$\begin{gathered} \mathrm{M} \\ \mathrm{III} \end{gathered}$	$\begin{array}{r} \mathrm{N} \\ \mathrm{IV} \end{array}$	$\begin{aligned} & \mathbf{F} \\ & \mathbf{V} \end{aligned}$	$\begin{gathered} \mathbf{V} \\ \mathrm{VI} \end{gathered}$	$\stackrel{\mathrm{s}}{\mathrm{VII}}$	$\begin{gathered} \mathrm{G} \\ \text { VIII } \end{gathered}$	IX	X X
	Word Fluency (R)	25	8	-3	6	7	7	0	9	11	-5
	Verbal (A)	75	2	3	2	5	-9	O	6	-6	12
	Vocabulary (L)	67	1	2	-3	3	3	6	2	2	-8
	" (L)	65	4	5	-9	7	8	-4	4	13	-6
	" (M)	77	2	-7	9	-5	2	-3	3	-9	10
6.	" (s)	63	4	2	-5	2	27	-3	0	-1	1
	" (s	72	-1	-1	-4	2	30	1	0	2	-3
8.	" (S)	67	-3	0	-1	-5	39	-5	-2	-2	2
9.	" (LIA)	38	1	-3	7	4	28	5	0	0	1
10.	Spatial Relations (A)	4	43	5	6	2	-6	1	-5	-5	20
11.	Intersections (L)	-2	63	5	-3	4	-2	3	2	6	-11
12.	" (L)	-2	71	-4	5	-4	0	-4	-1	2	3
13.	(M)	-2	67	3	-0	-7	7	-1	-2	-0	2
	(s)	-1	67	0	0	-2	2	20	-1	2	-1
15.	(s)	-2	69	-1	-2	-1	-3	30	-2	1	1
16.	(s)	-4	68	0	4	-5	1	23	-3	0	2
17.	(IIA)	3	29	-2	-4	5	-2	49	-2	2	-3
18.	Mathematics (A)	2	-4	50	6	9	-9	-2	-2	-9	0
	Arithmetic Reasoning (I)	-2	-1	50	-9	9	-5	8	7	8	-8
20.	" " ()	-4	4	45	4	-4	4	-7	6	-3	-17
21.	" " (M)	-1	0	51	1	7	0	-1	-6	7	-3
22.	" " (s)	1	2	40	17	-9	9	3	-8	-5	5
23.	" " (s)	-1	0	46	0	6	2	13	0	0	-2
24.	(S)	6	-1	38	16	-4	3	7	-4	-1	4
25.	(ILA)	8	1	16	8	5	2	20	4	-5	3
	Number Speed (R)	3	1	-3	40	2	-1	6	4	1	-1
27.	" $"$ (R)	-3	2	3	48	-4	2	-3	-4	0	0
28.	Cancellation (R)	4	9	2	0	27	10	-3	2	5	-5
	Plcture Discrimination (R)	8	23	1	-5	35	2	4	-5	-4	10
30.	Number Checking (R)	-7	-1	5	2	36	0	1	6	6	-8
	English (G)	54	-3	2	1	6	2	-8	36	35	1
	Foreign Language (G)	20	2	-1	9	-5	-5	5	51	24	0
	Eng'g. Draw, \& Des. Geom. (G)	6	36	8	-8	5	4	-6	38	-4	23
	Chemistry (G)	6	1	26	-8	-1	0	2	67	2	-2
	Mathematics (G)	-5	2	28	-1	-4	2	0	66	-7	-12
	Conduct (G)	-8	-7	6	2	-3	-1	-2	15	8	21
	Vocabulary (NR)	70	-1	-3	0	3	28	0	1	2	1
	Intersections (NR)	-1	67	-2	-1	0	-2	32	-2	1	0
39.	Arithmetic Reasoning (NR)	2	2	42	2	8	0	16	2	-1	1

tABLE 6
Transformation Matrix

	I	II	III	IV	V	VI	VII	VIII	IX	X
I	415	324	192	020	009	109	053	181	011	007
II	647	-561	-047	008	030	141	-119	-056	015	003
III	-389	-448	352	129	038	-060	-078	497	000	-086
IV	-308	-036	337	295	035	-031	082	-784	-082	002
V	132	362	-510	161	167	294	091	-192	005	034
VI	273	408	-416	525	112	-684	030	051	172	-020
VII	007	002	-029	056	-350	059	532	090	-392	-432
VIII	-049	-189	357	-497	650	-345	-112	026	-540	089
IX	261	-042	-336	474	-409	-259	081	183	-520	888
X	013	207	-223	346	-493	468	-811	-145	-497	-092

TABLE 7
Correlations between Primary Vectors

		$\begin{aligned} & \mathrm{V} \\ & \mathrm{I} \end{aligned}$	$\begin{array}{r} S \\ I I \end{array}$	$\begin{gathered} M \\ I I I \end{gathered}$	$\stackrel{N}{\text { IV }}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~V} \end{aligned}$	$\underset{\mathrm{VI}}{\mathbf{V}}$	$\stackrel{6}{\text { VII }}$	$\begin{gathered} \mathbf{G} \\ \text { VIII } \end{gathered}$	$\begin{array}{r} \mathrm{H} \\ \mathrm{IX} \end{array}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$
V	I	1.00	. 14	. 44	. 00	-. 11	-. 08	-. 05	-. 11	. 03	-. 13
S	II	.14	1.00	. 49	-. 08	-. 08	. 05	-. 02	.17	-. 01	. 20
M	III	. 44	. 49	1.00	. 29	-. 04	.13	. 03	. 13	. 09	. 19
N	IV	. 00	-. 08	. 29	1.00	.71	. 56	. 28	. 40	-. 18	-. 09
P	V	-. 11	-. 08	-. 04	. 71	1.00	. 66	. 28	. 40	-. 31	. 01
v	VI	-. 08	. 05	.13	.56	. 66	1.00	. 44	. 42	-. 14	. 27
s	VII	-. 05	-. 02	. 03	. 28	. 28	. 44	1.00	. 12	-. 22	. 12
G	VIII	-. 11	.17	.13	. 40	. 40	. 42	.12	1.00	-. 12	. 01
H	IX	. 03	$-.01$. 09	-. 18	-. 31	-. 14	-. 22	-. 12	1.00	. 27
X	X	-. 13	. 20	.19	-. 09	. 01	.27	. 12	. 01	. 27	1.00

If the last one or two factors are excluded from consideration, the clarity of the factor structure in Table 5 is made apparent by the visually obvious distinction between 2 -digit and 1 -digit coefficients. The 1 -digit coefficients may be conveniently dismissed as insignificant. Each 2-digit coefficient without exception has an obvious realistic interpretation.

In most factor analyses it is customary to ignore coefficients less than .30 or .20 , say, as not reliably different from zero. Standard errors for individual factor coefficients have not been computed for the present study; however, with correlations based on 649 cases, as in the present study, the standard error of a correlation coefficient is about .04 for correlations in the neighborhood of zero and about .01 for correlations in the neighborhood of .80 . It is to be expected, therefore, that the factor coefficients will have some meaning even in the range from .10 to 20 . This will be seen to be actually the case.

Interpretation of Factors

The first three factors of Table 5 correspond to the three aptitude areas about which the present study is centered. They are "level" factors, in contrast to the next four, which are speed factors. The eighth and to a large extent the ninth factors are determined by academic grades. The tenth and last factor seems to have no simple interpretation. All these factors will now be discussed in more detail.

Factor $I(V)$ is the verbal factor. In addition to the experimental vocabulary tests, the following variables have two-digit coefficients for this factor, as would be expected:
2. Verbal Test (A) 75
31. English Grade 54

1. Word Fluency (R) 25
2. Foreign Language Grade 20

Factor II (S) is a space factor. In addition to the experimental intersections tests, the following variables have two-digit coefficients for this factor, as would be expected:

$$
\begin{array}{lr}
\text { 10. Spatial Relations (A) } & .43 \\
\text { 33. Engineering Drawing and Descriptive Geornetry Grades } .36 \\
\text { 29. Picture Discrimination (R) } & .23
\end{array}
$$

The picture discrimination test is a reference test for the perceptual-speed factor, but the test obviously requires also the ability to perceive and discriminate spatial patterns.

Factor III (M) is a mathematical-reasoning factor. In addition to the experimental arithmetic-reasoning tests, the following variables have twodigit coefficients for this factor, as would be expected:
18. Mathematics (A) 50
35. Mathematics Grade 28
34. Chemistry Grade 26

Factor IV (N) is the number-speed factor, determined by the two reference tests included for this purpose. The only other variables with two-digit coefficients for this factor are two of the speeded arithmetic-reasoning tests:

$$
\text { 22, 24. Arithrmetic Reasoning (speeded) } .17, .16
$$

Factor V (P) is the perceptual-speed factor, determined by the three reference tests included for this purpose. No other variables have two-digit coefficients for this factor.

Factor VI (v) is clearly the verbal-speed factor that the present analysis
was designed to isolate (if it actually existed) and to study. All the two-digit coefficients for this factor are listed below:

8, 7, 6. Vocabulary (speeded)	$.39, .30, .27$
9. Vocabulary (last item attempted)	.28
37. Vocabulary (speeded; number-right score)	.28
28. Cancellation (R)	.10

The cancellation test is a reference test for the perceptual-speed factor. The coefficient of .10 for this test on the verbal-speed factor is not large enough to be of interest; a positive coefficient might be expected, however, in view of the fact that this test requires rapid work with alphabetical and verbal symbols.

Factor VII (s) is clearly the spatial-speed factor that the present study was designed to isolate (if it actually existed) and to study. All the two-digit coefficients for this factor are listed below:
17. Intersections (last item attempted) 49
38. Intersections (speeded; number-right score) 32
$15,16,14$. Intersections (speeded) 30, .23, . 20
25. Arithmetic Reasoning (last item attempted) 20
39. Arithmetic Reasoning (speeded; number-right score) 16
23. Arithmetic Reasoning (speeded) 13

The fact that all of the speed scores on the arithmetic-reasoning tests have small positive loadings on the spatial-speed factor is consistent with the fact that the arithmetic-reasoning tests contain a considerable proportion of simple geometry and other items that involve graphic illustrations, these being printed in the test booklets alongside the items.

Factor VIII (G) is an academic-grades factor. No variables other than the six academic grades have two-digit coefficients for this factor.

Factor IX (H) appears to be some sort of verbal-academic-grade factor, as indicated by its two-digit coefficients, which are as follows:

$$
\text { 31. English Grade } 35
$$

32. Foreign Language Grade 24
33. Vocabulary (level) 13
34. Word Fluency (R) 11

Factor $\mathbf{X}(X)$ does not suggest any ready interpretation.

The Correlations among Factors

The correlations among the primary vectors in Table 7 are of paramount interest. First, it should be pointed out that the reference axis for the verbal factor was arbitrarily set approximately orthogonal to the reference axis for the verbal-speed factor, since it was felt that interpretation would be hindered
by a choice of reference axes that would give the speeded verbal tests loadings of zero on the verbal factor. For the same reason, the spatial-factor axis was set roughly orthogonal to the spatial-speed axis. In each of these cases, the correlations between the speeded tests and the corresponding level factor are therefore represented approximately by the factor coefficients of the speeded tests and not by the corresponding near-zero correlation in Table 7.

Because of the considerable indeterminacy as to the proper position of the primary vector for the ninth factor, the verbal-factor axis and the academic-grades axis were both set approximately orthogonal to the axis for the ninth factor.

The mathematical-reasoning factor shows correlations of . 44 and .49 with the verbal and spatial factors, respectively. These correlations are reasonable in view of the fact that the arithmetic-reasoning tests include verbally presented problems, geometry problems, and other graphically presented problems. The only other correlations in Table 7 as large as these are between various speed factors. In fact, the main thing about Table 7 is the consistently positive intercorrelations of the four speed factors that have been isolated. In general, these correlate much more highly with each other than they do with the three "level" factors, thus demonstrating the existence of a second-order general speed factor.

The Relation of Grades to Speed

The academic-grade factor is seen from Table 7 to be positively correlated with all four of the speed factors. The ninth factor, however, which is determined mainly by grades in English and in Foreign Language, has negative correlations with each of the four speed tests and with the academicgrade factor itself. In order to interpret the relation of course grades to the various speed factors, it is necessary to obtain the actual correlations of each of the grades with the primary vectors for each of the speed factors.

As shown in Table 8, each of the course grades, with one minor exception, is positively correlated with each of the four speed factors. Although these relationships are not high, there is clear evidence of a positive relation between grades at Annapolis and speed.

TABLE 8
Correlations between Course Grades and Primary Vectors

	$\begin{aligned} & V \\ & I \end{aligned}$	$\begin{array}{r} S \\ I I \end{array}$	$\begin{gathered} \mathrm{M} \\ \mathrm{III} \end{gathered}$	$\begin{array}{r} \mathrm{N} \\ \mathrm{IV} \end{array}$	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathbf{v} \\ \mathrm{VI} \end{gathered}$	$\begin{gathered} \mathbf{s} \\ \text { VII } \end{gathered}$	$\underset{\mathrm{VIII}}{\mathrm{G}}$	H	X X
31. English (G)	61	12	39	20	10	15	-10	36	35	41
32. Foreign Language (G)	18	13	24	26	12	17	04	54	20	08
33. Eng'g. Draw. \& Des. Geom. (G)	09	68	46	09	15	30	02	54	-0	-05
34. Chemistry (G)	17	36	51	28	16	28	07	76	-02	04
35. Mathematics (G)	08	35	51	43	27	35	11	84	-15	02

Discussion

No speed factor for the arithmetic-reasoning tests could be isolated, although the attempt was persistently made. The factor coefficients indicate that the speeded arithmetic-reasoning tests tend to involve the numberspeed factor, the verbal-speed factor, and the spatial-speed factor to a slightly greater extent than do the unspeeded tests, as might reasonably be expected. The picture is somewhat confused by the fact that test 23 behaves slightly differently from the parallel tests 22 and 24 , and test 19 , from the parallel test 20 . It may be that an arithmetic-reasoning factor exists in the data but is so very unimportant that it was not separated from "noise" in the analysis.

The results obtained for the last-item-attempted scores are of particular interest. It will be remembered that these scores were not used to determine the common-factor space, since it was desired to center the present study primarily around the type of scores normally used for aptitude tests. It is nevertheless found, for both the verbal and the spatial tests, that the LIA score is a purer measure of the corresponding speed factor than are the corrected-for-guessing scores on any of the three speeded tests.

It is noteworthy that in all three cases the "moderately" speeded tests (M) are like the level tests and not like the speeded tests, even though only 50 to 75 per cent of the examinees responded to the last item.

Variables 37,38 , and 39 -the number-right scores corresponding to variables 7, 15 , and 23 -have loadings so similar to the "corrected-forguessing" scores on the same tests as to be virtually indistinguishable from the latter.

With the exception of English, the academic grades all have higher loadings on the academic-grade factor than they do on any of the aptitude factors. This situation clearly shows that the course grades have a reliable, and therefore theoretically predictable, variance over and above that actually predicted by the aptitude tests. Whether this variance is attributable to personality factors or to other causes cannot be determined from the present study.

Summary and Conclusions

The present study was designed to investigate the existence and interrelations of various speed factors, and their relation to academic course grades.

Speeded and unspeeded, but otherwise parallel, tests of vocabulary, spatial ability, and arithmetic reasoning were administered to 649 entering students at the U. S. Naval Academy at Annapolis. Also included in the factorial analysis were scores on certain regular admissions examinations, scores on certain specially prepared reference tests, and end-of-year course grades at Annapolis.

Extraction of factors from the 33 -variable correlation matrix was carried out by Lawley's maximum likelihood method, the calculations being done on the Whirlwind, a high-speed electronic computer. Factoring was continued until, after the extraction of the tenth factor, a significance test on the matrix of residuals showed them to be no longer statistically significant.

Rotation to psychologically meaningful oblique axes was carried out with the help of the matrix rotator at The Adjutant General's Office. The tenth rotated factor was found to be difficult or impossible to interpret. With this exception, the structure of the factor matrix was found to be so clear that a ready interpretation existed for every factor coefficient above 09.

As would be expected, three of the factors obtained were verbal, spatial, and mathematical-reasoning factors. The reference tests included in the battery yielded the expected number-speed factor (ordinarily called simply the number factor) and perceptual-speed factor. The academic grades in the battery were found to define not only a general academic-grade but also a verbal-academic-grade factor. Finally, a verbal-speed and a spatial-speed factor were clearly identified and distinguished from the number-speed and the perceptual-speed factors. No arithmetic-reasoning speed factor was isolated.

The primary vectors for all four speed factors were found to be positively intercorrelated, demonstrating the existence of a general speed factor at the second-order level.

All correlations between course grades and the four speed factors, with one small exception, were found to be positive, although not large. It is to be concluded that speed of various kinds plays some part in the course grades studied, and that speededness in the admissions examinations is to this extent justified. It would seem that tests on which 50 to 75 per cent of the examinees reach the last item do not involve the speed factors needed; apparently, only very highly speeded tests involve these factors to any appreciable extent.

REFERENCES

1. Bartlett, M. S. Tests of significance in factor analysis. Brit. J. Psychol., statist. Sect., 1950, 3, 77-85.
2. Bartlett, M. S. A further note on tests of aignificance in factor analysis. Brit. J. Psychol., statist. Sect., 1951, 4, 1-2.
3. Davidson, W. M., and Carroll, J. B. Speed and level components in time-limit scores: a factor analysis. Educ. psychol. Measmt., 1945, 5, 411-427.
4. Dubois, P. H. A speed factor in mental tests. Arch. Psychol., 1932, No. 141, pp. 38.
5. Emmett, W. G. Factor analysis by Lawley's method of maximum likelihood. Brit. J. Psychol., statist. Sect., 1949, 2, 90-97.
6. French, J. W. The description of aptitude and achievement teste in terms of rotated factors. Psychometric Monogr. No. 5, 1951.
7. French, J. W. Selected tests for reference vectors. Princeton: Educational Testing Service, 1953.
8. Goheen, H. W., and Kavruck, S. Selected references on test construction, mental test theory, and statistics, 1929-1949. Washington, D. C. Superintendent of Documents, 1950.
9. Harris, C. W. The symmetrical idempotent matrix in factor analysis. J. exper. Educ., 1951, 19, 238-246.
10. Henrysson, S. The significance of factor loadings-Lawley's test examined by artificial samples. Brit. J. Psychol., statist. Sect., 1950, 3, 159-166.
11. Kendall, M. G. Factor analysis. Part I: Factor analysis as a statistical technique. J. roy. statist. Soc., Series B, 1950, 12, 60-73.
12. Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood. Proc. Roy. Soc. Edinburgh, 1940, 60, 64-82.
13. Lawley, D. N. Further investigations in factor estimation. Proc. Roy. Soc. Edinburgh, 1941, 61, 176-185.
14. Lawley, D. N. The application of the maximum likelihood method to factor analysis. Brit. J. Psychol., 1943, 33, 172-175.
15. Lawley, D. N. Problems in factor analysis. Proc. Roy. Soc. Edinburgh, Section A, 1949, 62, 1-6.
16. Lawley, D. N. The maximum likelihood method of estimating factor loadings. In Thomson, G. H. (Ed.): The factorial analysis of human ability. (5th Ed.) London: Univ. of London Press, 1951. Pp. 321-329.
17. Mahan, W. W., Jr. The factorial comparison of five mental abilities using scores derived from speeded and unspeeded tests. Unpublished doctor's dissertation, Univ. of Texas, 1953.
18. Myers, C. T. The factorial composition and validity of differently speeded tests. Psychometrika, 1952, 17, 347-352.
19. Rao, C. R. Estimation and tests of significance in factor analysis. Urbana: Univ. of Illinois. (Mimeo.)
20. Rimoldi, H. J. A. Personal tempo. J. abn. soc. Psychol., 1951, 46, 283-303.
21. Sutherland, J. D. The speed factor in intelligent reactions. Brit. J. Psychol., 1934, 24, 276-294.
22. Tate, M. W. Individual differences in speed of response in mental test materials of varying degrees of difficulty. Educ. psychol. Measmt, 1948, 8, 353-374.
23. Tucker, L. R. A restatement of the equations for Lawley's maximum likelihood method of estimating factor loadings. Princeton: Princeton Univ., 1953. (Mimeo.)
24. Vernon, P. E. The structure of human abilities. New York: Wiley, 1950.
25. Whittle, P. On principal components and least square methods of factor analysis. Skandinavisk Aktuarietidskrift, 1952, 35, 223-239.
26. Uppsala symposium on psychological factor analysis, 17-19 March 1953. Nordisk Psykologi, 1953, Monograph Series No. 3.

Manuscript received 11/29/54
Revised manuscript received 3/9/55

[^0]: *The writer is indebted to Dr. John French, to Dr. David Saunders, and especially to Dr. Ledyard R Tucker for helpful suggestions and theoretical advice throughout the course of this study. The active cooperation of Dr. William Shields, Educational Advisor, and of many others at the United States Naval Academy at Annapolis has been invaluable. The author is very grateful to Dr. P. Youtz and Dr. C. W. Adams for the opportunity to use Whirlwind I, a high-speed computer sponsored by the Office of Naval Research, and to Dr. H. Denman for help is programming and in putting the program on the computer. He also wishes to express his deep appreciation to Dr. Hubert Brogden and Miss Bertha Harper of The Adjutant General's Office for the opportunity to use their matrix rotator and for helpful guidance in its operation.

